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Introduction

WSNs composed of several spatially distributed sensors called nodes that work together
to monitor a specific purpose such as pollution levels, temperature, sound, vibration,
pressure, and so on. Energy is regarded as a limited resource for a sensor node, particularly
when deployed in a unfriendly region, and once depleted, it is extremely difficult to provide
supplant energy. The main objective is to manage energy in such a waythat no node runs
out of energy and the network remains operational indefinitely. Hence, it is essential for a
sensor node to have an effective energy management policy for the lim- ited energy source,
as well as to manage the application requirements in accordance with the available energy
source. Energy management in WSNs can be considered as a set of rules for managing
various energy supply mechanisms and then consuming the provided energy efficiently in a
sensor node. In order to avoid energy deficiency in a network, an efficient power
management between supply and load is required. Hence, a power saving scheme to extend
the lifetime of WSNs has become an important research topic. Therehave been numerous
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analytical approaches developed on the subject. Excellent surveys on the PSMs are
provided Machado and Tekinay[13] and Anastasi et.al. [1]. In this research paper, the
PSM of WSN is analysed using an M/M/1 queueing with vacation,threshold policy and
system disasters.

Vacation queueing systems are critical in analysing the power management of computer
and communication systems. Several authors have applied various vacation policies to
analyse different PSMs [See Dimitriou [7], Misra and Goswami [14], Sampath et al.
[17] and Ren et al. [16] and references therein]. In these models, the server frequently
switches between busy and vacation states. To overcome frequent switching, the system
designerprefer N-policy scheme. In the N-policy scheme, the server is turned OFF or it
stays idle when there is no data packet in the system and the server is turned ON when the
systemsize reaches a predefined threshold value. The notion of an N-policy was first
studied by Yadin and Naor [20]. Later, many researchers studied various queueing
systems with N-policy in a different context [See Wang and Ke [19], Parthasarathy and
Sudhesh [15] and references therein].

Several researchers have analysed the PSM of WSNs based on the vacation queueing
system with N-policy. Jiang et al. [10] Jiang et al. studied the PSMs of WSNs using an
M/M/1 queueing model and presented the steady state results. The simulated results of
this research provide a potentially cost-effective approach to extending the lifetime ofthe
sensor network. In this article the authors considered only two state namely busy and
idle. Huang and Lee [8] studied the PSM of WSNs using M/G/1/K queueing model with
an N-policy and presented the steady state results. In this research article, the authors
considered three states namely busy, sleep and idle state. Blondia [4] presented the
steady-state analysis of a WSNs using energy harvesting. In this paper the author
considered two states namely transmit and vacation. Lee and Yang [11] analysed the PSM
of WSNs using an Geo/G/1 queueing system with N-policy. Chen et al. [6] proposed an
improved stochastic model for the WSNs which consists of three power-saving states
namely shutdown, wake-up and inactive. The authors proposed that power saving can be
achieved by decreasing the number of shutdown and wake-up processes. Jayarajan et al.
[9] applied M/D/1 priority queueing model with threshold policy to study the PSM of
sensor network and obtained the steady-state results. Ma et al. [12] studied the PSM of
WSNs using an M/M/2 queueing model with threshold policy and presented the steady-
state results using the matrix-geometry method.

In this article, we extend the research of Sudhesh and Shapique [18] by incorporat-

ing idle state, system disaster and repair. If the system encounter disaster, all the data packets
are removed from the sensor node. Many researchers have performed extensive research on
queues with system disasterin recent years due to their wide-ranging appli- cations in
computer and communication systems [see [2], [3], [5] and references therein]. System
disasters correspond to unreliable network connections in a WSNs, where data packets in
sensor nodes are lost due to external attacks or jamming signals. Consider aWSN is
deployed in an unfriendly environment like war zones for gathering intelligence in
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combat, tracking enemy troop movements, or measuring damage and casualties. An ad-
versary may send out jamming signals in order to disrupt wireless commumecations. This
jamming signals may mterrupt with the radio frequencies of the sensor nodes. Packets
transmitted over the frequency are discarded and may need to be re-transmitted.

