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Abstract 

The demand for big data in data science and deep learning has been 

constantly increasing in recent years. In particular, deep learning using 

big data requires a high-performance computer. Interconnection 

networks for the design of high-performance computers are being 

consistently researched. The Petersen star network (PSN) and 

hierarchical Petersen network (HPN) are hierarchical interconnection 

networks (HINs) designed based on the Petersen graph and a small 

network cost. PSN(n) has 10n nodes and n+2 degrees, whereas HPN has 

10n nodes and a degree of 5. When graph G is embedded in graph H, 

the algorithm developed in G can be simulated or reused in H. The 

evaluation measures for embedding include expansion, dilation, and 

congestion. First, previous studies on embedding are investigated and 

summarized. Second, the node and edge mapping functions between the 

two graphs are proposed. According to the proposed functions, it is 

shown that HPN(n) can be embedded into PSN(n) with an expansion of 

1, dilation of n−1, congestion of 1, average dilation of 0.4n, and average 

congestion of 1. Furthermore, it is shown that PSN(n) can be embedded 

into HPN(n) with an expansion of 1, a dilation of n+4, a congestion of 

0.5n, an average dilation of 0.5n, and an average congestion of 0.5n. 

The results of this study can be extended to prove the upper and lower 

limits of dilation and congestion with respect to the network 

characteristics. 

 

Keywords: Dilation; Congestion; Embedding; Hierarchical Petersen 

Network; Petersen Star. 

 

 

Introduction 

A computer largely consists of software and hardware. Increase in functionalities of software and 

superior performance of hardware are expected over time. Hardware performance significantly 

depends on the processor speed and memory capacity. Parallel computing, which connects multiple 

processors and memories, is slowly being implemented and developed to improve the hardware 

performance. In parallel computing, a multiprocessor system refers to a connection of multiple 

processors, and multi-computing refers to the connection of multiple processors equipped with 

memory [1]. 
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Multi-computing comprises many processors and communication links. A communication link 

exists between the processors. The performance of a multi-computing system is closely related to the 

connection structure of the processors. The connection structure of a processor is called an 

interconnection network and can be represented as a graph. A processor is represented as a node, 

whereas a communication link is represented as an edge. A graph consists of nodes and edges, where 

an edge connects the nodes [2].  

 

Interconnection networks proposed in the initial phase include simple graphs such as the torus, 

hypercube, and star graphs. A graph can be transformed as follows. First, an edge can be added or 

removed from a simple graph. A torus [3] can be created by adding wrap-around edges to a mesh 

[4]. Second, two simple graphs can be combined, which is called a product network. A hyperstar [5] 

is created by combining a hypercube [6] and a star graph [7]. Third, a simple graph can be 

hierarchically expanded, which is commonly referred to as a hierarchical interconnection network 

(HIN). An HIN can include a hierarchical cubic network HCN(n,n) [8], a hierarchical star HS(n,n) 

[9], a hierarchical hypercube network HHN(n,n;h) [10], a hierarchical folded hypercube network 

HFN(n,n) [11], and a hierarchical hypercube n-HHC [12]. A recently proposed HIN includes the 

Petersen star network PSN(n) [13], 4-connectivity of hierarchical cubic km-HCN(n) [14], and a 

hierarchical Petersen network HPN(n) [15]. The networks that were proposed have been 

commercialized as MasPar, Intel Paragon, XP/S, Intel Touchstone Delta System, Mosaic C, Cray 

T3D, J-Machine of MIT, and Tera Computer [16].  

Various algorithms need to be developed to implement an interconnection network to realize 

multi-computing. The development of various algorithms must be preceded by a topological 

analysis of the interconnection networks. The topological elements that need to be analyzed for the 

development of algorithms consist of the number of nodes, number of edges, degree, subgraph, 

Hamilton path, spanning tree, and parallel path. Routing and broadcast, in addition to process 

allocation, load balancing, task migration, and embedding, are the processes that require the 

development of a basic algorithm for message transmission [17]. Embedding allows the algorithms 

developed in an arbitrary interconnection network to be used in other interconnection networks. 

