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Abstract: —A graph 𝐺′(𝑉, 𝐸′) is created from G by eliminating all edges 

between 𝑆 and its complement 𝑉 − 𝑆 and any non-edges between 𝑠 and 𝑉 – 𝑆 

are added as edges for a simple graph G(V, E) and a non empty subset 𝑆 ⊂ 𝑉. 

We write 𝐺𝑣 for 𝐺{𝑣} when S={v}, and the associated switching is referred to 

as vertex switching. |𝑆|-vertex switching is another name for it. 2-vertex 

switching occurs when |𝑆| equals 2. If B is connected and maximal, a joint at 

σ in G is a subgraph of G that includes G[σ]. If B is connected, we refer to it 

as a c−𝒋𝒐𝒊𝒏𝒕; otherwise, we refer to it as a d−𝒋𝒐𝒊𝒏𝒕. An acyclic graph is one 

that has no cycles. The term "tree" refers to a linked acyclic network. In this 

article, we characterize 2-vertex self switching for connected unicyclic graphs.  
AMS classification: 05C60, 05C05, 05C40.  
Keywords — Switching, 2-vertex self switching, SS2(G), ss2(G).  

 
  

1. Introduction  

For any graph G(V, E) with |𝑉(𝐺)| = 𝑝, the graph 𝐺′(𝑉, 𝐸′) is defined as the graph 

generated from G by deleting all edges between σ and its counterpart, 𝑉 − σ, and any nonedges 

between 𝜎 and 𝑉 – 𝜎 are added as edges  where σ ⊆ 𝑉. Seidel [1, 5] defined switching, which 

is also known as |σ| −vertex switching. When |σ| = 2, it is called as 2−vertex switching. A 

graph which contains exactly one cycle is called an unicylic graph. In [4] the concept of self 

vertex switchings were studied. A survey in two graphs and reconstruction of graphs were 

studied in [6]. Switching classes and Euler graphs were discussed in [2].  

In 2008, the concept of branches and joints in graphs were introduced by Vilfred V et 

al., [7]. A joint at 𝜎 in G is a subgraph B of G that includes 𝐺[𝜎] if 𝐵 − 𝜎 is connected and 

maximum. If B is connected, we refer to it as a 𝒄-𝒋𝒐𝒊𝒏𝒕; otherwise, we refer to it as a 𝒅𝒋𝒐𝒊𝒏𝒕. 

B is a 𝒕𝒐𝒕𝒂𝒍 𝒋𝒐𝒊𝒏𝒕 if 𝐵 = 𝜎 + (𝐵 – 𝜎). In [3] C. Jayasekaran, et al., analysed the graphs for 2–

vertex switching of joints.   

 For the graph 𝐺 in Figure 1.1, 𝐺𝜎, 𝐺[𝜎] and G–σ are shown in Figures 1.2 to 1.4 respectively, 

where σ = {u, v}. Figures 1.5, 1.6 and 1.7 show the 𝑐 − 𝑗𝑜𝑖𝑛𝑡𝑠 𝑑 − 𝑗𝑜𝑖𝑛𝑡 and the  

𝑡𝑜𝑡𝑎𝑙 𝑗𝑜𝑖𝑛𝑡,  respectively.   
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   Consider the following theorems, which will be used in the next section.  

Theorem 1.1. [3] Let G be a graph of order p and let σ = {u, v} be a subset of 𝑉(𝐺) with |𝑉(𝐺)| 
≥ 5 such that 𝑢𝑣 ∉ 𝐸(𝐺). If B is a c-joint at σ in G, then Bσ is a c-joint and unicyclic if and only 

if |𝑉(𝐵)| ≥ 5 and one of the following holds:  

(i) B − σ is connected, acyclic and {𝑑𝐵(𝑢), 𝑑𝐵(𝑣)} = {|𝑉(𝐵)| − 3, |𝑉(𝐵)| − 4}.  