From the lhiterature survey, it 1s observed that most research on the mathematical
modelling of WSNs has focussed mainly on the steady-state analysis of the system. Sur-
prisingly the transient analysis of the system has not received as much attention. In
many real-time applications, the system experiences a change and such changes can be
measured by the transient analysis and not by steady-state analysis. The steady-state
results cannot be used to determine the number of data packets waiting i the queue
during the transmit state or in the vacation state at some time instant £. This motivates
us to study the transient and steady-state analysis of the model.

The remainder of this paper 1s structured as follows. The model description 1s pre-
sented 1 Section 2. The transient probabilities of the system are presented in Section
3. The time dependent performance measures of the investigated system are presented
i Section 4. The steady-state probabilities of the model 1s presented Section 5. The
performance indices of the system in the steady-state are presented in section 6. The
results obtained 1 Sections 3-6 are graphically illustrated i Section 7. The Conclusion

and future work are presented 1 Section 8.

2 Description of the model

The model description of the WSN with start-up times and threshold policy subject
to system disaster and repair 1s presented in this section.

1. The data frames join the queue according to a Poisson process with a rate of A and
1t recerve service with a rate of g which follows an exponential distribution. The
system switches to three types power saving modes namely shutdown state, inactive
state and wake-up state. System disaster can occur at any state of the system.

2. After serving all the data frames in the busy state, the system switches to the
shutdown state of duration 7. The data frames may join the queue during this
time, but the server will not resume service until the system accumulates k jobs.

3. At the end of shutdown period T, if the system reaches the threshold value k, then
the system requires a start-up time which 1s exponentially distributed with the rate
fy to begin the service. To start-up, the system requires a change of state. The
server switches from a shutdown state to an wake-up state which 1s exponentially
distributed with a rate #s.
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4. At the end of the shutdown period, if the system size 1s less than k, then the
server switches to an nactive mode with the rate #s which follows an exponential
distribution. Data frames can enter the system during the inactive period. At this
epoch when the system size reaches the threshold value k, the system switches to

the wake-up state.

If system mcurs disaster, all the data frames are removed from the system and
server switches to the failure state with rate { which follows Poisson process. A
repair process starts forthwith and the repair time of the system 1s exponentially
distributed with mean 1.

[y §

6. The switches to the idle state at the end of repair process. If no customer arrive
during the idle period, the sever immediately switches to the shutdown state of rate
13 which follows exponential distribution.

Let {H;(t)),t = 0} represent the status of the system at any time ¢ and let Hs (f)
denotes the number of data frames in the system at any time .

0, the server 1s in busy state

1, the server is in wake-up state
2. the server 1s in shutdown state
3. the server is in inactive state

Hi(t) =

Then. Y(t) = {H,(t),Hs(t).t = 0} represents a continuous time Markov chain with
state space
S={(0,n):n=123, . 3u{(l,n):n=kk+1k+2..}
xU{(2,n):n=0,1,2,.}u{(B8,n):n=0,1,2, .k — 1.}

Let
Pin(t) = P{H(t) =i, Ho(t) =n},i=0;n=1,2,3..,
Pin(t) = P{Hi(t) =i, Hao(t) =n},i=1;n =k k+ 1,k +2...,
Poa(t) = P{Hi(t) =i, Ho(t) = n},i=2;n=0,1,2, ...,
P a(t) = P{Hi(t) =i, Ho(t) =n},i=3;n=0,1,2, ..k — L.

Then P, (t) satisfies the following forward Kolmogorov equation.

Py (t) = —nPr (t) + (1= Pr (t)), (2.1)
Foo(t) = —(A+ 03+ () Pop (t) +nPr (1), (2.2)
PI.]r.n (t) - = (A+ B+ i}P{],n {tj + )‘P{J,n—l [:t) +.f-”‘P{J,n+1 [:t) 21 = 112:-33 ey k— 1: {23}
Pé‘n (t) - = ()‘+ M+ q}P{],n {tj + ‘)\Pﬂ,n—l (t) +f-"P0,n+1 (t) +€1P1.‘|‘1 (f) = k: k+ 1: k+ 2! E

(2.4)
Pl (1) = = (A+ 01+ Q) P (t) + 0Py (t) + APs g1 (1), (2.5)
Pla(t)=—=A+6014+C) Pin(t) + 02Pon () + AP1na () .n =k + L k+2k+3..,
(2.6)
10893
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Py (t) = — (A + 62+ C) Pog (t) + pPo (t) + 63FPoo (1), (2.7
P, (t) == +0+() Pon(t) + APop1 (1) ,n=1,2,3, ..., (2.8
Pyg(t) = — (A + () Pao (t) + 62 Pao (£) (2.9
Paa()=—(A+ Q) Py (t) + APy 1 (t) + 02 Poy (t) ,n=1,2, ..k — 1. (2.10
It 1s assumed that the server is on nactive state itially. Therefore,

I, i=3,n=0
P;.-n[:m - { 0, elsewhere.

