ISSN: 2094-0343

A Characterization of 2-Vertex Self Switching of Connected Unicyclic Graphs

C. Jayasekaran¹ A. Vinoth Kumar² M. Ashwin Shijo³

^{1, 2} Department of Mathematics, Pioneer Kumaraswamy College Nagercoil 629003, Tamil Nadu, India.

³ Department of Mathematics, Muslim Arts College Thiruvithancode 629174, Tamilnadu, India.

Affliated to Manonmaniam Sundaranar University, Abishekapatti,

Tirunelveli-627012. Tamil Nadu, India.

e-mail: ¹jayacpkc@gmail.com ²alagarrvinoth@gmail.com ³ashwin1992mas@gmail.com

Article Info

Page Number: 733 – 737 Publication

Issue:

Vol 70 No. 2 (2021)

Article History

Article Received: 05 September 2021

Revised: 09 October 2021 Accepted: 22 November 2021 Publication: 26 December 2021 **Abstract:** —A graph G'(V, E') is created from G by eliminating all edges between S and its complement V - S and any non-edges between s and V - S are added as edges for a simple graph G(V, E) and a non empty subset $S \subset V$. We write G^v for $G^{\{v\}}$ when $S = \{v\}$, and the associated switching is referred to as vertex switching. |S|-vertex switching is another name for it. 2-vertex switching occurs when |S| equals 2. If B is connected and maximal, a joint at σ in G is a subgraph of G that includes $G[\sigma]$. If B is connected, we refer to it as a c - joint; otherwise, we refer to it as a d - joint. An acyclic graph is one that has no cycles. The term "tree" refers to a linked acyclic network. In this article, we characterize 2-vertex self-switching for connected unicyclic graphs.

AMS classification: 05C60, 05C05, 05C40.

Keywords — Switching, 2-vertex self switching, $SS_2(G)$, $ss_2(G)$.

1. Introduction

For any graph G(V, E) with |V(G)| = p, the graph G'(V, E') is defined as the graph generated from G by deleting all edges between σ and its counterpart, $V - \sigma$, and any nonedges between σ and $V - \sigma$ are added as edges where $\sigma \subseteq V$. Seidel [1, 5] defined switching, which is also known as $|\sigma|$ -vertex switching. When $|\sigma| = 2$, it is called as 2-vertex switching. A graph which contains exactly one cycle is called an unicylic graph. In [4] the concept of self vertex switchings were studied. A survey in two graphs and reconstruction of graphs were studied in [6]. Switching classes and Euler graphs were discussed in [2].

In 2008, the concept of branches and joints in graphs were introduced by Vilfred V et al., [7]. A joint at σ in G is a subgraph B of G that includes $G[\sigma]$ if $B - \sigma$ is connected and maximum. If B is connected, we refer to it as a **c-joint**; otherwise, we refer to it as a **djoint**. **B** is a **total joint** if $B = \sigma + (B - \sigma)$. In [3] C. Jayasekaran, et al., analysed the graphs for 2-vertex switching of joints.

For the graph G in Figure 1.1, G^{σ} , $G[\sigma]$ and G— σ are shown in Figures 1.2 to 1.4 respectively, where $\sigma = \{u, v\}$. Figures 1.5, 1.6 and 1.7 show the $c - joints \ d - joint$ and the *total joint*, respectively.

Consider the following theorems, which will be used in the next section.

Theorem 1.1. [3] Let G be a graph of order p and let $\sigma = \{u, v\}$ be a subset of V(G) with $|V(G)| \ge 5$ such that $uv \notin E(G)$. If B is a c-joint at σ in G, then B^{σ} is a c-joint and unicyclic if and only if $|V(B)| \ge 5$ and one of the following holds:

- (i) $B \sigma$ is connected, acyclic and $\{d_B(u), d_B(v)\} = \{|V(B)| 3, |V(B)| 4\}$.
- (ii) $B \sigma$ is connected, unicyclic and $d_B(u) = d_B(v) = |V(B)| 3$.

Theorem 1.2. [3] Let G be a graph of order p and let $\sigma = \{u, v\}$ be a subset of V(G) such that $uv \in E(G)$. If B is a c-joint at σ in G, then B^{σ} is a c-joint and unicyclic if and only if $|V(B)| \ge 5$ and one of the following holds

- (i) $B \sigma$ is connected, acyclic and either $d_B(u) = d_B(v) = |V(B)| 2$ or $\{d_B(u), d_B(v)\} = \{|V(B)| 3, |V(B)| 1\}.$
- (ii) $B \sigma$ is connected, unicyclic and $\{d_B(u), d_B(v)\} = \{|V(B)| 2, |V(B)| 1\}$.