(ii) B − σ is connected, unicyclic and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 3.  
Theorem 1.2. [3] Let G be a graph of order p and let σ = {u, v} be a subset of V (G) such that    

𝑢𝑣 ∈ 𝐸(𝐺). If B is a c-joint at σ in G, then Bσ is a c-joint and unicyclic if and only if |𝑉(𝐵)| ≥ 
5 and one of the following holds  

(i) 𝐵−σ is connected, acyclic and either 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 2 or {𝑑𝐵(𝑢), 𝑑𝐵(𝑣)}  = 

{|𝑉(𝐵)| − 3, |𝑉(𝐵)| − 1}.  

(ii) 𝐵 − σ is connected, unicyclic and {𝑑𝐵(𝑢), 𝑑𝐵(𝑣)}  = {|𝑉(𝐵)| − 2, |𝑉(𝐵)| − 1}.  
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Main Results 2. 2-VERTEX SELF SWITCHING OF CONNECTED UNICYCLIC 

GRAPHS  

  

Theorem 2.1. Let 𝐺 be a connected unicyclic graph of order 𝑝 ≥ 4 and let σ = {𝑢, 𝑣} be a 

non−empty subset of 𝑉 (𝐺) such that 𝐺 − 𝜎 is connected. Then 𝐺 has a 2- vertex self switching 

at σ in 𝐺 if and only if for 𝑢𝑣 ∉ 𝐸(𝐺), G is either 𝐶3(𝑢)(0, 0, 𝑃3) or 𝐶3(𝑢)(0, 𝑃2, 𝑃2) or 𝐶4(𝑢)(0, 
0, 𝑃2, 0) with 𝑑𝐺(𝑣) = 1 and for 𝑢𝑣 ∈ 𝐸(𝐺), 𝐺 is either 𝐶3(𝑢)(𝑃2, 0, 0) or  𝐶4  or  

𝐶3(𝑢)(𝑢)(0,0, 𝑃2).  

Proof.  Let 𝐺 be a connected unicyclic graph. Let 𝜎 = {𝑢, 𝑣} be a 2-vertex self switching of 𝐺.  

Then 𝐺 ≅ 𝐺𝜎.  

Case 1. 𝑢𝑣 ∉ 𝐸(𝐺)  

 𝐺 ≅ 𝐺𝜎 implies that 𝐺𝜎 is connected and unicyclic. By Theorem 1.1, 𝑝 ≥ 5 and either 𝐺 − 𝜎 is 

connected, acyclic and {𝑑𝐺 (𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 3, 𝑉(𝐺)| − 4} or 𝐺 − 𝜎 is connected, 

unicyclic and 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 3.  

Subcase 1a. 𝐺 − 𝜎 is connected, acyclic and {𝑑𝐺 (𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 3, 𝑉(𝐺)| − 4} Let  

𝑑𝐺(𝑢) = |𝑉(𝐺)| − 3 and 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 4. If  |𝑉(𝐺) | = 4, then |𝑉(𝐺) – 𝜎| = 2. Since 𝐺 − 

𝜎 is acyclic and connected, 𝐺 − 𝜎 = 𝑃2.  Also 𝑑𝐺(𝑢) = 1 and 𝑑𝐺(𝑣) = 0 implies that  𝐺 = 𝐾1 ∪ 
𝑃3, where 𝐾1 is the vertex 𝑣, which is contradiction to 𝐺 is unicyclic and connected. Hence we 

have | 𝑉(𝐺) | ≥ 5.   

 If │𝑉(𝐺)│ ≥ 6, then 𝑑𝐺(𝑢) ≥ 3,  𝑑𝐺(𝑣) ≥ 2  and |𝑉(𝐺 − 𝜎)| ≥ 4.  Then there exists at least 

three vertices say 𝑎, 𝑏 and 𝑐 in 𝐺 − 𝜎 such that 𝑢 is adjacent to 𝑎, 𝑏 and 𝑐. Since 𝐺 − 𝜎 is 

connected, there exist paths 𝑃1: 𝑎 − 𝑏,  𝑃2: 𝑏 − 𝑐 and 𝑃3: 𝑎 − 𝑐 .  Now the edges 𝑎𝑢, 𝑏𝑢 and 𝑐𝑢 

and the paths 𝑎 − 𝑏, 𝑏 − 𝑐 and 𝑎 − 𝑐, form at least three different cycles 𝑢𝑃1𝑢, 𝑢𝑃2𝑢 and 𝑢𝑃3𝑢 

in 𝐺, which is a contradiction to 𝐺 is unicyclic. Therefore|𝑉(𝐺)| = 5. This implies that 𝑑𝐺(𝑢) 