3 Transient analysis

This section presents the time-dependent probabilities P, ,,(t), i = 0,1, 2, 3.

3.1 Evaluation of P ,(t), P5,(t) and Py, (t)

Let P, (s) denote the Laplace transform of P, () fori =1,2,3;n=0,1,2, ...

Taking Laplace transform on equations (2.1) — (2.2) and (2.5) — (2.10), we get

Sﬁ‘p I:S} = —'J‘]ﬁ’p (S:l —|—4; (1 — ﬁ"p (S]);

(s) = — (A + 03+ C) Poo (s) +nPs(s),
sPLe(s) == (A +6; +0) Pri(s) + 0aPog (s) + APy_q (5),
sPin(s) = — (A 401+ Q) Pra(s) + 02Pon () + APini (s),
(5) = —(A+ 02+ () Pag (s) + pPo1 (s) + 3 Fop (1),
(s}:—{z\+ﬁg+§)Pgn[ —|—)\Pgn 1(s),n=1,2,3, ..
sPyg(s) — 1= —(A+C) Pyg (s) + 6aP2 (s)

5Py (s)=—A+C) Pan(s) + APsp 1 (s) +6aPop(s),n=1,2.k—1.
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Let By =A+0+(, Pa=A+0+(, B3a=A+03+(, and 3 = A+ p+ (. Simplifying
Equation (3.1), we get

. ¢ 1 1
FPrls)=——|—-—— — 3.9
e (s) (n+C) L .‘:‘—i—?]—l—fj (39)
Substituting Equation (3.9) in Equation (3.2), we obtain
Poo () = nCA(s), (3.10)
where
. 1 1 1
Al(s) = : + : ER '
sm+QBs (s+B8)A+b—nb (+n+)0+A+60—n)

Using equations (3.5) and (3.6), after some manipulation, we get

Al . .
= m I;UPD__]_ {S] + H‘g?]‘["’q (S]:| L= [}] 1] 2] {311}
. ~32

ﬁ!l_n (Sj

L d

Using Equation (3.5) in Equation (3.7) and further using it in Equation (3.8), we get

. B By A7 1 - 1 A B
P3=“{5}_(s+)«+g)[s+,5’g) (s+A+g) +;(s+,\+g) <5+3})}
< [nFor (9 + A 9)] + e (3.12)

Using equations (3.9) and (3.10) in (3.4), we get

. AR -
Pia(s) = PR e Fuls) [;LPM (s) + BanCA {,«,)] m=kk+1k+2k+3
(3.13)
10895
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o A"

() () )
(s + B1) (s + B2) o s+ 5 s+ [ s+ 5

1 1 ko k-1 | k—j | j
X{{s+,ﬁz)“’+(s+}\+g) +;(3+A+g) (s+,32) }]

Inversion on equations (3.9) — (3.13) respectively yvields

where

fﬂ (5) =

P () = [l —exp =+ O 1), (3.14)
Poo (1) = nCA(R), (3.15)
Py (t) = 28 —exp{— (Ba) } [Py () + 03nCA ()], m =0,1,2, ., (3.16)
B }x”t” alexp{—(A+{)t} exp{—/at}
Pun() = Tl exp (- () 4o 2220200 | o LA
exp{— A+ Ot exp{— A+ )t} exp{—pBat} !
(n—1)! +; (n—i—1) ' (i—1)! ]
« [Pos () + OCA ()] ,n=1,2,3, ..k — 1. (3.17)
AR n—k k—1 .
Pun () = o enp (=t} » e (- (4 + 20
# [Py (8) +0amCA ()] ,n=k+1,k+2,k+3, .., (3.18)
where
fa A\ r , n fm— i—1
fa(t) = 5 A [exp {—f1t} — exp {—Sat}] 1-;1 mﬂ\lﬂ{ St}
41 n—k—1 1
% i) exp {—at} + n 1] exp {—[t} * {[F: gy exp {— ot}
=1 fk i-1
+[k_1}!c~xp{ (A+¢) f}+z exp{ (A+C)t}
i1
* G exp {—Fat} }:|
and