 Embedding refers to the mapping of an arbitrary graph to a different graph. G(V, E) refers to 

the guest graph, whereas the host graph is H(V, E). If graph G can be embedded in graph H, the 

algorithms developed for graph G can also be used in graph H. Embedding involves node mapping 

and edge mapping. A node mapping function is called α, whereas an edge mapping function is 

called β. The embedding function is f = (α, β). Node mapping refers to mapping a node in graph G 

to a node in graph H, and the function is α:V(G)→V(H). An arbitrary edge of graph G is given as e 

= (u, v), where α(u)→x and α(v)→y. Here, x and y are the nodes of graph H, and the path from x to 

y is called p(x, y). Edge mapping refers to mapping an edge in graph G to a path in graph H, and the 

function is β:(u, v)→p(x, y). The precondition for embedding is that all V(G) and E(G) must 

participate in the mapping [18]. 

 

 The evaluation measures for embedding include expansion, dilation, and congestion. The 

expansion of f is defined as |V(H)| / |V(G )|. One-to-one embedding refers to the mapping of one 
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node in G to one node in H. In most studies, |V(G)| = |V(H)|, where the expansion is 1, is optimal. 

The path in graph H to which an edge (u, v) of graph G is mapped is called p(α(u), α(v)). Dilation of 

an edge (u, v) and that of f refers to the length of path p and the maximum dilation value of all 

edges, respectively. The congestion of an edge e′ and that of f in graph H refer to the number of 

paths ρ(x, y) containing e′ and the maximum congestion value of all edges in graph H, respectively. 

Dilation and congestion are greater than or equal to 1. The optimal value is 1; the average dilation 

and congestion values also correspond to significant measures [19].  

 

 The following studies were conducted for embedding. Bettayeb et al. embedded a star graph Sn 

into a hypercube graph Qn with a dilation of ⌈      ⌉    [20]. Ranka et al. embedded a mesh 

M(n,n) into Sn with an expansion of 1 and dilation of 3 [21]. Saikia et al. embedded torus T(n,n) 

into Sn with a dilation of 4 and congestion of O(n) [22]. Kim et al. embedded a folded hypercube 

FQn into a folded hyperstar FHS(2n,n) with a dilation of 2 and that of 1 conversely [23]. 

Bouabdallah et al. embedded a complete binary tree into Sn and pancake Pn with a dilation of 1 [24]. 

Seo et al. embedded a half pancake HPn into Sn with a dilation of 1.5n−2 and a congestion of 6, and 

they also embedded a Pn into Sn with a dilation of 1.5n [25]. Embedding algorithms have been 

recently proposed [18, 19, 26-28]. 

 Subsequent studies on embedding in hierarchical networks were conducted. Seo et al. 

embedded HPN(n) into a folded Petersen [29] FPk with an expansion of 1, a dilation of 2k, and a 

congestion of 4 [15]. Wei et al. embedded M(n,n) into HS(n,n) with a dilation of 3 and congestion 

of 4 [9]. Campbell et al. embedded M(2h,2h) into hierarchical cliques HiC(4,h) with an expansion of 

1, a dilation of 2
(h−1)

, and a congestion of 2h−1 [30]. Chiang et al. embedded Q2n into HCN(n,n) 

with a dilation of 3 and an average dilation of 2−(1/2
n
) [31]. Hamdi et al. embedded HHN(n,n;n−1) 

into Q2n with an expansion of 1 and a dilation of 2 [32]. Kim et al. embedded HCN(n,n) into a 

hierarchical folded hypercube HFN(n,n) with a dilation of 3 and also embedded a Q2n into 

HCN(n,n) and HFN(n,n) with a dilation of 3 and showed that an embedding in reverse requires a 

dilation of O(n) [33]. 

 This study aims to prove that HPN and PSN can be embedded into each other. In Section II, 

HIN and embedding are briefly explained, and previous studies on embedding are summarized; 

PSN and HPN are also examined. In Section III, node and edge mapping functions between HPN 

and PSN are proposed; expansion, dilation, congestion, average dilation, and average congestion 

are derived. Finally, Section IV concludes the paper. 

