A Characterization of 2-Vertex Self Switching of Connected Unicyclic Graphs

C. Jayasekaran ${ }^{1} \quad$ A. Vinoth Kumar ${ }^{2}$ M. Ashwin Shijo ${ }^{3}$
${ }^{1,2}$ Department of Mathematics, Pioneer Kumaraswamy College
Nagercoil 629003, Tamil Nadu, India.
${ }^{3}$ Department of Mathematics, Muslim Arts College
Thiruvithancode 629174, Tamilnadu, India.
Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamil Nadu, India.
e-mail: ${ }^{1}$ jayacpkc@ gmail.com
${ }^{2}$ alagarrvinoth@ gmail.com
3ashwin1992mas@gmail.com

Article Info

Page Number: 733-737 Publication Issue:
Vol 70 No. 2 (2021)

Article History

Article Received: 05 September 2021
Revised: 09 October 2021
Accepted: 22 November 2021
Publication: 26 December 2021

Abstract

A graph $G^{\prime}\left(V, E^{\prime}\right)$ is created from G by eliminating all edges between S and its complement $V-S$ and any non-edges between s and $V-S$ are added as edges for a simple graph $G(V, E)$ and a non empty subset $S \subset V$. We write G^{v} for $G^{\{v\}}$ when $S=\{v\}$, and the associated switching is referred to as vertex switching. $|S|$-vertex switching is another name for it. 2-vertex switching occurs when $|S|$ equals 2 . If B is connected and maximal, a joint at σ in G is a subgraph of G that includes $G[\sigma]$. If B is connected, we refer to it as a c-joint; otherwise, we refer to it as a d-joint. An acyclic graph is one that has no cycles. The term "tree" refers to a linked acyclic network. In this article, we characterize 2 -vertex self switching for connected unicyclic graphs. AMS classification: 05C60, 05C05, 05C40. Keywords - Switching, 2-vertex self switching, $\mathrm{SS}_{2}(\mathrm{G}), \mathrm{ss}_{2}(G)$.

1. Introduction

For any graph $G(V, E)$ with $|V(G)|=p$, the graph $G^{\prime}\left(V, E^{\prime}\right)$ is defined as the graph generated from G by deleting all edges between σ and its counterpart, $V-\sigma$, and any nonedges between σ and $V-\sigma$ are added as edges where $\sigma \subseteq V$. Seidel $[1,5]$ defined switching, which is also known as $|\sigma|$-vertex switching. When $|\sigma|=2$, it is called as $2-$ vertex switching. A graph which contains exactly one cycle is called an unicylic graph. In [4] the concept of self vertex switchings were studied. A survey in two graphs and reconstruction of graphs were studied in [6]. Switching classes and Euler graphs were discussed in [2].

In 2008, the concept of branches and joints in graphs were introduced by Vilfred V et al., [7]. A joint at σ in G is a subgraph B of G that includes $G[\sigma]$ if $B-\sigma$ is connected and maximum. If B is connected, we refer to it as a c-joint; otherwise, we refer to it as a djoint. B is a total joint if $B=\sigma+(B-\sigma)$. In [3] C. Jayasekaran, et al., analysed the graphs for 2vertex switching of joints.
For the graph G in Figure 1.1, $G^{\sigma}, G[\sigma]$ and $G-\sigma$ are shown in Figures 1.2 to 1.4 respectively, where $\sigma=\{u, v\}$. Figures 1.5, 1.6 and 1.7 show the $c-j$ joints $d-j o i n t$ and the total joint, respectively.

Figure. 1.1. G

Figure 1.5. c-joint

Figure. 1.2. $\boldsymbol{G}^{\boldsymbol{\sigma}}$

Figure. 1.3. $\boldsymbol{G}[\boldsymbol{\sigma}]$

Figure 1.6. d-joint

Figure 1.7. Total joint

Consider the following theorems, which will be used in the next section.
Theorem 1.1. [3] Let G be a graph of order p and let $\sigma=\{u, v\}$ be a subset of $V(G)$ with $|V(G)|$ ≥ 5 such that $u v \notin E(G)$. If B is a c-joint at σ in G, then B^{σ} is a c-joint and unicyclic if and only if $|V(B)| \geq 5$ and one of the following holds:
(i) $\quad B-\sigma$ is connected, acyclic and $\left\{d_{B}(u), d_{B}(v)\right\}=\{|V(B)|-3,|V(B)|-4\}$.
(ii) $B-\sigma$ is connected, unicyclic and $d_{B}(u)=d_{B}(v)=|V(B)|-3$.