1 exp {—fat} exp {—Bst}
At) = |- + - — - .
Ba(m+¢C)  Ba(A+03—m) Bs(A+03—n)
Thus, we expressed P ,(t), Pa,(t) and Ps,(f) in-terms of Fy;(t). The expression for
Fy1(t) is given in Equation (3.29).
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3.2  Evaluation of F ()

The busy-state probability Fy,(t); n = 1,2,3,... is obtained using equations (2.3)-
(2.4) by applying the generating function defined as follows.
Let

Glz,t) = i Pon(t)z",G (z,0) =0.

n=1

Using equations (2.3)-(2.4), we get

%G (Z, f'-) = |:— {/\—F o+ f._:] + % +)\Zj| - [:.’:_, f:} =+ )\.’:.Pg‘u (t) — j.t-PnJ (t) -|—.|91 ; Fl__n (t}z”

On solving,

G(z,t) = f |:6‘1 Zx: Py (w) 2™ — pPyy (w) + AzFPpp (w) | exp { (—..'5’ + Az + E) (t — ur)} dw
0

m=k
(3.19)
where 3 = A+ pu+ (. Let Kk = 2y/Ag andv = /A1, then
exp [()\: - g) (t — tb]] = Z (v2)"In (k(t — w)). (3.20)

where I;,(t) represents the modified Bessel function of the first kind of order m. Applying
(3.20) in Equation (3.19) and equating the coefficient of z" on both sides for n = 1,2,3...

Pon(t) = [ [ﬁl Z Pim(w)v™ "hom () — pPoi (w) v" I () + APop (w) T S (}:|
Il m=k

x exp{—f (t —w)} dw. (3.21)

Equating the coefficients of z " on both sides of Equation (3.19) for n = 1,2.3... and
using [, (.) = I (.). we get

0= [ |:‘|91 Z Pim (r"—”) " o tm () - .“'Pﬂ,l (U-") v, {) + )‘PD_.D (r”-"j If"ﬂ-h_l-'!r*rwl (]]
1 m=~k

D
x exp{—p(t —w)}dw. (3.22)

Multiplying v*" on both sides of Equation (3.22) and subtracting it from Equation (3.21)
for n =1,2,3..., we arrive
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Pﬂﬂ = El [Z PI m EXP{_-S [t - Lb]} vt {In—m 'l(} - ﬂ+m ( )} dw
0 m=Fk
t
+ A [Po__o (w)exp{—B(t —w)} "  {In_1 () = Ins1 ()} dw (3.23)
[
Taking Laplace transform on Equation (3.23), we obtain
ﬁ; o 2 = }5 ﬂ—m{»,{' jn— {/ Tn-i—m} 2’\}3 n—1 o )n
u,n(ﬁ}—ﬁ; 1m (8) v X\S — X\S8 — —Foo(s)v" X(s
(3.24)
where
y(s) :mand d=s+ A+ p.
K
Using equations (3.10) and (3.13) in Equation (3.24), we obtain
¥ th n—m [ o0 nmm ~ f yntm
Pon(s) = ﬁ%" {x(s) — X(s)""™}
A™ - 2) el m
x LS N ey e A {Pus (s) + banc A (s)}} — AR ()

On 1nversion,

oo

Pon(t Zv"’ " L (Kt) — Inpm (kt) } exp {5t}
m=k
nexp{=/itt™F  tlexp{— (A4 ()t}
* {HM ok &= 1) + {.UPD,I (1) + fanCA [t}} * fn (1)
— M PA() * {1 (kt) — Lusq (st)} exp {—Bt}. (3.25)

