Relatively Prime Detour Domination Number of a Graph

C. Jayasekaran¹, L.G.Binoja²

 ¹Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.
 ²Research Scholar, Reg. No: 20213132092002, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India.
 email : jayacpkc@gmail.com ¹, *lgbinoja1994@gmail.com*

Article Info	Abstract
Page Number:758 - 763	The concept of relatively prime detour domination number of a graph is
Publication Issue:	introduced in this paper. If a set S is a detour dominating set with at least two members, and a pair of vertices u and w such that
Vol 70 No. 2 (2021)	(deg(u), deg(w)) = 1, it is said to be a relatively prime detour dominating set of G. The lowest cardinality of a relatively prime detour dominating set in G is known as the relatively prime detour domination
Article History	number and it is denoted by $\gamma_{rpdn}(G)$.
Article Received: 05 September 2021	<i>Keywords</i> : Domination number, Detour number, Detour domination number, Relatively prime domination number, Relatively prime detour domination number.
Revised: 09 October 2021	
Accepted: 22 November 2021	
Publication: 26 December 2021	

1 Introduction

We refer to a finite undirected graph with many edges and no loops as G = (V, E). We consider connected graphs that have two or more vertices. The order |V| and size |E| of G are denoted by p and q respectively. For graph theoretical terms, we refer to Harary[3]. The detour distance D(x, y) for vertices x and y is the longest x - y path within a connected graph. A path of length x - y[1] is a detour of length D(x, y). Every vertex x in the set G, commonly known as a detour set, is on a detour connecting two vertices in that set. A minimum detour set is defined as any detour set of order dn(G) [2].

It is considered to be a dominating set of the graph G if every vertex that is not in S is adjacent to at least one vertex that is in S. A γ -set of G is referred to be any order $\gamma(G)$ dominating set. The lowest order of G's dominating sets is represented by the domination number $\gamma(G)$ [4]. The idea of detour domination number of a graph was first established in [5,7]. Relatively prime dominating sets in graphs was a concept that Jayasekaran et al. introduced in [6]. In this paper, we indicate that γ_{dn} -set is a minimum detour dominating set. In this paper, we introduce the concept relatively prime detour domination number of a graph and find the number $\gamma_{rpdn}(G)$.

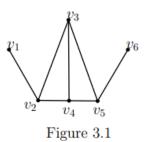
2 Preliminaries

Theorem 2.1 [5] Every end vertex of a graph G belongs to every detour dominating set of G.

3 Relatively Prime Detour Dominating Set

Definition 3.1 A set $S \subseteq V$ is said be relatively prime detour dominating set of a graph G if it is a detour set and a dominating set with at least two elements and for every pair of vertices u and v such that (deg(u), deg(v)) = 1. The minimum cardinality of a relatively prime detour dominating set is called the relatively prime detour domination number of a graph G and is denoted by $\gamma_{rpdn}(G)$. If the relatively prime detour dominating set does not exist, then the relatively prime detour domination number is zero.

Example 3.2 For the graph G given in 3.1, $S = \{v_1, v_3, v_6\}$ is a detour dominating set and $(deg(v_1), deg(v_3)) = (3,1) = 1, (deg(v_1), deg(v_6)) = 1, (deg(v_3), deg(v_6)) = 1$. Therefore S is a minimum relatively prime detour dominating set and hence $\gamma_{rpdn}(G) = 3$.



Theorem 3.3 Every end vertex of a graph G belong to every relatively prime detour dominating set of G.

Proof. Every relatively prime detour dominating set is a detour dominating set of G and so the result follows from Theorem 2.1.

Theorem 3.4 Let G be a connected graph of order p. If $\gamma_{rpdn}(G)$ exists, then $dn(G) \leq \gamma_{rpdn}(G) \leq p$.

Proof. Let *G* be a connected graph of order *p* such that $\gamma_{rpdn}(G)$ exists. Since every relatively prime detour dominating set is a detour set, $dn(G) \leq \gamma_{rpdn}(G)$. Also any relatively prime detour set can have at most *p* vertices and hence $\gamma_{rpdn}(G) \leq p$. Thus $dn(G) \leq \gamma_{rpdn}(G) \leq p$.

