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1. Introduction

For any graph G(V, E) with |V(G)| = p, the graph G'(V, E") is defined as the graph
generated from G by deleting all edges between o and its counterpart, V — o, and any nonedges
between ¢ and V - ¢ are added as edges where ¢ € V. Seidel [1, 5] defined switching, which
is also known as |o| —vertex switching. When |o| = 2, it is called as 2—vertex switching. A
graph which contains exactly one cycle is called an unicylic graph. In [4] the concept of self
vertex switchings were studied. A survey in two graphs and reconstruction of graphs were
studied in [6]. Switching classes and Euler graphs were discussed in [2].

In 2008, the concept of branches and joints in graphs were introduced by Vilfred V et
al., [7]. A joint at o in G is a subgraph B of G that includes G[o] if B — ¢ is connected and
maximum. If B is connected, we refer to it as a c-joint; otherwise, we refer to it as a djoint.
Bisatotal joint if B=o0 + (B - 0). In[3] C. Jayasekaran, et al., analysed the graphs for 2—
vertex switching of joints.

For the graph G in Figure 1.1, G, G[o] and G—c are shown in Figures 1.2 to 1.4 respectively,
where ¢ = {u, v}. Figures 1.5, 1.6 and 1.7 show the ¢ — joints d — joint and the
total joint, respectively.
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Consider the following theorems, which will be used in the next section.

Theorem 1.1. [3] Let G be a graph of order p and let o = {u, v} be a subset of VV(G) with |V(G)|
> 5 such that uv € E(G). If Bisac-jointat o in G, then B” is a c-joint and unicyclic if and only
if [V(B)| =5 and one of the following holds:

Q) B — o is connected, acyclic and {ds(w), ds(v)} = {|V(B)| — 3, |V(B)| — 4}.

(i) B — o is connected, unicyclic and dg(u) = ds(v) = |[V(B)| — 3.
Theorem 1.2. [3] Let G be a graph of order p and let 6 = {u, v} be a subset of V (G) such that
uv € E(G). If Bis ac-joint at o in G, then B? is a c-joint and unicyclic if and only if |V(B)| =
5 and one of the following holds

Q) B—o is connected, acyclic and either ds(u) = ds(v) = |V(B)| — 2 or {ds(w), ds(v)} =

(v -3, v -1}
(i) B —oisconnected, unicyclic and {ds(u), ds(v)} ={|V(B)| — 2, |V(B)| — 1}.
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Main Results 2. 2-VERTEX SELF SWITCHING OF CONNECTED UNICYCLIC
GRAPHS

Theorem 2.1. Let G be a connected unicyclic graph of order p > 4 and let 6 = {u, v} be a
non—empty subset of IV (G) such that G — o is connected. Then G has a 2- vertex self switching
at o in G if and only if for uv € E(G), G is either C3w)(0, 0, P3) or C3qw)(0, P2, P2) or Caqw)(0,
0, P2, 0) with de¢(v) = 1 and for uv € E(G), G is either C3aw) (P2, 0,0) or Cs4 Or

C3w(u)(0,0, P2).

Proof. Let G be a connected unicyclic graph. Let o = {u, v} be a 2-vertex self switching of G.
Then G = Ge.

Casel.uv ¢ E(G)

G = Geimplies that G is connected and unicyclic. By Theorem 1.1, p > 5 and either G — g is
connected, acyclic and {d¢ (u), de(v)} = {|V(G)| — 3, V(G)| — 4} or G — o is connected,
unicyclic and de(u) = de(v) = |V(G)] — 3.

Subcase 1a. G — o is connected, acyclic and {d¢ (v), de(v)} = {|V(G)| — 3, V(G)| — 4} Let
de(u) = |V(G)| — 3 and de(v) = |V(G)| — 4. If |V(G) | =4, then |V (G) - o] = 2. Since G —
o is acyclic and connected, G — o = P2. Also de(u) =1 and d¢(v) = 0 implies that G = K1U
P3, where K1 is the vertex v, which is contradiction to G is unicyclic and connected. Hence we
have | V(G) | = 5.

If |V(G) | > 6, then de(u) = 3, de(v) =2 and |[V(G — 0)| = 4. Then there exists at least
three vertices say a, b and ¢ in G — o such that u is adjacent to a, b and c. Since G — o is
connected, there exist paths P1: a — b, P2: b — cand P3: a — c¢. Now the edges au, bu and cu
and the paths a — b, b — c and a — ¢, form at least three different cycles uP1u, uP2u and uP3u
in G, which is a contradiction to G is unicyclic. Therefore|V(G)| = 5. This implies that de(u)
= 2and d¢(v) =1 and |V(G) — o] = 3. Since G — o is connected and acyclic, G — o = P3. The
five non-isomorphic unicyclic graphs on 5 vertices with d¢(u) = 2 and de(v) = 1 are
C3w(0,0,2P2), C3)(0,0, P3), C3(u) (0,P2,P2), C4)(0,0, P2, 0) and C4w)(0,0,0, P2) which are
given in figures 8 to 12.
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Clearly, C3u (0,0, P3), C3w(0, P2, P2) and Caw)(0,0, P2, 0) are the graphs with 2-vertex self
switchings at o = {u, v}.