Vol. 71 No. 4 (2022) 10898

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

2326-9865
3.3  Evaluation of Fy(t)
Setting n — 1 in Equation (3.23), we obtain
Poy (t) = 26 /Zﬂm Jexp {—F(t —w)} mo! m%dw
E (s (t = w))
_ ) ikt —w))
+ 2)\/ PD__D (;‘Lj exp {_,'j {(t - U'.}} Wdu
0
On inversion
. = R .m—1 . 1
Poy(s) =20, S v mP . (s) " L 2Py (s) . (3.96
Substituting equations (3.10) and (3.13) in Equation (3.26) after some manipulation, we
et
m—l Am . ( .
P, 26 v — —% + A (s s
ﬂl lr; L'E+ F{{-_. K}) [5+.‘31} A+1{5+}l+€}k ??g \ }f[]
. 1 -
+ 2MCA(s g(s)", (3.27
1 .J{d+ dg_ﬁ_gig(g.)] (3.27)
where
o .m—1
(s) = 2ubi f () S " — L - (3.28
Inversion on (3.27) gives
Fou(t {31 Z VI Iy (Kt) — Ty (K1)} exp {—ft}
mf‘XP{—.ﬁlﬁHm Foep{=(A+QtptH!
A BamC A (t t
Qe UAOE 0 EREOIE L pucan 10
+ MpCA(t) = { 1o (kt) — I (kt) exp (— * Z (g(t))” (3.29)
h=0
where
9(6) = uf () % 5 ™ Iy (58) — Ty () xp { )
m=k
10899
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and “xh’ denotes h-fold convolution. Thus we have obtained an explicit expression for

Foi(t).

4 Performance measures

The mean and vanance of the system size are presented in this section.

4.1 Mean

Let €2(t) denote the expected system size at time t. For ¢ = (). we have

o~ oo o0 k—1
Qt) = BIX (0] = 3 nPon (6) + 3 nPun(t) + 3 0Pon () + 3 nPsa(t).
n=1 n=~k n=1 n=1

Then using Equations (2.1)-(2.9), we get

o0 o0 o0 k—1
() =A(1—Pr(t) —pY_ Pon(t) — ¢ {Z nPin(t)+ Y nPan(t)+ Y nPia {t}}
n=1 n=>Fk n=1 n=1

The above equation gives

) =x— [ Peiy—uS [ Fon(y)dy
[rriom-i5s

n=1 0

! ] ] k—1
< {znp.,ﬂ )43 b () + 3 0P {ya}dy
h n=1 n=1

n=~k
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4.2 Variance

Let V(t) denote the variance system size at time ¢. For ¢ = 0,
V(t) = E[X?(t)] — (E[X(1)])*,

where

E[X? ()] Znﬁ.n +ZnP1n +angn -I—angn

Using Equations (2.1)-(2.9), we obtain

ZE X2 (0)] = A(1 - Pr () +220(6) - DICERING

- o k1
— (’ {Z n.EPl__n {(t] — Z ﬂ-gpg__n {(ﬂ + Z ﬂ'gpﬂ._n {(ﬂ }
n=k n=1 n=>0

Then

[4 t

E(X? (t) = Xt — /Pp (y]ldy—l—?)tf y) dy —,L:Z(Erm—l [Pg:n[y}dy

0 0
- 80 k-1
</ {Z 7Pin(y) + D1 Pan (9) + 3 0 Pan (y)} dy.
b n=k n=1 n—1

4.3 Probability that the server is in power-saving modes

Let P, (t);i = 1,2,3 denote the probability that the server is on wake-up state,
shutdown state and inactive state respectively, then

= Z ﬁ’l._n (Sj
n=Fk

[= 4]

— Z ﬁ!l_n {S]-

n=>0

k—1
— Z fj&_n (S]

n=>0
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Using Equations (3.10), (3.7) and (3.8) in the above expression and taking inversion,
respectively yield

MNethVexp{— (A + ()t} *exp{— (81 — At} 6 {exp(—fat) —exp (—Fit)}
Pra(t) = e — 1) * B — Ba

N1 o (—Bat)

(k= 1)1 (52 — B1)

th=lexp (—fat) tFlexp{— (A + ()}t k_jtk‘j‘lcxp{—{)\—kg]t}
* CE & —1) h—j—1)

* (0 (t) + B1d (t)) x exp {— (81 — A) t} —exp {— (B2 — A) t}

=1

exp (—Fit) = (8 (t) + Aexp {— (51 — A) t})

. 1L exp (—fat) . AFkT
(=1 (k—1)!

