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Abstract 

Photovoltaic energy generation has significant development potential as a 

clean and renewable energy source. Non-optimum of distributed, grid-

connected photovoltaic (DGPV) sizing and placement can lead to over- 

compensation or under-compensation in a loss reduction scheme. This 

study proposes a method for finding the optimal placement and size of 

DGPV to reduce total system losses in a power system. This work presents 

a new method of optimization that integrates Particle Swarm Optimization 

(PSO) and Evolutionary Programming (EP) in the Hybrid Swarm 

Evolutionary Programming (HSEP). This study purpose is to find the right 

placement and sizing of DGPV to control the loss in power system. DGPV 

were optimised utilising a metaheuristic algorithm with high exploitation 

capability. The proposed HSEP technique was utilized to optimize the 

sizing and location for DGPV for loss control in power system. This 

revealed that the proposed HSEP outperformed EP in achieving lower loss 

value.  

Keywords: - distributed grid-connected photovoltaic (DGPV), Hybrid 

Swarm Evolutionary Programming (HSEP), Particle Swarm Optimization 

(PSO), Evolutionary Programming (EP). 

 

 

Introduction 

Photovoltaic energy generation (DGPV) has increased rapidly in recent years. DGPV 

systems can be broadly classified into two groups based on their power generation methods. 
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First, centralised photovoltaic power station systems and the second is distributed 

photovoltaic systems household photovoltaic [1]-[2]. In comparison to previous generation 

methods, distributed generation encompasses a variety of configurations, and the resulting 

short-circuit current exhibits an unusual complexity as a result of these characteristics. DGPV 

is a term that refers to photovoltaic energy generation devices that are located in close 

proximity to the load. In comparison to centralised systems, it can minimise building costs 

and the cost of power producing systems [3]. 

As people have put a stronger value on environmental protection, energy conservation, 

and emission reduction, the utilisation of alternative energy sources becomes increasingly 

important [4]-[7]. As a result, some uncertain factors, such as the uncertainty of load and 

output power caused by the random charging and discharging behaviour of the plug-in 

electric vehicle, the uncertainty of wind turbine output power caused by random changes in 

wind speed, and the uncertainty of solar energy output power caused by random changes in 

solar irradiance, as well as the volatility of fuel prices and the randomness of load growth, 

will introduce risk [8]. Due to the fact that DGs are often connected to the distribution 

network, it is critical to consider the location and sizing of DG while building the power 

distribution system [9]-[13]. 

In this paper, the probability model construction and the selection of objective function in 

the process of location and capacity determination are studied. For this paper, a new method 

named Hybrid Swarm Evolutionary Programming (HSEP) is proposed for determining the 

optimal location and sizing to minimize power loss in the distribution system using IEEE 

reliability test system. Comparative studies have been conducted between the two techniques 

and revealed that the proposed HSEP technique is superior than the traditional EP. 

 

Distributed Generation Technology 

Distribution generation (DG) can be divided into four broad groups based on its ability to 

inject both actual and reactive electricity into the grid. Only active electricity is delivered by 

type 1 systems, such as photovoltaics and microturbines, and this power is injected into the 

main grid with the use of converters or inverters. Because of its use of synchronous 

machines, type 2 DG is capable of injecting both active and reactive power. In addition, type 

3 DG only injects reactive power and operates at a power factor of zero, making it inefficient. 

And last but not least, type 4 is capable of infusing active power while simultaneously 

consuming reactive power [14]-[20]. It considers only DG type 1 will be installed into the 

transmission system for the transmission planning in terms of loss minimization. The IEEE 

30-bus reliability test system is used as the test specimen for the purpose of validation 

process [15]. The power balanced equation when DG is installed, can be represented by: - 

𝑃𝑖 = 𝑃𝐷𝐺𝑖 − 𝑃𝐷𝑖 = −
1

𝐴𝑖𝑖
  𝐴𝑖𝑗𝑃𝑗 − 𝐵𝑖𝑗𝑄𝑗  

𝑛
𝑗=𝑖
𝑗≠𝑖

 (1) 