Theorem 1.2. [3] Let G be a graph of order p and let $\sigma=\{u, v\}$ be a subset of $V(G)$ such that $u v \in E(G)$. If B is a c-joint at σ in G, then B^{σ} is a c-joint and unicyclic if and only if $|V(B)| \geq$ 5 and one of the following holds
(i) $\quad B-\sigma$ is connected, acyclic and either $d_{B}(u)=d_{B}(v)=|V(B)|-2$ or $\left\{d_{B}(u), d_{B}(v)\right\}=$ $\{|V(B)|-3,|V(B)|-1\}$.
(ii) $\quad B-\sigma$ is connected, unicyclic and $\left\{d_{B}(u), d_{B}(v)\right\}=\{|V(B)|-2,|V(B)|-1\}$.

Main Results 2. 2-VERTEX SELF SWITCHING OF CONNECTED UNICYCLIC GRAPHS

Theorem 2.1. Let G be a connected unicyclic graph of order $p \geq 4$ and let $\sigma=\{u, v\}$ be a non-empty subset of $V(G)$ such that $G-\sigma$ is connected. Then G has a 2 - vertex self switching at σ in G if and only if for $u v \notin E(G)$, G is either $C_{3(u)}\left(0,0, P_{3}\right)$ or $C_{3(u)}\left(0, P_{2}, P_{2}\right)$ or $C_{4(u)}(0$, $\left.0, P_{2}, 0\right)$ with $d_{G}(v)=1$ and for $u v \in E(G), G$ is either $C_{3(u)}\left(P_{2}, 0,0\right)$ or C_{4} or
$C_{3(u)}(u)\left(0,0, P_{2}\right)$.
Proof. Let G be a connected unicyclic graph. Let $\sigma=\{u, v\}$ be a 2 -vertex self switching of G.
Then $G \cong G^{\sigma}$.
Case 1. $u v \notin E(G)$
$G \cong G^{\sigma}$ implies that G^{σ} is connected and unicyclic. By Theorem 1.1, $p \geq 5$ and either $G-\sigma$ is connected, acyclic and $\left\{d_{G}(u), d_{G}(v)\right\}=\{|V(G)|-3, V(G) \mid-4\}$ or $G-\sigma$ is connected, unicyclic and $d_{G}(u)=d_{G}(v)=|V(G)|-3$.
Subcase 1a. $G-\sigma$ is connected, acyclic and $\left\{d_{G}(u), d_{G}(v)\right\}=\{|V(G)|-3, V(G) \mid-4\}$ Let $d_{G}(u)=|V(G)|-3$ and $d_{G}(v)=|V(G)|-4$. If $|V(G)|=4$, then $|V(G)-\sigma|=2$. Since $G-$ σ is acyclic and connected, $G-\sigma=P_{2}$. Also $d_{G}(u)=1$ and $d_{G}(v)=0$ implies that $G=K_{1} \cup$ P_{3}, where K_{1} is the vertex v, which is contradiction to G is unicyclic and connected. Hence we have $|V(G)| \geq 5$.
If $|V(G)| \geq 6$, then $d_{G}(u) \geq 3, d_{G}(v) \geq 2$ and $|V(G-\sigma)| \geq 4$. Then there exists at least three vertices say a, b and c in $G-\sigma$ such that u is adjacent to a, b and c. Since $G-\sigma$ is connected, there exist paths $P_{1}: a-b, P_{2}: b-c$ and $P_{3}: a-c$. Now the edges $a u, b u$ and $c u$ and the paths $a-b, b-c$ and $a-c$, form at least three different cycles $u P_{1} u, u P_{2} u$ and $u P_{3} u$ in G, which is a contradiction to G is unicyclic. Therefore $|V(G)|=5$. This implies that $d_{G}(u)$ $=2$ and $d_{G}(v)=1$ and $|V(G)-\sigma|=3$. Since $G-\sigma$ is connected and acyclic, $G-\sigma=P_{3}$. The five non-isomorphic unicyclic graphs on 5 vertices with $d_{G}(u)=2$ and $d_{G}(v)=1$ are $C_{3(u)}\left(0,0,2 P_{2}\right), C_{3(u)}\left(0,0, P_{3}\right), C_{3}(u)\left(0, P_{2}, P_{2}\right), C_{4(u)}\left(0,0, P_{2}, 0\right)$ and $C_{4(u)}\left(0,0,0, P_{2}\right)$ which are given in figures 8 to 12 .