« {pFo1 (1) + OanCA(t)}
Pyo(t) = [pFoq (t) + 0anCA(t)] * exp {— (B2 — A) t},
4.4 Probability that the server is in busy state
Let Pye (t) denote the probability that the server is on busy state, then

ﬁb__- (5] = Z ﬁb,n f-‘ﬂ-

n=1
Using Equation (3.19) and taking inversion, we get

p&:,- (t} — r‘;'LI Z Z pl.m (t}un—m* [Jrn—m {Kt} - Jrn+m (Kt}] exp {_.St} :

n=1 m=£Fk
4.5 Probability that the server is either in busy state or wake-
up state or shutdown state or inactive state

Let P(t) denote the probability that the server is either in busy state or in wake-up
state or in shutdown state or in inactive state, then

[="5] [=5] =] k-1
P#)=Y Pon(t)+Y Pia(t)+> Pon(t)+ Y Prpi ().
n=1 n—=k n=>0 n=>0
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kpk—1

Py (£) = exp (=Ct) » {w) e +4)t}} +exp{= (A + )t} — exp {~Fat}]

kpk—1 o e
« {6 (£) + exp (— )}*{am_ﬁﬂp{_uﬂm%{a(t)+{gg+wm}

k—14k-2
[)\ exp (— 5 {f) - )(\k _tz)!

exp [~ (A +<)t}} ~ Nexp(—6at)

Ak 1 k—q
{a e - ﬁg)t}}] « {1Pos (8) + OmCA (D)}

where 4 (t) represents Dirac delta function.

5 Steady-state probabilities

The system size probabilities of the wake-up state, the shutdown state and the mactive
state are presented in this section.
Let {mpnik = v1,v9,c,b,mn > 0} represent the steady-state probability distributions for
the model considered. Applying ll_l;% sP,,, = m, on equations (2.1)-(2.10), we get

nrr =((1 —@F), (5.1)

(A + 3 + () mo0 = n7F, (5.2)
(A-+'Fi'+ @)T_Dn = Aon-1 + pFoms1,n = 1,23, k-1, (5'3}
(A+p+)mon = Amop_1 + pmonsr + hmpp,n = F; E+1.kE+2, ..., (5.4)
(A+6; + () e = Oomag + Ay g1, (5.5)
(A+ 601+ ) min = oman+ Amip—1,n=k+1,k+2k+3..., (5.6)
(A+ 0y + () map = pmo,1 + Ha3mo,, (5.7)
(A+0y+()map = Amgpng,n=1,2,3, .., (5.8)
(A + () w30 = famay, (5.9)
(A+ ) man = Amgpg +bamon,n=12 . k—1 (5.10)

From equations (5.1) and (5.2), we get
10903
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o= 5.11
SRS (5-11)
- 1t 5.12
P NS ITEs ) (12)
Using equations (5.7) and (5.8), we obtain
A" ¢t o
Ton = .SQR—H [P'TCI 1+ m] y = J':l 2: 3.- {513}

Using equations (5.9) and (5.10), we get

b AV v fang
m,n—{}‘ﬂ}ﬁgl(iﬂ) +Z(}‘+g )”p,m+ +c,)] n=0,1,2 .. k1

(5.14)

>

Applying the results (5.13) and (5.14) in Equation (5.6), we get
Tin = fa0)pmo,n=k+1,k+2.k+3, ... (5.15)

where

S (@)

The probabilities m; ,,,i = 1,2, 3 are expressed in-terms of my ;. To get an explicit expres-
sion for mp ;. we define a generating function as follows:

=3 moa (5.16)
n=1

Using equations (5.3) and (5.4), we obtain

Gy (z) {)ng —(A+p+{)z+ ,u.} = pzmgy — Az2mp — lez Tinz" (5.18)

n==k

Applying the results (5.12) and (5.15) in the above expression, we get
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k = o
Go (2) (z —71) (z —79) = pamoy — 1 0s _&(’) o “22 — ipzmo Z fa(0)2". (5.19)
n=~k
where
A+;L+Q+\/(l+p&+§}2—4)\p
rn = 2}\ N
A+p+¢ —\/()«+p+§)9—4)«p
rn = 2N\ .
Setting z = ry, we get
A o0 -1 a0
nera n n
7 = 1_3 -n{] ._9 " nU ‘:1.
= m_;waﬁo(mg}[ 12 )] 12" n )

Applying the results in (5.11) — (5.15) Equation (5.1), we get

_ 7¢ B = [ s b
ZTDN_ +§ (A+Hg+g](n+£} ;ﬂfﬂm)ﬁ-ﬂn.l [.5-3—A+( .'