Main Results 2. 2-VERTEX SELF SWITCHING OF CONNECTED UNICYCLIC GRAPHS

Theorem 2.1. Let G be a connected unicyclic graph of order $p \ge 4$ and let $\sigma = \{u, v\}$ be a non-empty subset of V (G) such that $G - \sigma$ is connected. Then G has a 2- vertex self switching at σ in G if and only if for $uv \notin E(G)$, G is either $C_{3(u)}(0, 0, P_3)$ or $C_{3(u)}(0, P_2, P_2)$ or $C_{4(u)}(0, 0, P_2, 0)$ with $d_G(v) = 1$ and for $uv \in E(G)$, G is either $C_{3(u)}(P_2, 0, 0)$ or C_4 or $C_{3(u)}(u)(0, 0, P_2)$.

Proof. Let G be a connected unicyclic graph. Let $\sigma = \{u, v\}$ be a 2-vertex self switching of G. Then $G \cong G^{\sigma}$.

Case 1. $uv \notin E(G)$

 $G \cong G^{\sigma}$ implies that G^{σ} is connected and unicyclic. By Theorem 1.1, $p \ge 5$ and either $G - \sigma$ is connected, acyclic and $\{d_G(u), d_G(v)\} = \{|V(G)| - 3, |V(G)| - 4\}$ or $G - \sigma$ is connected, unicyclic and $d_G(u) = d_G(v) = |V(G)| - 3$.

Subcase 1a. $G - \sigma$ is connected, acyclic and $\{d_G(u), d_G(v)\} = \{|V(G)| - 3, V(G)| - 4\}$ Let $d_G(u) = |V(G)| - 3$ and $d_G(v) = |V(G)| - 4$. If |V(G)| = 4, then $|V(G) - \sigma| = 2$. Since $G - \sigma$ is acyclic and connected, $G - \sigma = P_2$. Also $d_G(u) = 1$ and $d_G(v) = 0$ implies that $G = K_1 \cup P_3$, where K_1 is the vertex v, which is contradiction to G is unicyclic and connected. Hence we have $|V(G)| \ge 5$.

If $|V(G)| \ge 6$, then $d_G(u) \ge 3$, $d_G(v) \ge 2$ and $|V(G - \sigma)| \ge 4$. Then there exists at least three vertices say a, b and c in $G - \sigma$ such that u is adjacent to a, b and c. Since $G - \sigma$ is connected, there exist paths P_1 : a - b, P_2 : b - c and P_3 : a - c. Now the edges au, bu and cu and the paths a - b, b - c and a - c, form at least three different cycles uP_1u , uP_2u and uP_3u in G, which is a contradiction to G is unicyclic. Therefore |V(G)| = 5. This implies that $d_G(u) = 2$ and $d_G(v) = 1$ and $|V(G) - \sigma| = 3$. Since $G - \sigma$ is connected and acyclic, $G - \sigma = P_3$. The five non-isomorphic unicyclic graphs on 5 vertices with $d_G(u) = 2$ and $d_G(v) = 1$ are $C_{3(u)}(0,0,2P_2)$, $C_{3(u)}(0,0,P_3)$, $C_{3}(u)(0,P_2,P_2)$, $C_{4(u)}(0,0,P_2,0)$ and $C_{4(u)}(0,0,0,P_2)$ which are given in figures 8 to 12.

Clearly, $C_{3(u)}(0,0, P_3)$, $C_{3(u)}(0, P_2, P_2)$ and $C_{4(u)}(0,0, P_2, 0)$ are the graphs with 2-vertex self switchings at $\sigma = \{u, v\}$.

Subcase 1b. $G - \sigma$ is connected, unicyclic and $d_G(u) = d_G(v) = |V(G)| - 3$

If |V(G)| = 4, then $|V(G) - \sigma| = 2$. It implies that $G - \sigma$ is not unicyclic and hence $|V(G)| \ge 5$. If $|V(G) - \sigma| \ge 6$, then $d_G(u) = d_G(v) \ge 3$ implies that there exists at least three vertices x, y and z in $V(G) - \sigma$ such that ux, uy and uz are edges in $uvarray{G}$. Since $uvarray{G} - \sigma = 0$ is unicyclic, let $uvarray{G} - \sigma = 0$ is unicyclic, let $uvarray{G} - \sigma = 0$ is unique cycle in $uvarray{G} - \sigma = 0$. Now the edge $uvarray{G} - \sigma = 0$ and the edge $uvarray{G} - \sigma = 0$ is unique cycle in $uvarray{G} - \sigma = 0$. This is a contradiction to $uvarray{G} - \sigma = 0$.

Hence $|V(G - \sigma)| = 5$. Since $G - \sigma$ is unicyclic and $|V(G) - \sigma| = 3$, $G - \sigma = C_3 = K_3$. Clearly, $d_G(u) = d_G(v) = 5 - 3 = 2$. This implies that u is adjacent to two vertices, say a and b in $V(G) - \sigma$ and hence au and bu are edges in G. Also there exists an a - b path in $G - \sigma$ and hence in G. Now the edges au, bu and the path a - b, form a cycle C_2 different from C_1 , which is a contradiction to G is unicyclic. Hence there is no connected unicyclic graph G such that $G - \sigma$ is unicyclic and $d_G(u) = d_G(v) = p - 3$.