Remark 3.5 For the path P_2 , $dn(G) = \gamma_{rpdn}(G) = p = 2$. Hence all the inequalities in Theorem 3.4 become sharp. Now consider the graph in figure 3.1. Here $S = \{v_1, v_6\}$ is a minimum detour set of G and so dn(G) = 2. The set $S_1 = \{v_1, v_3, v_6\}$ is a minimum relatively prime detour dominating set of G and so $\gamma_{rpdn}(G) = 3$ and number of elements p = 6. Thus all the inequalities in Theorem 3.4 become strict.

Theorem 3.6 If G is a path graph P_p , then $\gamma_{rpdn}(P_p) = \begin{cases} 2 & if \ 2 \le p \le 4 \\ 3 & if \ 4$

Proof. Let $v_1v_2...v_p$ be the path P_p . We consider the following three cases. Case 1. $2 \le p \le 4$

Let *S* be a detour dominating set of P_p . By Theorem 3.3 ,, $\{v_1, v_p\} \subseteq S$. Clearly $\{v_1, v_p\}$ itself is a minimum detour dominating set of P_p and $(deg(v_1), deg(v_p)) = 1$, $S = \{v_1, v_p\}$ is a minimum relatively prime detour dominating set and hence $\gamma_{rpdn}(P_p) = 2$. Case 2. $5 \leq p \leq 7$

If n = 5,6, then $\{v_1, v_3, v_p\}$ is a minimum detour dominating set. Also $(deg(v_1), deg(v_3)) = (1,2) = 1$, $(deg(v_1), deg(v_p)) = (1,1) = 1$ and $(deg(v_3), deg(v_p)) = (2,1) = 1$. This implies that $\{v_1, v_3, v_p\}$ is a relatively prime minimum detour dominating set and hence $\gamma_{rpdn}(P_p) = 3$.

If p = 7, then $\{v_1, v_4, v_7\}$ is a minimum detour dominating set. Also $(deg(v_1), deg(v_4)) = (deg(v_4), deg(v_p)) = (deg(v_1), deg(v_p)) = 1$. Therefore $\{v_1, v_4, v_7\}$ is a minimum relatively prime detour dominating set and hence $\gamma_{rpdn}(P_p) = 3$. Case 3. $p \ge 8$

Clearly any dominating set contains at least two internal vertices $v_i, v_j, 3 \le i \ne j \le n-2$ and $(deg(v_i), deg(v_j)) = 2$ which implies that $\gamma_{rpdn}(P_p) = 0$.

The theorem follows from above three cases.

Theorem 3.7 If *G* is a star graph $K_{1,p-1} (p \ge 3)$, then $\gamma_{rpdn} (K_{1,p-1}) = p - 1$.

Proof. Let G be the star $K_{1,p-1}$ with $V(K_{1,p-1}) = \{v, v_i : 1 \le i \le p-1\}$ and $E(K_{1,p-1}) = \{vv_i : 1 \le i \le p-1\}$. Let S be a detour dominating set of $K_{1,p-1}$. By Theorem 3.3, $\{v_1, v_2, \dots, v_{p-1}\} \subseteq S$. Clearly, $\{v_1, v_2, \dots, v_{p-1}\}$ itself is a minimum detour dominating set of $K_{1,p-1}$ and $(deg(v_i), deg(v_j)) = 1$ for $1 \le i \ne j \le p-1$, $S = \{v_1, v_2, \dots, v_{p-1}\}$ is a minimum relatively prime detour dominating set and hence $\gamma_{rpdn}(K_{1,p-1}) = p-1$.

Theorem 3.8 If G is a bistar graph $B_{m,n}$, then $\gamma_{rpdn}(B_{m,n}) = m + n$.