=  2 and 𝑑𝐺(𝑣) = 1 and |𝑉(𝐺) − 𝜎| = 3. Since 𝐺 – σ is connected and acyclic, 𝐺 − 𝜎 = 𝑃3. The 

five non-isomorphic unicyclic graphs on 5 vertices with 𝑑𝐺(𝑢) = 2 and 𝑑𝐺(𝑣) = 1 are 

𝐶3(𝑢)(0,0,2𝑃2), 𝐶3(𝑢)(0,0, 𝑃3), 𝐶3(u) (0,𝑃2,𝑃2), 𝐶4(𝑢)(0,0, 𝑃2, 0) and 𝐶4(𝑢)(0,0,0, 𝑃2) which are 

given in figures 8 to 12.  
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Clearly, 𝐶3(𝑢)(0,0, 𝑃3), 𝐶3(𝑢)(0, 𝑃2, 𝑃2) and 𝐶4(𝑢)(0,0, 𝑃2, 0) are the graphs with  2-vertex self 

switchings at σ = {𝑢, 𝑣}.   

Subcase 1b. 𝐺 − σ is connected, unicyclic and 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 3  

 If |𝑉(𝐺)| = 4,  then |𝑉(𝐺) − 𝜎| = 2. It implies that 𝐺 − 𝜎 is not unicyclic and hence |𝑉(𝐺)| ≥ 
5. If |𝑉(𝐺) − 𝜎| ≥ 6, then 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) ≥ 3 implies that there exists at least three vertices 𝑥, 
𝑦 and 𝑧 in 𝑉(𝐺) − 𝜎  such that 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are edges in 𝐺. Since 𝐺 − 𝜎 is unicyclic, let 𝐶1 

be the unique cycle in 𝐺 − 𝜎.  Now the edge 𝑢𝑥, 𝑥 − 𝑦 path in 𝐺 − 𝜎 and the edge 𝑦𝑢 form a 

cycle different from 𝐶1. This is a contradiction to 𝐶1is the unique cycle in G.  

Hence |𝑉(𝐺 − 𝜎)| = 5. Since 𝐺 – 𝜎 is unicyclic and |𝑉(𝐺) − 𝜎| = 3, 𝐺 − 𝜎 = 𝐶3 = 𝐾3.   Clearly, 

𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 5−3 = 2. This implies that 𝑢 is adjacent to two vertices, say 𝑎 and 𝑏 in 𝑉(𝐺) 
− 𝜎 and hence 𝑎𝑢 and 𝑏𝑢 are edges in 𝐺. Also there exists an 𝑎 − 𝑏 path in 𝐺 − 𝜎 and hence 

in 𝐺. Now the edges 𝑎𝑢, 𝑏𝑢 and the path 𝑎 − 𝑏, form a cycle 𝐶2 different from 𝐶1, which is a 

contradiction to 𝐺 is unicyclic. Hence there is no connected unicyclic graph 𝐺 such that  

𝐺 − 𝜎 is unicyclic and 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 𝑝 − 3.  

Case 2. 𝑢𝑣 ∈ 𝐸(𝐺)  

   Since 𝐺 is connected and 𝐺𝜎 is both connected and unicyclic, by Theorem 1.2, either    

𝐺 − 𝜎 is connected, acyclic and either 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 2 or {𝑑𝐺(u), 𝑑𝐺(𝑣)} {|𝑉(𝐺)| 
− 3, |𝑉(𝐺)| − 1}, or 𝐺 − 𝜎 is connected, unicyclic and {𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 1, |𝑉(𝐺)| 
− 2}. We consider the following three subcases.   