Case 2. $uv \in E(G)$

Since G is connected and G^{σ} is both connected and unicyclic, by Theorem 1.2, either $G - \sigma$ is connected, acyclic and either $d_G(u) = d_G(v) = |V(G)| - 2$ or $\{d_G(u), d_G(v)\} \{|V(G)| - 3, |V(G)| - 1\}$, or $G - \sigma$ is connected, unicyclic and $\{d_G(u), d_G(v)\} = \{|V(G)| - 1, |V(G)| - 2\}$. We consider the following three subcases.

Subcase 2a. $G - \sigma$ is connected, acyclic and $\{d_G(u), d_G(v)\} = \{|V(G)| - 1, |V(G)| - 3\}$ Without loss of generality, let $d_G(u) = |v(G)| - 1$ and $d_G(v) = |V(G)| - 3$. If $|V(G)| \ge 5$, then $d_G(u) \ge 4$ and $d_G(v) \ge 2$. This implies that there exist at least three vertices

a, b, c in $V(G) - \sigma$ which are adjacent to u. Since $G - \sigma$ is connected, there exists paths P_1 : a - b, P_2 : b - c and P_3 : a - c in $G - \sigma$. Now uP_1u , uP_2u and uP_3u form at least three cycles in G which is a contradiction to G is unicyclic. Hence |V(G)| = 4. The only unicyclic graph on 4 vertices with $d_G(u) = 3$ and $d_G(v) = 1$ is $C_{3(u)}(P_2, 0, 0)$.

Figure 13 $C_{3(u)}(P_2, 0, 0)$

Subcase 2b. $G - \sigma$ is connected, acyclic and $d_B(u) = d_G(v) = |V(G)| - 2$

If $|V(G)| \ge 5$, then $d_G(u) = d_G(v) \ge 3$. Clearly, $V(G) - \sigma$ contains at least three vertices. Since $uv \in E(G)$, there exists at least two vertices say a and b in $V(G) - \sigma$ which are adjacent to u. Now $G - \sigma$ is connected implies that there exists an a - b path in $G - \sigma$ and hence in G.

Now the edge ua, the a-b path and the edge bu form a cycle without the vertex v. By a similar argument, we can find another cycle in G which contains the vertex v but not the vertex u which is a contradiction to G is unicyclic. Hence |V(G)| = 4 and $d_G(u) = d_G(v) = 2$. The only graphs on 4 vertices with $d_G(u) = d_G(v) = 2$ are given in figures 14 and 15.

Figure 14. C₄

Figure 15. $C_{3(u)}(0, 0, P_2)$

Case 2c. $G - \sigma$ is connected, unicyclic and $\{d_G(u), d_G(v)\} = \{|V(G)| - 1, |V(G)| - 2\}$ Without loss of generality, let $d_G(u) = |V(G)| - 1$ and $d_G(v) = |V(G)| - 2$. If $|V(G)| \ge 5$, then $d_G(u) > 4$. As in subcase 2a, G is not unicyclic. Hence |V(G)| = 4. Now $|V(G) - \sigma| = 2$ implies that $G - \sigma$ is not unicyclic. Hence there does not exist any graph with a 2-vertex self switching.

Thus from cases 1 and 2 we get, if $uv \notin E(G)$, then G is either $C_{3(u)}(0, 0, P_3)$ or $C_{3(u)}(0, P_2, P_2)$ or $C_{4(u)}(0, 0, P_2, 0)$ with $d_G(v) = 1$ and for $uv \in E(G)$, G is either $C_{3(u)}(P_2, 0, 0)$ or C_4 or $C_{3(u)}(u)(0, 0, P_2)$.

Conversely, let G be the graph given in the statement. Clearly, for each graph G, $\sigma = \{u, v\}$ is a 2-vertex self switching of G. Hence the theorem.

References

- [1] D. G. Corneil and R. A. Mathon, Geometry and Combinatorics Selected works of J. J. Seidel, Academic press, Boston, 1991.
- [2] J. Hage and T. Harju, Acyclicity of switching classes, European J. Combinatorics, 19 (1998), 321-327.
- [3] C. Jayasekaran, J. Christabel Sudha and M. Ashwin Shijo, Some results on 2-vertex self switching in joints, Communications in Mathematics and Applications, 12 (1) (2021), 59 69.
- [4] C. Jayasekaran, Self vertex switchings of trees, Ars Combinatoria, 127 (2016), 33–43.
- [5] J. J. Seidel, A Survey of two graphs, Proceedings of the Intenational Coll Theorie Combinatorie (Rome 1973). Tomo I, Acca. Naz. Lincei, pp.481-511, 1976.
- [6] R. Stanley, Reconstruction from vertex switching, J. Combi. Theory. Series B, 38(1985), 38142.
- [7] V. Vilfred, J. Paulraj Joseph and C. Jayasekaran, 'Branches and joints in the study of self switching of graphs', The Journal of Combinatorial Mathematics and Combinatorial Computing, 67 (2000), 111–122.