Hence, it will become: 

𝑃𝐷𝐺𝑖 = −
1

𝐴𝑖𝑖
  𝐴𝑖𝑗𝑃𝑗 − 𝐵𝑖𝑗𝑄𝑗  

𝑛
𝑗=𝑖
𝑗≠𝑖

                                            (2) 

Optimization Techniques 

This presents Evolutionary Programming (EP), Particle Swarm Optimization (PSO) and the 

proposed Hybrid Swarm Evolutionary Programming (HSEP). 
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A. Evolutionary Programming 

Using EP, the DG's scale and location are initially generated as random numbers that 

should match the stipulated fitness equation. EP was inspired by the idea of evolution by 

natural selection. It emphasises the behavioural linkage between parents and their offspring. 

Depending on the situation, EP can impede or enhance fitness. EP involved several operators 

as the basic mechanics. The first step is initialization. Initialization routines use random 

number generators. Secondly, mutation is used to breed offspring from the original parents. 

Combination and selection are used to mix parents and the offspring populations; and 

ultimately find the survival of the fittest. The third step defines the combination rule. Finally, 

specify the selection rule [19],[21]-[22]. These steps will be repeated endlessly until the stop 

condition is fulfilled.  

The convergence of the difference between the highest and lowest fitness values serves as 

the function's stoppingcriterion. The flowchart for the EP is shown in the Figure 1 and Figure 

2 below. 

 

Figure2 EPFlowchart. 

 

 

Figure1FundamentalEPProcess 
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B. Particle Swarm Optimization 

PSO was originally invented by Kennedy, Eberhart and Shiand was first intended for 

simulating social behaviour, as a stylized representation of the movement of organisms in a 

bird flock or fish school [23],[24]. 

Particles warm optimization (PSO) is an evolutionary computational technique used for 

optimization motivated by the social behaviour of individuals in large groups in nature. The 

variables in PSO can take any values based on their current position in the particle space and 

the corresponding velocity vector[23]. The flowchart for the PSO is shown in the Figure 3.In 

this study, PSO is used. Position of the individual particles are updated as in eqn. (3)[24, 25]: 

𝑉𝑘+1
𝑖 =  𝑉𝑘

𝑖+c1𝑟1 𝑃𝑘
𝑖 − 𝑋𝑘

𝑖  +c2𝑟2 𝑃𝑘
𝑔
− 𝑋𝑘

𝑖                           (3) 

1 2

1 2

c , c = cognitive and social parameters

r , r =random numbers between 0 

where:

and 1

 

C. Hybrid Swarm Evolutionary Programming (HSEP) 

By embedding Particle Swarm Optimization into Evolutionary Programming, this study 

presented a hybrid technique called Hybrid Swarm Evolutionary Programming (HSEP). The 

purpose of this work is to determine the new power loss (Ploss), the DG size 1 and DG size 2 

(x1, x2), and the ideal position of DG1 and DG2. (loc1, loc2). The proposed HSEP technique 

was tested on the IEEE 30-bus RTS. The HSEP process can be presented in the following 

procedures: 

The process begins with normal load flow to determine the power loss in the system 

before initialization takes place. Following that, the initialization process generates a 

population of twenty individuals subject to an inequality constraints which are actually the 

maximum and minimum bound of the DG sizes or locations. During initialization process, all 

the generated random individuals will give loss values lower than the loss obtained during the 

load flow process. With EP, the population is next subjected to Fitness 1 calculation. This is 

used to determine the fitness of each individual. For step-by-step debugging; the fitness value 

 
Figure3: Fundamental PSO Flow Chart. 
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for each individual in the first iteration should be exactly similar with those in the 

initialization processes as this phase utilized the same individuals. 