Clearly, $C_{3(u)}\left(0,0, P_{3}\right), C_{3(u)}\left(0, P_{2}, P_{2}\right)$ and $C_{4(u)}\left(0,0, P_{2}, 0\right)$ are the graphs with 2-vertex self switchings at $\sigma=\{u, v\}$.
Subcase 1b. $G-\sigma$ is connected, unicyclic and $d_{G}(u)=d_{G}(v)=|V(G)|-3$
If $|V(G)|=4$, then $|V(G)-\sigma|=2$. It implies that $G-\sigma$ is not unicyclic and hence $|V(G)| \geq$ 5. If $|V(G)-\sigma| \geq 6$, then $d_{G}(u)=d_{G}(v) \geq 3$ implies that there exists at least three vertices x, y and z in $V(G)-\sigma$ such that $u x$, $u y$ and $u z$ are edges in G. Since $G-\sigma$ is unicyclic, let C_{1} be the unique cycle in $G-\sigma$. Now the edge $u x, x-y$ path in $G-\sigma$ and the edge $y u$ form a cycle different from C_{1}. This is a contradiction to C_{1} is the unique cycle in G.
Hence $|V(G-\sigma)|=5$. Since $G-\sigma$ is unicyclic and $|V(G)-\sigma|=3, G-\sigma=C_{3}=K_{3}$. Clearly, $d_{G}(u)=d_{G}(v)=5-3=2$. This implies that u is adjacent to two vertices, say a and b in $V(G)$ $-\sigma$ and hence $a u$ and $b u$ are edges in G. Also there exists an $a-b$ path in $G-\sigma$ and hence in G. Now the edges $a u, b u$ and the path $a-b$, form a cycle C_{2} different from C_{1}, which is a contradiction to G is unicyclic. Hence there is no connected unicyclic graph G such that $G-\sigma$ is unicyclic and $d_{G}(u)=d_{G}(v)=p-3$.
Case 2. $u v \in E(G)$
Since G is connected and G^{σ} is both connected and unicyclic, by Theorem 1.2, either $G-\sigma$ is connected, acyclic and either $d_{G}(u)=d_{G}(v)=|V(G)|-2$ or $\left\{d_{G}(\mathbf{u}), d_{G}(v)\right\}\{|V(G)|$ $-3,|V(G)|-1\}$, or $G-\sigma$ is connected, unicyclic and $\left\{d_{G}(u), d_{G}(v)\right\}=\{|V(G)|-1,|V(G)|$ $-2\}$. We consider the following three subcases.
Subcase 2a. $G-\sigma$ is connected, acyclic and $\left\{d_{G}(u), d_{G}(v)\right\}=\{|V(G)|-1,|V(G)|-3\}$ Without loss of generality, let $d_{G}(u)=|v(G)|-1$ and $d_{G}(v)=|V(G)|-3$. If $|V(G)| \geq 5$, then $d_{G}(u) \geq 4$ and $d_{G}(v) \geq 2$. This implies that there exist at least three vertices
a, b, c in $V(G)-\sigma$ which are adjacent to u. Since $G-\sigma$ is connected, there exists paths
$P_{1}: a-b, P_{2}: b-c$ and $P_{3}: a-c$ in $G-\sigma$. Now $u P_{1} u, u P_{2} u$ and $u P_{3} u$ form at least three cycles in G which is a contradiction to G is unicyclic. Hence $|V(G)|=4$. The only unicyclic graph on 4 vertices with $d_{G}(u)=3$ and $d_{G}(v)=1$ is $C_{3(u)}\left(P_{2}, 0,0\right)$.