 

Design method of a hierarchical network 

HIN recursively expands a base graph (hereafter referred to as a “factor”). When HIN expands a 

factor, fewer edges than the increasing number of nodes are added to maintain a short average 

distance between the nodes [34]. Fig. 1 depicts the HCN and HHN, which have Q2 as a factor. As 

shown in Fig. 1(b), HCN(2,2) has Q2 as a factor, and 2
2
 factors are connected in the form of Q2. The 

edges that were added after an expansion from (a) to (b) and then from (b) to (c) are represented as 

orange solid lines. As shown in Fig. 1(b) and (c), HHN(2,h) expands Q2 to the h level. HHN(n,n) is 

the unfixed degree network (UDN), which increases the degree up to 2n as the network expands. 
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Figure 1. Hierarchical network 

 

Introduction of embedding and investigation of previous research 

Fig. 2 shows the embedding of a binary tree into Q3. The function that embeds a binary tree G 

into Q3 is called f. Each node of graph G is mapped to a node of graph H in which their node 

addresses are converted to binary numbers. The mapped pairs of nodes are as follows: (0, 000), 

(1,001), (2, 010), (3, 011), (4, 100), (5, 101), (6, 110). The expansion is given as |V(H)| / |V(G)| = 

1.14. Note that f is a one-to-one embedding because all nodes are mapped one-to-one. The edges 

(0,1), (0,2), (1,3), and (1,4) in graph G are mapped to (0,1), (0,2), (1,3), and (1,4) in graph H, and 

thus, dilation of this edge is 1. 

 
Figure 2. Embedding binary tree into hypercube Q3 

 

Edge (2, 5) marked in blue in Fig. 2 is mapped to path 010 → 111 → 101 in graph H. Edge (2, 

6) marked with orange is mapped to path 010 → 111 → 110 in graph H. The dilation of edges (2, 5) 

and (2, 6) is 2; thus, the dilation of f is 2. The paths to which the edges excluding (2, 5) and (2, 6) 

are mapped are edge-disjoint in H and thus have a congestion of 1. Edge (010, 111) has a 

congestion of 2 because the mapped paths of edges (2, 5) and (2, 6) contain (010, 111); thus, the 

congestion of f is 2. The expansion indicates the number of nodes in which the processes executed 
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in graph G are simulated in graph H, and the dilation indicates the extent to which the routing path 

length of graph G is extended in graph H. The congestion indicates how much the routing path 

congestion of graph G has worsened in graph H. While simulating graph G in graph H, the message 

delay time increases for an increase in the dilation and congestion. 

 

The characteristics of the two networks involved in embedding contribute to the end results. An 

interconnection network can be divided into a UDN, where the degree increases, and a fixed degree 

network (FDN), where the degree is fixed as the network expands. A mesh or torus is an FDN, 

whereas a hypercube, a star, and an HIN are UDNs. The expansion was measured to be 1 in almost 

all studies, and the dilation was thoroughly examined in this study. Tables 1 and 2 present the 

results of the investigated embeddings that have been reported thus far. In Table 1, the graphs 

involved in embedding are distinguished into a UDN and FDN, where the torus, hypercube, and star 

graphs and their transformations are included. The dilation is found to be O(1) for the worst case 

when the FDN is embedded into an FDN or UDN and is found to be O(n) otherwise. The network 

names in Tables 1 and 2 are abbreviated if they have been defined in the introduction, and full 

names are provided otherwise. 

 

Table 2 presents the results of the investigation of embeddings including the HIN. The dilation 

is found to be O(1) in the worst case when a UDN is embedded into HIN and O(n) otherwise. The 

dilation of O(n) may result in the worst case because this study deals with embeddings among 

HINs. 

Tables 1 and 2 show that embedding a UDN (including HIN) into an FDN is not easy. 

Organizing Tables 1 and 2 by including the HIN in the UDN yields the results presented in Table 3. 

The dilation between FDN and UDN in Table 3 is greater than or equal to O(1) and smaller than or 

equal to O(n). 

 
Table 1. Dilation of embedding between FDN and UDN 

Guest Host Guest Host dilation Ref. 