Proof. Let $G = B_{m,n}$ with $V(B_{m,n}) = \{v, v_i, u, u_j : 1 \le i \le m, 1 \le j \le n\}$ and $E(B_{m,n}) = \{uv, uu_j, vv_i : 1 \le i \le m, 1 \le j \le n\}$ and so $|V(B_{m,n})| = m + n + 2$. Let S be a detour dominating set of $B_{m,n}$. By Theorem 3.3, $\{v_i, u_j : 1 \le i \le m, 1 \le j \le n\} \subseteq S$. Clearly $\{v_1, v_2, \ldots, v_m, u_1, u_2, \ldots, u_n\}$ itself is a minimum detour dominating set of $B_{m,n}$, and $(deg(v_i), deg(v_j)) = (deg(u_x), deg(u_y)) = (deg(v_i), deg(u_x)) = 1$ where $1 \le i \ne j \le m, 1 \le x \ne y \le n, S = \{v_1, v_2, \ldots, v_m, u_1, u_2, \ldots, u_n\}$ is a relatively prime detour dominating set and hence $\gamma_{rpdn}(B_{m,n}) = m + n$.

Theorem 3.9 If *G* is the complete graph $K_p (p \ge 2)$, then $\gamma_{rpdn} (K_p) = \begin{cases} 2 & ifp = 2 \\ 0 & ifp > 2 \end{cases}$.

Proof. Any two vertices in K_p , $p \ge 2$ is adjacent. Hence a minimum detour dominating set is $\{v_i, v_j\}$, $1 \le i \ne j \le p$ and $(deg(v_i), deg(v_j)) = (p - 1, p - 1) = p - 1$. If p = 2, then $\{v_1, v_2\}$ is the relatively prime detour dominating set and hence $\gamma_{rpdn}(K_p) = 2$ and if p > 2, then $\{v_i, v_i\}$ is not a relatively prime detour dominating set and hence $\gamma_{rpdn}(K_p) = 0$.

Theorem 3.10 If G is the complete bipartite graph
$$K_{m,n}$$
, then

$$\gamma_{rpdn} \left(K_{m,n} \right) = \begin{cases} 2 & ifm = n = 1 \text{ and } (m,n) = 1 \text{ wherem, } n \ge 2 \\ n & ifm = 1, n \ge 2 \\ m & ifn = 1, m \ge 2 \\ 0 & if \quad (m,n) \ne 1 \text{ and} m, n \ge 2. \end{cases}$$

Proof. Let $V_1 \cup V_2$ be the bipartition of $V(K_{m,n})$ where $V_1 = \{u_1, u_2, ..., u_m\}$ and $V_2 = \{v_1, v_2, ..., v_n\}$ and so $|V(K_{m,n})| = m + n$. Case 1. m = n = 1The graph $K_{m,n}$ is P_2 . By Theorem 3.6, $\gamma_{rpdn}(K_{m,n}) = 2$. Case 2. m = 1 and $n \ge 2$ The graph is $K_{1,n}$. By Theorem 3.7, $\gamma_{rpdn}(K_{1,n}) = n$. Case 3. n = 1 and $m \ge 2$ The graph is $K_{m,1}$. Also $K_{m,1} \simeq K_{1,m}$. By Theorem 3.7, $\gamma_{rpdn}(K_{m,1}) = m$. Case 4. $m = n \ge 2$ A minimum detour dominating set is $\{u_i, v_j\}$ where $1 \le i, j \le n$ and $(deg(u_i), deg(v_j)) = m \ge 2$. This implies that $K_{m,n}$ has no relatively prime detour dominating set and hence $\gamma_{rpdn}(K_{m,n}) = 0$. Case 5. $m \ne n$ and $m, n \ge 2$ A minimum detour dominating set is $\{u_i, v_j\}$ and $(deg(u_i), deg(v_j)) = (m, n)$. Clearly

 $S = \{u_i, v_j\}$ is a minimum relatively prime detour dominating set if (m, n) = 1 and not a relatively prime detour dominatind set if $(m, n) \neq 1$. Hence $\gamma_{rpdn}(K_{m,n}) = 2$ if (m, n) = 1 and $\gamma_{rpdn}(K_{m,n}) = 0$ if $(m, n) \neq 1$

The theorem follows from cases 1, 2, 3, 4 and 5.