S S 2) @) )] o

5.1 Probability that the server is on wake-up state, shutdown
state and inactive state

We define generating functions as follows.

oo
Gl(z} — Z M.
n==Fk
)
Gi(z} — Z Tan
n=I0
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k—1
z) = Z TanZ -
Multiplying suitable powers of z on equations (5.5) and (5.6), and summing, we obtain
o
H'g Z ?l'g__nzﬂ + Azki’rg__k_l
Gy (z) = = . 5.21
1(2) A+ +0)— Az (5.21)

Applying the results (5.13) and (5.14) in Equation (5.21) and setting z = 1, we obtain

fa A F A2 A\ - AT
G‘(”_L’o— (3) +[A+c}.ﬁg{(h+¢) ’ (H@) (3_) H

1 n¢ s
_— _— 5.22
(6 +¢) {#%,1 N By (n+ U} (5-22)

bl

IIM

Multiplying suitable powers of z on equations (5.7) and (5.8) and summing, we obtain

g + Oamoo

S =4
G2 (2) = o p e (5.23)
Applying the results (5.12) in Equation (5.23) and setting z = 1, we obtain
1 HamiC ]
Go(l) = —— + : 5.24
(0 Ha+<;[m"" At+o+QOm+0) 520

Multiplying suitable powers of z on equations (5.9) and (5.10), and summing, we obtain

k-1
s Z_:D:rrln:;”
R e E)

[

Using the result (5.13) in Equation (5.25) and setting z = 1, we get

by A\ n¢ha _
Gs(“—m{l‘(@) }{*‘”ﬂ-—1+m}' 520

Equations (5.22),(5.24) and (5.26) denotes the probability that the server is on wake-up
state, shutdown state and inactive state respectively

6 Performance measures

This section presents expected system size in the steady-state. Let E[Np], E[N{],
E[Ny) N3] be the mean number of events in the busy, wakeup, shutdown and
inactive states respectively and let E[N;] denote the expected system size. Then,

E[N] = E[Ng] + E[Ny] + E[N;y] + E[N3].

Vol. 71 No. 4 (2022) 109506

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2094-0343
2326-9865

6.1 Expected system size in the busy state
The mean number of events in the the busy state 1s given by

E(Np) = lir_r% Gp(2).

Differentiating Equation (5.18) and setting z = 1, after some algebraic manipulation, we
get

ClA+b0:+C) (n+¢)

n=k

B(No) = = { e — 0> nf (0) mj__l}

n=>Fk

{A—u} AnC o ,
e {{}*+Hs+§}{?;—|—g)+ﬁlpzfﬂ(ﬂ}fu.l—#ﬁﬂ,1}- (6.1)

6.2 Expected system size in the wake-up state

Let E[N;] be the mean number of events in the system during wake-up mode. Then

a0

E "Nl] = Z N n-

n=k

Differentiating Equation (5.21) and setting z = 1 , we obtain

E(ﬂ"ﬂzﬁ{(%)k{mﬁ {3}i) (6, +¢) /\}}

A
+¢) (B
w2 S )R]

i=1

Bang ,
{P’J?"DI +m} (6.2)

(8=

6.3 Expected system size in the shutdown state

Let E[Ns| be the mean number of events in the system during shutdown mode. Then,

E [.'“'\"'g] = Z ng 4.
n=I{
Differentiating Equation (5.23) and setting z = 1, we get
’ A BanC }
E(Ns) = — { m : (6.3
T L e g Yoy &)
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6.4 Expected system size in the inactive state
Let E[Ns| be the mean number of events in the system during inactive mode. Then,

k-1

E [."\"'3] e Z LIETE

n=(0

Using the result (5.13), we obtain

o=t e {0 ()@ ()< @)

UE .
» {pﬁn] + m} . {6—1}

6.5 Expected number of events waiting in the system

Let E[W,] denote the mean number of events waiting in the system. Then,

B, = 2N

The mean number of events waiting in the queue is given by

fors] a0 k-1 o]
E [H:;] = Z nmin + Z nman + Z nmin + Z [R - 1] m,n-
k n=0 n=0 n=1

n=
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7 Numerical illustrations

This section presents the numerical illustrations of the system size probabilities ob-
tained in sections 3 — 5.