FDN 

FDN 

M(n,n) T(n,n) 1 
[38] 

n level T(n,n) n level M(n,n) 2 

T(3n,2n) hexagonal honeycomb torus n-HHT 3 [39] 

UDN 

M(n,n) Sn 3 [21] 

M(2n,3n) hexcube HCn 2 [36] 

M(2n/2,2n/2) Qn 1 [38] 

T(n,n) Sn 4 [22] 

Binary Tree Sn 1 [24] 

Binary Tree Pn 1 [24] 

n! ring Pn 1 
[37] 

M(n,(n-1)!) Pn 7 

UDN 

FDN Qn T(2n/2,2n/2) n/2 [38] 

UDN 

Sn  Qn ⌈      ⌉    [20] 

FQn FHS(2n,n) 2 [23] 

FQn Qn 2 

[35] augmented cube AQn Qn 2 

AQn FQn 2 
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crossed cube CQn Qn 2 

FHS(2n,n) FQn 1 [23] 

 Qn HCn 3 [36] 

 Qn Pn 6 [37] 

HPn Sn 1.5n-2 [25] 

Pn Sn 1.5n [25] 

 

Table 2. Dilation of embedding between HIN, UDN and FDN 

Guest Host Guest Host dilation Ref. 

HIN 

FDN not found 

UDN 

HPN(n) FPn 2n [15] 

HHN(n,n;n-1) Q2n 2 [32] 

HCN(n,n) Q2n O(n) [33] 

HFN(n,n) Q2n O(n) [33] 

HIN HIN 
HCN(n,n) HFN(n,n) 3 [33] 

HFN(n,n) HCN(n,n) O(n) [33] 

FDN 

HIN 

M(n,n) HS(n,n) 3 [9] 

M(2n,2n) HiC(4,n) 2(n-1) [30] 

UDN 
Q2n HCN(n,n) 3 [31] 

Q2n HFN(n,n) 3 [33] 

 
Table 3. Bestand worst cased of embedding dilation 

Guest Host 
dilation 

best case worst case 

FDN FDN O(1) O(n) 

FDN UDN O(1) O(n) 

UDN FDN O(n) O(n) 

UDN UDN O(1) O(n) 

 

Petersen graph 

Petersen graph is used in both PSN and HPN. It is regular and has node (edge) symmetry. It has 

degree 3 and diameter 2. In this section, an address consisting of permutations of double digits is 

used; in the other section, for convenience of indicating the node address, an address consisting of 

single digits in parentheses is used. Petersen graph is shown in Fig. 3. The number on the left in the 

node address is smaller than the number on the right. In Petersen graph, P = (Vp, Ep); Node Vp = 

xy; Edge Ep = (xy, x'y'); x, y∈ {1,2,3,4,5}; and x', y'∈ {{1,2,3,4,5} − {x, y}}. It is assumed that in 

Petersen graph, u=u1u2 is the start node and v=v1v2 the destination node. Node w is composed of 

{1,2,3,4,5} – {{u1, u2} ⋃ {v1, v2}}. The routing algorithm from u to v is given by Algorithm 1 

[15]. 

 

Algorithm 1. Routing (u, v) { 

1:  if (u ⋂ v) = ∅  then u → v; 

2:  else u → w → v; 
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3:} 

 
Figure 3. Petersen graph 

 PSN and HPN 

Modified PSN [13] and HPN [15] are proposed in this section. An external edge was modified 

to simplify it without adjusting the degree or diameter. PSN(0) and HPN(0) are both Petersen 

graphs. The edges of HPN(n) and PSN(n) are divided into internal and external edges. Edges 

connecting nodes belonging to the same Petersen graph (hereafter referred to as a “factor”) are 

called internal edges; the edges of the Petersen graph are used as they are. Edges connecting nodes 

in different factors are called external edges [13, 15]. u=u1u2u3 ··· ui-1uiui+1 ··· un-1un, p=p1p2p3 ··· pi-

1pipi+1 ··· pn-1pn. The operation of an external edge is as follows: 

Definition 1. exchange EEi(p) = pip2p3 ··· pi-1p1pi+1 ··· pn-1pn.     