Subcase 1b. G — o is connected, unicyclic and de(u) = de(v) = |V(G)]| — 3

If |V(G)| =4, then |V(G) — a| = 2. It implies that G — & is not unicyclic and hence |V (G)| =
5.1f |V(G) — a| = 6, then de(u) = de(v) = 3 implies that there exists at least three vertices x,
yand z in V(G) — o such that ux, uy and uz are edges in G. Since G — ¢ is unicyclic, let C1
be the unique cycle in G — o. Now the edge ux, x — y path in G — ¢ and the edge yu form a
cycle different from C1. This is a contradiction to C1is the unique cycle in G.

Hence |V(G — o)| = 5. Since G - o is unicyclicand |V(G) —a| =3, G — o0 = C3= K3. Clearly,
de(u) = de(v) = 5-3 = 2. This implies that u is adjacent to two vertices, say a and b in V(G)
— o and hence au and bu are edges in G. Also there exists an a — b path in G — ¢ and hence
in G. Now the edges au, bu and the path a — b, form a cycle C2 different from C1, which is a
contradiction to G is unicyclic. Hence there is no connected unicyclic graph G such that

G — o is unicyclic and d¢(u) = de(v) =p — 3.

Case 2. uv € E(G)

Since G is connected and Ge is both connected and unicyclic, by Theorem 1.2, either

G — o is connected, acyclic and either de(u) = de(v) = |V(G)| — 2 or {ds(u), de(v)} {|]V (G|
— 3, |V(G)| — 1}, or G — o is connected, unicyclic and {dc(w), de(v)} = {|V(G)| — 1, |V(G)]
— 2}. We consider the following three subcases.

Subcase 2a. G — o is connected, acyclic and {dc(w), de(v)} = {|]V(G)| — 1, |[V(G)| — 3}
Without loss of generality, let de(u) = |v(G)| — 1 and de(v) = |[V(G)| — 3. If |[V(G)| = 5, then
de(u) = 4 and de(v) = 2. This implies that there exist at least three vertices

a, b, c in V(G) — o which are adjacent to u. Since G — o is connected, there exists paths
Pi:a—b, P22b—c and P3:a —c in G — 0. Now uP1u, uP2u and uPsu form at least three
cycles in G which is a contradiction to G is unicyclic. Hence |V (G)| = 4. The only unicyclic
graph on 4 vertices with d¢(u) = 3 and de(v) = 1 is C3w (P2, 0,0).

Figure 13 C3w)(P2, 0, 0)

Subcase 2b. G — o is connected, acyclic and ds(u) = de(v) = |V(G)| — 2

If |V(G)| =5, then de(u) = de(v) = 3. Clearly, V(G) — o contains at least three vertices.
Since uv € E(G), there exists at least two vertices say a and b in V(G) — o which are adjacent
to u. Now G — ¢ is connected implies that there exists an a — b path in G — o and hence in G.
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Now the edge ua, the a — b path and the edge bu form a cycle without the vertex v. By a
similar argument, we can find another cycle in G which contains the vertex v but not the vertex
u which is a contradiction to G is unicyclic. Hence |V(G)| = 4 and de(u) = de(v) = 2. The
only graphs on 4 vertices with de(u) = de(v) = 2 are given in figures 14 and 15.

[ v u ? v

u

Figure 14. C4 Figurel5. C3w(0, 0, P2)

Case 2c. G — o is connected, unicyclic and {d¢(w), de(v)} = {|V(G)| — 1, |V(G)| — 2}
Without loss of generality, let d¢(u) = |V(G)| — 1 and de(v) = |V(G)| — 2. If
|[V(G)| = 5, then d¢(u) > 4. As in subcase 2a, G is not unicyclic. Hence |V(G)| = 4. Now
|V (G) — a| = 2 implies that G — o is not unicyclic. Hence there does not exist any graph with
a 2-vertex self switching.
Thus from cases 1 and 2 we get, if uv & E(G), then G is either

C3w(0, 0, P3) or C3a)(0, P2, P2) or C4w)(0, 0, P2, 0) with de¢(v) = 1 and for uv € E(G), G is
either C3w (P2, 0,0) or C+ or C3wy(u)(0, 0, P2).

Conversely, let G be the graph given in the statement. Clearly, for each graph G, ¢ =
{u, v} is a 2-vertex self switching of G.
Hence the theorem.
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