Theorem 3.11 If G is a wheel graph W_p , then

 $\gamma_{rpdn}(W_p) = \begin{cases} 2 & ifp \not\equiv 1 \pmod{3} \\ 0 & otherwise \end{cases}.$

Proof. Let $v_1v_2...v_{p-1}v_1$ be the outer cycle C_{p-1} and v be the central vertex of W_p . Then deg(v) = p - 1 and $deg(v_i) = 3$ for each $i \in \{1, 2, ..., p - 1\}$.

Consider, $S = \{v, v_i\}$, $1 \le i \le p - 1$. Then S is a minimum detour dominating set of W_p . Now $(deg(v), deg(v_i)) = (p - 1,3) = 1$ if and only if p - 1 is not a multiple of 3 if and only if $p \ne 1 \pmod{3}$. Hence $\gamma_{rpdn}(W_p) = 2$ if and only if $p \ne 1 \pmod{3}$.

Theorem 3.12 If *G* is a helm graph H_n , then $\gamma_{rpdn}(H_n) = n$.

Proof. Let $v_1v_2...v_{n-1}v_1$ be the cycle C_n . Add a vertex v which is adjacent to $v_i, 1 \le i \le n - 1$. 1. The resultant graph is the wheel W_n . For $1 \le i \le n - 1$, add u_i which is adjacent to v_i . The resultant graph G is the helm graph H_n and so $|V(H_n)| = 2n - 1$. Then deg(v) = n - 1, $deg(v_i) = 4$ and $deg(u_i) = 1$ for each i = 1, 2, ..., n - 1.

Let $S = \{v, u_1, u_2, \dots, u_{n-1}\}$. Then S is a minimum detour dominating set of H_n . Also $(deg(v), deg(u_i)) = (n - 1, 1) = 1$ for each $i = 1, 2, \dots, n - 1$ and $(deg(u_i), deg(u_j)) = 1$ for $1 \le i \ne j \le n - 1$. This implies that $\{v, u_1, u_2, \dots, u_{n-1}\}$ is a relatively prime detour dominating set and hence $\gamma_{rpdn}(H_n) = n$.

Theorem 3.13 If G is a fan graph $F_{1,n}$, then $\gamma_{rpdn}(F_{1,n}) = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$

Proof. Let $v_1v_2...v_n$ be a path P_n and let v be the K_1 . The join $K_1 + P_n$ is the fan graph $F_{1,n}$ and so $|V(F_{1,n})| = n + 1$. Clearly deg(v) = n, $deg(v_1) = deg(v_n) = 2$ and $deg(v_i) = 3$ for $2 \le i \le n - 1$.

Let *S* be a minimum detour dominating set of $F_{1,n}$. Then *S* is either $\{v, v_1\}$ or $\{v, v_n\}$. Case 1. *n* is odd

Then $(deg(v), deg(v_1)) = (n, 2) = 1$ and $(deg(v), deg(v_n)) = (n, 2) = 1$. This implies that either $\{v, v_1\}$ or $\{v, v_n\}$ is a minimum relatively prime detour dominating set and hence $\gamma_{rpdn}(F_{1,n}) = 2$.

Case 2. n is even

Then $(deg(v), deg(v_1)) = (n, 2) = 2$ and $(deg(v), deg(v_n)) = (n, 2) = 2$. This implies that $F_{1,n}$ has no relatively prime detour dominating set and hence $\gamma_{rpdn}(F_{1,n}) = 0$.

The theorem follows from cases 1 and 2.

Theorem 3.14 For $n \ge 2$, $C_n \odot K_1$ then $\gamma_{rpdn} (C_n \odot K_1) = n$.

Proof. Let $v_1v_2...v_nv_1$ be the cycle C_n . For $1 \le i \le n$, add vertex u_i which is adjacent to v_i . The resultant graph is $C_n \odot K_1$ and so $|V(C_n \odot K_1)| = 2n$. Then $deg(u_i) = 1$ and $deg(v_i) = 3$ for $1 \le i \le n$. Let S be a detour dominating set of $C_n \odot K_1$. By Theorem 3.3, $\{u_1, u_2, ..., u_n\} \subseteq S$. Since $\{u_1, u_2, ..., u_n\}$ itself is a minimum detour dominating set of $C_n \odot K_1$, and $(deg(u_i), deg(u_j)) = (1,1) = 1$ for $1 \le i \ne j \le n$, $\{u_1, u_2, ..., u_n\}$ is a relatively prime detour dominating set and hence $\gamma_{rpdn}(G) = n$.