Definition 2. left rotate LR(u) = u2u3 ··· ui-1uiui+1 ··· un-1unu1.     

Definition 3. right rotate RR(u) = unu1u2u3 ··· ui-1uiui+1 ··· un-1. 

Definition 4. Petersen Edge PE(xyu2u3 ··· ui-1uiui+1 ··· un-1un) = (x'y'u2u3 ··· ui-1uiui+1 ··· un-1un) or 

PE(xyp2p3 ··· pi-1p1pi+1 ··· pn-1pn) = (x'y'p2p3 ··· pi-1p1pi+1 ··· pn-1pn). 

PSN(n) = (Vp,Ep) (1) 

The node and edge are defined below. 

Vp = {p1p2p3 ··· pi-1pipi+1 ··· pn-1pn | 0 ≤ pi ≤ 9, 1 ≤ i ≤ n, 2 ≤ n} (2) 

external edge EEi = (p, EE(p)) (3) 

internal edge PE = (p, PE(p)) (4) 

Fig. 4 shows a two-level PSN. Black solid lines represent the internal edges, while the orange 

solid lines represent the external edges. To avoid the complexity of Fig. 4, the external edges are 

shown only for the factor x0(0≤x≤9). The PSN(n) has 10n nodes and a degree of n+2.  

HPN(n) = (Vhp, Ehp). The node and edge are defined below.  

Vhp = {u1u2u3 ··· ui-1uiui+1 ··· un-1un | 0 ≤ ui ≤ 9, 1 ≤ i ≤ n, 3 ≤ n} (5) 

external edge LR = (u, LR(u)) (6) 

external edge RR = (u, RR(u)) (7) 

internal edge PE = (u, PE(u)) (8) 
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Figure 4. Two-level Petersen star network PSN(2) 

 

Fig. 5 shows the structure of HPN(3) [15]; (a) and (b) do not belong to HPN. HPN(n) has 10n 

nodes and a degree of 5. 

 
Figure 5. Hierarchical petersen network HPN(3) 

 

Emvedding algorithm 

Two embeddings are proposed in this section. First, a node mapping function commonly used in 

both embeddings is proposed. Next, a function for mapping the edge of HPN(n) into the path of 

PSN(n) is proposed, and the dilation, congestion, and average dilation are analyzed. Finally, a 

function for mapping the edge of PSN(n) into the path of HPN(n) is proposed, and the dilation and 

congestion are analyzed. The mapping graph is G, the graph being mapped is H, and the embedding 

function is f = (α, β). Function 1 is the node mapping that is commonly used in both embeddings. 

Two embeddings are proposed in this section. First, a node mapping function commonly used in 

both embeddings is proposed. Next, a function for mapping the edge of HPN(n) into the path of 

PSN(n) is proposed, and the dilation, congestion, and average dilation are analyzed. Finally, a 

0
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function for mapping the edge of PSN(n) into the path of HPN(n) is proposed, and the dilation and 

congestion are analyzed. The mapping graph is G, the graph being mapped is H, and the embedding 

function is f = (α, β). Function 1 is the node mapping that is commonly used in both embeddings. 

Function 1. Node mapping α: 

u and v are the arbitrary nodes of graphs G and H, respectively; α:u→v and α:v→u. Here, the 

node addresses of u and v are exactly the same.  

Theorem 1. The embedding between HPN(n) and PSN(n) is one-to-one, and the expansion is 1.  

Proof of Theorem 1. The number of nodes of HPN(n) and PSN(n) are both 10
n
, while the length 

of node addresses for both is n. Moreover, the domain of symbols constituting the node addresses of 

both is a natural number ranging from 0 to 9. A node in graph G is mapped to a node in graph H 

through function 1. Thus, f is a one-to-one embedding. In addition, |G|/|H| = |H|/|G| = 1; therefore, 

the expansion of f is 1. □ 

The nodes of the PSN(n) are p = p1p2p3 ··· pi-1pipi+1 ··· pn-1pn. The nodes of HPN(n) are u=u1u2u3 

··· ui-1uiui+1 ··· un-1un. 