7.1 Numerical illustrations of the time-dependent probabilities

To plot the graph, the parameter values are chosen as follows: A=1, p =2, #; = 0.2,
fla =03, 03 =04, n=04, ( =0.01 and k = 5.

Figure 1 presents the failure state probabilities Pr(t). It is observed that as the
disaster rate ( increases the probability that the server in the failure state also mncreases.
Figures 2 — 5 demonstrates the behaviour of the shutdown, mactive, wake-up and busy
state respectively. It i1s observed that as time ¢ increases, the curve is also increases to
some extend and then the curve decreases and attain the steady state. Figures 6 and 7
presents mean and variance of the system. It 1s evident from the graph that as disaster
rate increases, the system size decreases. The probability curves of Pyp(t) start at 1
and decrease as t increases and attains the steady-state. The renaming curves of P;,(t)
increase to certain extent as ¢ increases and attains the steady-state.

Figures 8 — 10 presents the system size probabilities of shutdown, mmactive and wake-
up state in the steady-state environment. The graphs are plotted against n for varying
disaster rates (. Figures 11 — 13 illustrates expected system size in wake-up, shutdown
and nactive states respectively. It 1s observed that as the disaster rate increases, the
system size decreases.

8 Conclusion and future work
The Power saving mechanism of WSNs with jamming attack is analysed in this article.

To study the investigated system, we chose an M/M/1 queueing model with vacation,
set-up time, threshold policy, system disaster and repair. The transient and steady-state

Probahility values
e o 0 e o o
e g g 2 -+ 4 o4
B @ = N D

0.02

Time (i)

Figure 1: Probabilities of the failure state Pr(#).
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Figure 2: Probabilities of the shutdown P ().
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Figure 3: Probabilities of the inactive state Py ,(#).
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Figure 4: Probabilities of the wake-up Py ,(#).
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Figure 5: Probabilities of the busy state Py, (¢).
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Figure 7: Variance of the system.
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Figure 8: Steady-state probabilities of the shutdown state m ,, aganst n for varying C.

0.025 T T T T T T T T T
P |—+—q=0.1 —e—¢=02 §=0.3—+—~,=u-.4|
- _'+"--__
0.02 AT e i
- -\-_1'-"'“-;
R et i
=TT Rt T Tl
ooisfF L7 el T
o /’ﬂ T
= " - ) .-a-"-.
001} -7 T T e e ]
L7 ‘_“'"'—-.\__' T O _
e S
0.005 "“-_HH i
':' 1 1 1 1 | 1 1 | 1 -
Q 1 2 3 4 5 6 7 8 9 10

=107
=N — T T T T T T T T
T

S —+ =01
15k T —e—¢=02 |

T =03

ey —= =04

= +.
= T = S— .
e e
g ‘“"-q.__q_

0.5 ) 'ﬁ‘-_,_‘_h -‘-‘_h"'\-l--_,____‘ .

T T —wa
e T

=
b e e e s T
T e e e T — e
o 1 1 e, el Sy g - by
11 12 13 14 15 16 17 18 19 20
n

Figure 10: Steadv-state probabilities of the wake-up state m, against n for varying (.
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Figure 11: Expected system size in wake-up state against A for varying disaster rates.
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Figure 12: Expected system size in shutdown state against A for varying disaster rates.
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Figure 13: Expected system size in inactive state against A for varying disaster rates.

system size probabilities of the system are obtained in a closed form. The performance
indices such as mean, variance, probability that the system is 1n power-saving modes
and mean power consumption are obtained. This work may be extended to an M/N/C
queuneing model with working vacation and close-down times.
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