Theorem 3.15 For $n \ge 2$, $\gamma_{rpdn} (P_n \odot K_1) = n$.

Proof. Let $v_1v_2...v_n$ be the path P_n . For $1 \le i \le n$, add vertex u_i which is adjacent to v_i . The resultant graph is $P_n \odot K_1$ and so $|V(P_n \odot K_1)| = 2n$. Then $deg(u_i) = 1$, $deg(v_1) = deg(v_n) = 2$ and $deg(v_j) = 3$ for $1 \le i \le n$ and $2 \le j \le n - 1$. Let S be a detour dominating set of $P_n \odot K_1$. By Theorem 3.3, $\{u_1, u_2, ..., u_n\} \subseteq S$. Since $\{u_1, u_2, ..., u_n\}$ itself is a minimum detour dominating set of $P_n \odot K_1$, and $(deg(u_i), deg(u_j)) = 1$ for $1 \le i \ne j \le n$, $\{u_1, u_2, ..., u_n\}$ is the minimum relatively prime detour dominating set and hence $\gamma_{rpdn} (P_n \odot K_1 = n$.

Theorem **3.16** $\gamma_{rpdn} (K_{1,n-1} \odot K_1) = n.$

Proof. Let $v, v_1, v_2, \ldots, v_{n-1}$ be the vertices of $K_{1,n-1}$ with central vertex v. For $1 \le i \le n-1$, add u_i which is adjacent to v_1 . Add vertex u which is adjacent to v. The resultant graph is $K_{1,n-1} \odot K_1 | (K_{1,n} \odot K_1) | = 2n$. Clearly $deg(u_i) = deg(u) = 1$, $deg(v_i) = 2$ and deg(v) = n for $1 \le i \le n-1$. Let S be a minimum detour dominating set of $K_{1,n-1} \odot K_1$. By Theorem 3.3, $\{u, u_1, u_2, \ldots, u_{n-1}\} \subseteq S$. Since $\{u, u_1, u_2, \ldots, u_{n-1}\}$ itself is a minimum relatively prime detour dominating set of $K_{1,n-1} \odot K_1$ and $\left(deg(u_i), deg(u_j)\right) = \left(deg(u), deg(u_i)\right) = 1$ for $1 \le i \ne j \le n-1$, $\{u, u_1, u_2, \ldots, u_{n-1}\}$ is the minimum relatively prime detour dominating set and hence $\gamma_{rpdn}(K_{1,n-1} \odot K_1) = n$.

4 Conclusion

In this paper, we have found the relatively prime detour domination of some standard graphs like path graph, star graph, complete graph, wheel graph, helm graph.

References

- [1] G. Chartrand, Harary F, Swart H.C and Zhang P., *Detour Distance in Graphs*, Journal ., vol. 53, 2005, 75-94.
- [2] G. Chartrand, Harary F, and Zhang P., *The Detour Number of a Graph*, Utilitas Mathematica, vol. 64, 2003, 97-113.
- [3] F. Harary, *Graph Theory*, Addison-Wesley, Reading, Massachusets, 1972.
- [4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekkar, Inc., New York, 1998.
- [5] John and N.Arianayagam, *The detour domination number of a graph*, Discrete Mathematics, Algorithms and Applications vol. 9(1), 2017, 1-10.
- [6] C.Jeyasekaran and A. Jancy vini, *Results on relatively prime dominating sets in graphs*, Annals and pure and Applied mathematics, vol. 14(3), 2017, 359-369.
- [7] A. Nellai Murugan, A. Esakkimuthu and G. Mahaddevan, *The Detour domination Number of a graph*, International Journal of Science, Engineering and Technology(IJSEIR) vol 3(2), 2016, 12-20.