Notation 1. The symbol ⇒ refers to the path through the internal edges according to Algorithm 

1, while → refers to the path through the external edges. For example, paths 1234, 2134, 6134, and 

3164 in PSN(4) are expressed as follows:  

1234→2134⇒6134→3164 or 1234→EE2→2134⇒PE⇒6134→EE3→3164. 

 

 Mapping the edges of HPN(n) into the path of PSN(n) 

HPN(n) is referred to as G, while PSN(n) is referred to as H in this section. The edge (u, v) of G 

is mapped to the path p(α(u), α(v)) of H by function 1, where the function β that creates path p is 

proposed. Dilation and congestion are then analyzed. For a better understanding, the case of n = 4 is 

examined first, and then the function is generalized. Fig. 6 depicts the factor x234, which is a 

portion of HPN(4) and PSN(4). Function 1 maps all nodes in Fig. 6(a) exactly to the nodes having 

the same address in Fig. 6(b).  

 
Figure 6. Embedding HPN(4) into PSN(4) 
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 Factor x234 of G is mapped to the factor x234 of H; thus, the mapping of the internal edges is 

omitted. The external edges of G are mapped to the path of H. Edge (0234, 2340) of G is mapped to 

path p1 (0234, 2340) of H, whereas the edge (0234, 4023) is mapped to path p2 (0234, 4023). 

Using notation 1, path p1 becomes 0234→EE4→4230→EE3→3240→EE2→2340, while path p2 

becomes 0234→EE2→2034→EE3→3024→ EE4→4023. The generalized function β is shown in 

function 2.  

Function 2. Edge mapping β: 

(a) β((u, LR(u))) : p1 = u→EEn→EEn-1→ ··· →EE3→EE2 →LR(u). 

(b) β((u, RR(u))) : p2 = u→EE2→EE3→ ··· →EEn-1→EEn →LR(u). 

(c) β(u, PE(u)) : u⇒PE(u). 

 

Theorem 2. HPN(n) is embedded into PSN(n) with a dilation of n−1 and a congestion of 1.  

Proof of Theorem 2. The ten nodes in which all the symbols have the same value in G are called 

loop nodes. In HPN(4), the nodes 0000, 1111, 2222, …, 8888, and 9999 are loop nodes. All nodes 

in G have three internal and two external edges. The loop nodes do not have any external edges. 

Functions 1 and 2(c) map all the factors of G to all the factors of H having the same address; thus, 

dilation and congestion of internal edges are 1. The external edges are divided into LR and RR. 

According to functions 2(a) and 2(b), the lengths of paths p1 and p2 are n−1; thus, the dilation of f 

is n−1. Next, the congestion is examined. If LR(u) = RR(u), the number of external edges is 1; thus, 

the congestion is 1. If LR(u) ≠ RR(u), β((u, LR(u))) and β((u, RR(u))) are edge disjoint, and the 

congestion of f is 1. The reasons for this are as follows. If the two paths β((u, LR(u))) and β((u, 

RR(u))) are to overlap, u = EE2(u) = EEn(u) or u1 = u2 = un, the congestion is 1 because a new edge 

is not added to paths p1 and p2. If u1 ≠ u2 = un or u1 = u2 ≠ un, β((u, LR(u))) and β((u, RR(u))) are 

edge disjoint. □ 

Corollary 3. HPN(n) is embedded into PSN(n) with an average dilation of 0.4n+0.2 and an 

average congestion of 1.  

Proof of Corollary 3. The average dilation of G is equal to the average dilation of all the edges. 

Similarly, the average congestion refers to the average of all the congestion values. All nodes have 

three internal edges and two external edges; therefore, the average congestion and dilation are 

examined from the edges connected to one node. G has 10 loop nodes, without any external edges. 