Figure $13 \quad C_{3(u)}\left(P_{2}, 0,0\right)$

Subcase 2b. $G-\sigma$ is connected, acyclic and $d_{B}(u)=d_{G}(v)=|V(G)|-2$
If $|V(G)| \geq 5$, then $d_{G}(u)=d_{G}(v) \geq 3$. Clearly, $V(G)-\sigma$ contains at least three vertices. Since $u v \in E(G)$, there exists at least two vertices say a and b in $V(G)-\sigma$ which are adjacent to u. Now $G-\sigma$ is connected implies that there exists an $a-b$ path in $G-\sigma$ and hence in G.

Now the edge $u a$, the $a-b$ path and the edge $b u$ form a cycle without the vertex v. By a similar argument, we can find another cycle in G which contains the vertex v but not the vertex u which is a contradiction to G is unicyclic. Hence $|V(G)|=4$ and $d_{G}(u)=d_{G}(v)=2$. The only graphs on 4 vertices with $d_{G}(u)=d_{G}(v)=2$ are given in figures 14 and 15 .

Figure 14. C_{4}

Figure 15. $C_{3(u)}\left(0,0, P_{2}\right)$

Case 2c. $G-\sigma$ is connected, unicyclic and $\left\{d_{G}(u), d_{G}(v)\right\}=\{|V(G)|-1,|V(G)|-2\}$
Without loss of generality, let $d_{G}(u)=|V(G)|-1$ and $d_{G}(v)=|V(G)|-2$. If $|V(G)| \geq 5$, then $d_{G}(u)>4$. As in subcase $2 \mathrm{a}, G$ is not unicyclic. Hence $|V(G)|=4$. Now $|V(G)-\sigma|=2$ implies that $G-\sigma$ is not unicyclic. Hence there does not exist any graph with a 2 -vertex self switching.

Thus from cases 1 and 2 we get, if $u v \notin \mathrm{E}(\mathrm{G})$, then G is either $C_{3(u)}\left(0,0, P_{3}\right)$ or $C_{3(u)}\left(0, P_{2}, P_{2}\right)$ or $C_{4(u)}\left(0,0, P_{2}, 0\right)$ with $d_{G}(v)=1$ and for $u v \in E(G), G$ is either $C_{3(u)}\left(P_{2}, 0,0\right)$ or C_{4} or $C_{3(u)}(u)\left(0,0, P_{2}\right)$.

Conversely, let G be the graph given in the statement. Clearly, for each graph $G, \sigma=$ $\{u, v\}$ is a 2 -vertex self switching of G.
Hence the theorem.

References

[1] D. G. Corneil and R. A. Mathon, Geometry and Combinatorics Selected works of J. J. Seidel, Academic press, Boston, 1991.
[2] J. Hage and T. Harju, Acyclicity of switching classes, European J. Combinatorics, 19 (1998), 321-327.
[3] C. Jayasekaran, J. Christabel Sudha and M. Ashwin Shijo, Some results on 2-vertex self switching in joints, Communications in Mathematics and Applications, 12 (1) (2021), 59 - 69.
[4] C. Jayasekaran, Self vertex switchings of trees, Ars Combinatoria, 127 (2016), 33-43.
[5] J. J. Seidel, A Survey of two graphs, Proceedings of the Intenational Coll Theorie Combinatorie (Rome 1973). Tomo I, Acca. Naz. Lincei, pp.481-511, 1976.
[6] R. Stanley, Reconstruction from vertex switching, J. Combi. Theory. Series B, 38(1985), 38142.
[7] V. Vilfred, J. Paulraj Joseph and C. Jayasekaran, 'Branches and joints in the study of self switching of graphs', The Journal of Combinatorial Mathematics and Combinatorial Computing, 67 (2000), 111-122.