Subcase 2a. 𝐺 − 𝜎 is connected, acyclic and {𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 1, |𝑉(𝐺)| − 3} 

Without loss of generality, let 𝑑𝐺(𝑢) = |𝑣(𝐺)| − 1 and 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 3. If |𝑉(𝐺)| ≥ 5, then 

𝑑𝐺(𝑢) ≥ 4 and 𝑑𝐺(𝑣) ≥ 2. This implies that there exist at least three vertices  

𝑎, 𝑏, 𝑐 in 𝑉(𝐺) − 𝜎 which are adjacent to 𝑢. Since 𝐺 − 𝜎 is connected, there exists paths          

𝑃1: 𝑎 − 𝑏,  𝑃2: 𝑏 − 𝑐   and 𝑃3: 𝑎 − 𝑐  in 𝐺 − 𝜎. Now 𝑢𝑃1𝑢, 𝑢𝑃2𝑢 and 𝑢𝑃3𝑢  form at least three 

cycles in 𝐺 which is a contradiction to 𝐺 is unicyclic. Hence |𝑉(𝐺)| = 4. The only unicyclic 

graph on 4 vertices with 𝑑𝐺(𝑢) = 3 and 𝑑𝐺(𝑣) = 1 is 𝐶3(𝑢)(𝑃2, 0,0).  

  

  

                       𝑢  𝑣              

 

      Figure 13    𝐶3(𝑢)(𝑃2, 0, 0)      
  

      

  

Subcase 2b. 𝐺 − 𝜎 is connected, acyclic and 𝑑𝐵(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 2  

 If |𝑉(𝐺)| ≥ 5, then 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) ≥ 3 . Clearly, 𝑉(𝐺) − 𝜎 contains at least three vertices.  

Since 𝑢𝑣 ∈ 𝐸(𝐺),  there exists at least two vertices say 𝑎 and 𝑏 in 𝑉(𝐺) − 𝜎 which are adjacent 

to 𝑢. Now 𝐺 − 𝜎 is connected implies that there exists an 𝑎 − 𝑏 path in 𝐺 − 𝜎 and hence in 𝐺. 
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Now the edge 𝑢𝑎, the 𝑎 − 𝑏 path and the edge 𝑏𝑢 form a cycle without the vertex 𝑣. By a 

similar argument, we can find another cycle in 𝐺 which contains the vertex 𝑣 but not the vertex 

𝑢 which is a contradiction to 𝐺 is unicyclic. Hence |𝑉(𝐺)| = 4 and 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 2.  The 

only graphs on 4 vertices with   𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 2  are given in figures 14 and 15.  

 
  

             Figure 14. 𝐶4            Figure15. 𝐶3(𝑢)(0, 0, 𝑃2)  

  

  

Case 2c. 𝐺 − σ is connected, unicyclic and {𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 1, |𝑉(𝐺)| − 2}  

   Without loss of generality, let 𝑑𝐺(𝑢) = |𝑉(𝐺)| − 1 and  𝑑𝐺(𝑣) = |𝑉(𝐺)| − 2. If   

|𝑉(𝐺)| ≥ 5, then 𝑑𝐺(𝑢) > 4.  As in subcase 2a, 𝐺 is not unicyclic. Hence |𝑉(𝐺)| = 4. Now 

|𝑉(𝐺) − 𝜎| = 2 implies that 𝐺 − 𝜎 is not unicyclic. Hence there does not exist any graph with 

a 2-vertex self switching.   

   Thus from cases 1 and 2 we get, if 𝑢𝑣 ∉ E(G), then 𝐺 is either  

𝐶3(𝑢)(0, 0, 𝑃3) or 𝐶3(𝑢)(0, 𝑃2, 𝑃2) or 𝐶4(𝑢)(0, 0, 𝑃2, 0) with 𝑑𝐺(𝑣) = 1 and for 𝑢𝑣 ∈ 𝐸(𝐺), 𝐺 is 

either 𝐶3(𝑢)(𝑃2, 0, 0) or  𝐶4  or 𝐶3(𝑢)(𝑢)(0, 0, 𝑃2).  

  Conversely, let 𝐺 be the graph given in the statement. Clearly, for each graph 𝐺, 𝜎 = 
{𝑢, 𝑣} is a 2-vertex self switching of 𝐺.   

Hence the theorem.   
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