The number of loop nodes among all 1000 nodes in HPN(3) is 10, or 1%, and 0.1% in HPN(4). Loop 

nodes were disregarded while calculating the average dilation. It was proven in Theorem 1 that the 

dilation and congestion of the internal edges are 1, while those of the external edges are n−1 and 1, 

respectively. Therefore, the average dilation of f is (3+2(n−1)) / 5 = (2n+1)/5 = 0.4n+0.2. The 

congestion of the external edges and internal edges is 1; thus, the average congestion of f is 1. 

 

Mapping the edges of PSN(n) into the path of HPN(n) 

PSN(n) is referred to as G, whereas HPN(n) is referred to as H in this section. The edge (u, v) of 

G is mapped to the path p(α(u), α(v)) of H by function 1, where a function β that creates a path p is 

proposed. Dilation and congestion are then analyzed. For a better understanding, the case of n = 4 is 

examined first, and then the function is generalized. Fig. 7 shows the factor x234, which is a portion 
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of PSN(4) and HPN(4). Function 1 maps all nodes in Fig. 5(a) exactly to the nodes having the same 

address in Fig. 5(b).  

The factor x234 of G is mapped to factor x234 of H; thus, the mapping of the internal edges is 

omitted. The external edges of G are mapped to the path of H. Edge (0234, 2034) of G is mapped to 

path p1 (0234, 2034) of H, whereas the edges (0234, 3204) and (0234, 4230) are mapped to path p2 

(0234, 3204) and p3 (0234, 4230), respectively. 

Paths p1, p2, and p3 can be expressed using notation 1 as follows: 

p1 = 0234→LR→2340⇒PE⇒0340→RR→0034⇒PE⇒2034. 

p2 = 0234→RR→4023→RR→3402→PE⇒0402⇒LR→4020 →LR→0204⇒PE⇒3204. 

p3 = 0234→RR→4023⇒PE⇒0023→LR→0230⇒PE⇒4230. 

The edge mapping function β can be generalized as follows: LR×i indicates that LR is repeated i 

times. 

 

Function 3. Edge mapping β: 

(a) when 2 ≤ i ≤ ⌈     ⌉, β((u, EEi(u))) : pi = u→LR×(i−1)⇒PE⇒RR×(i−1) ⇒PE⇒ EEi(u). 

(b) when ⌈     ⌉ < i ≤ n, β((u, EEi(u))) : pi = u→RR×(n−i+1) ⇒PE⇒LR×(n−i+1) ⇒ PE⇒EEi(u). 

(c) when β(u, PE(u)) : u⇒PE(u). 

Theorem 4. PSN(n) is embedded into HPN(n) with a dilation of n+4 and a congestion of 0.5.  

Proof of Theorem 4. All nodes in G have three internal edges. Owing to the function 3(a), the 

dilation and congestion of the internal edges are 1. The maximum number of external edges 

EEi(2≤i≤n) is measured to be n−1. The path length of the PE is 2 in terms of the diameter of the 

Petersen graph. The worst case in function 3 refers to i =⌈    ⌉ + 1. In this case, the length pi is 

(n/2)×2 + 2×2 ≤ n+4. Thus, the dilation of f is n+4. Next, the congestion is examined. There are no 

external edges if u = EEi(u). Nodes 1111, 4444, and 6666 of PSN(4) have no external edges. Nodes 

1123, 1413, and 1731 have two external edges. Similarly, nodes 2122, 2212, and 2224 have one 

external edge. Obviously, it is omitted in the embedding if there are no external edges. Node 

u = 1234567 in PSN(7) is examined next. The edge (u, EEi(u)) is expressed as follows: 

When 2 ≤i ≤⌈    ⌉, 

e2=(1234567, 2134567), e3=(1234567, 3214567), e4 = (1234567, 42314567). 

When ⌈    ⌉ < i ≤ n, 

e5=(1234567, 5234167), e6=(1234567, 6234517), e7=(1234567, 7234561). 

 

Edges e2, e3, and e4 are mapped to paths p2, p3, and p4 by function 3(a), whereas edges e5, e6, 

and e7 are mapped to paths p5, p6, and p7 by function 3(b). The mapped path is explained as 

follows: several paths below overlap at the underlined parts.  

p2=1234567→2345671⇒1345671→1134567⇒2134567. 

p3=1234567→2345671→3456712⇒1456712→2145671→ 1214567⇒3214567. 

p4=1234567→2345671→3456712→4567123⇒1567123→3156712→2315671→1231567⇒423

1567. 

p5=1234567→7123456→6712345→5671234⇒1671234→6712341→7123416→1234167⇒523

4167. 
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p6=1234567→7123456→6712345⇒1712345→7123451→ 1234517⇒6234517. 

p7=1234567→7123456⇒1123456→1234561⇒7234561. 

If the case above is generalized, congestion of the path u→LR×1 is ⌈    ⌉− 1, while congestion 

of the path u→RR×1 is n−⌈    ⌉. When n is an even number, ⌈    ⌉− 1 < n −⌈    ⌉= 0.5n; when n 

is an odd number, ⌈    ⌉ − 1 = n −⌈    ⌉ ≤ 0.5n. Therefore, the congestion of f is less than or equal 

to 0.5. □ 

 

Corollary 5. PSN(n) is embedded into HPN(n) with an average dilation of 0.5n+6 and an 

average congestion of 0.5n+6.  

Proof of Corollary 5. The average dilation of G is the same as the average dilation of all the 

edges. Similarly, the average congestion refers to the average of all the congestion values of the 

edges. All nodes have three internal edges and n−1 external edges; therefore, the average dilation 

and congestion are examined sequentially from the edges connected to one node. The nodes of G do 

not have any external edges when the other symbols have the same value as the first symbol. Ten 

percent of the nodes do not have external edges in PSN(2) because each symbol can have a value 

from 0 to 9. For example, 11, 22, and 33 were the relevant cases here. Approximately 10% of the 

nodes do not partially have external edges in the PSN(n). The nodes that do not partially have edges 

are disregarded when calculating the average dilation. It was proven in Theorem 4 that the dilation 

of the internal edges is 1. According to functions 3(a) and 3(b), the sum of the dilation of edges 

where 2 ≤ i ≤ ⌈    ⌉ is∑     
⌊    ⌋
   , and the sum of dilation of edges where ⌈    ⌉< i ≤ n is 

∑     
⌈    ⌉
   . Therefore, the average dilation of f is (n

2
/2 + 6n + 3) / (n+2) ≤ 0.5n + 6.  

 

The congestion of the internal edges is 1, while the congestion of the external edges can be 

explained as follows.  

When 2 ≤ i ≤⌈    ⌉. 

The path u→LR×1 has a congestion of ⌈    ⌉ − 1. 

The path LR×1→LR×2 has a congestion of ⌈    ⌉ − 2. 

The path LR×(⌈    ⌉ −2)→LR×(⌈    ⌉ −1) has a congestion of ⌈    ⌉ − (⌈    ⌉ −1) = 1. 

When ⌈    ⌉ +1 ≤ i ≤ n. 

The path RR×(⌈    ⌉ −1)→RR×(⌈    ⌉ ) has a congestion of ⌈    ⌉ − (⌈    ⌉ −1) = 1. 

The path RR×1→RR×2 has a congestion of ⌈    ⌉ − 2. 

The path RR×1 of f has a congestion of ⌈    ⌉ − 1. 

Therefore, the average congestion of f is ≤ 0.5n + 6. □ 
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Figure 7. Embedding PSN(4) HPN(4) 

Conclusions 

Embedding algorithms between HPN and PSN were proposed, and the expansion, dilation, and 

congestion were derived in this study. The expansion of the two embeddings is 1. HPN(n) was 

embedded into PSN(n) with a dilation of n−1 and congestion of 1; PSN(n) was embedded into 

HPN(n) with a dilation of n+4 and congestion of 0.5n. Hence, it was proven that the algorithms 

developed in the two interconnection networks can be used interchangeably by paying the costs of 

dilation O(n) and congestion O(n). Previous studies conducted on embedding have been reviewed 

and summarized in Section II to examine the significance of this result. According to previous 

studies, embedding between HIN results on the dilation of O(n) corresponds to the worst case. In 

addition, further research is recommended to prove the upper and lower limits of dilation and 

congestion with respect to the network characteristics. 
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