Once the fitness values have been calculated, mutation process begins. The mutation 

process is carried out using a modified PSO in this manner. Subsequently, second round of 

fitness calculation is performed using the off springs. Combination process is then conducted 

which combines the Fitness 1 and Fitness 2 populations. This process doubles the number if 

individuals. For instance, 20 individuals generated during initialization will become 40 

individuals once combination process is done. The next process is the tournament process, or 

also known as selection. In this phase, 20 individuals will be identified to undergo the next 

iteration or evolution process. In general, there are several techniques can be implemented for 

this purpose. They are roulette wheel, pair wise comparison or elitism. In this study, elitism is 

adopted due to its simplicity. The stopping criterion is defined by evaluating the difference 

between the maximum and minimum fitness values. The optimal solution is achieved once 

the difference between the greatest and least fitness values is smaller than 0.0001. However, 

it also depends on the requirement of the optimization accuracy. The flowchart of the 

proposed HSEP is shown in Figure 4. 

 

Figure 4 Proposed HSEP flowchart. 

 

D. 30-bus Reliability Test System (RTS) 

This study attemptstoidentify the optimal placement and sizing of the battery in distribution 

system. In this way, the battery is considered as DG Type 1. The objective function is loss 

minimization, implemented on the IEEE 30-Bus RTS using the proposed HSEP algorithm for 

optimal placement and sizing of DGPV. The initial value of real power loss was initially 

calculated using the normal load flow. This will be set as the constraint in such away that all 
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the individuals generated during initialization will exhibit lower power losswhich will help to 

reach the minimal loss with the optimization process. It considers only DG type 1 which will 

be installed into the transmission system for the transmission planning for loss minimization 

scheme. The IEEE 30-Bus RTS is used as the test specimen for the purpose of validation 

process [20]. Figure 5 shows the IEEE 30-Bus RTS. This system is confined of 6 generator 

buses (including the swing bus) and 41 transmission lines; while other buses are the 

intermediate buses and load buses. 

 

Figure5 IEEE30-BusReliabilityTestSystem(RTS). 

 

Results and Discussion 

The proposed HSEP optimization technique was conductedonthe IEEE30-busRTS with the 

objective tominimize the total transmission loss in the system. In this study, the sizing and 

location were identified using the proposed HSEP; which then compared with the traditional 

EP and PSO.The system was subjected to areactive power increase from 5MVAR to 

20MVAR at Bus 25.Initialization results are also presented to show the randomness of the 

initial individuals. Subsequently, optimal results are also presented to show the performance of 

the proposed HSEP technique. 

 

A.  LoadingVariationSubjectedtoBus25 

The system‟s reactive power load was varied gradually at 5MVar,10MVar,15MVar 

and20MVARat Bus 25 as tabulated in Table 1andTable2.Figure6,Figure7,Figure8andFigure9 

tabulate the results during initialization confining sizing 1 (x1), sizing 2 (x2), location 1 

(loc1),location2 (loc2) and power losses (Ploss).Figure 6, Figure 7, Figure 8 and Figure 9 depict 

the initialization results at load variations of 5 MVar,10MVar,15MVar and 20MVar. 
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At5MVarshown in Figure 6, the minimum power loss is 8.1368 MW.Thesizingfor 

sizing1(x1)is51.9175MWandsizing2(x2)is77.1944MWatbus15forlocation1(loc1)andbus21forl

ocation2(loc2).At10MVar(Figure7),the minimumpowerloss is8.515MW.Thesizing at sizing 1 

(x1) is 97.7238 MW and sizing 2(x2) is 44.4519 MW at bus 22 for location 1 

(loc1)andbus28forlocation2(loc2).At15MVar(Figure8), the minimum power loss is 7.9627 

MW. Thesizing at sizing 1 (x1) is 67.4525 MW and sizing 2(x2) is 73.7175 MW at bus 28 for 

location 1 (loc1)andbus22forlocation2(loc2).At20MVar(Figure9), the minimum power loss is 

9.8234 MW. Thesizing at sizing 1 (x1) is 38.0608 MW and sizing 2(x2) is 88.3705 MW at bus 

16 for location 1 (loc1)and bus21for location2(loc2). These values were generated during the 

initialization process. 20 individuals were initially generated which satisfied the equality and 

inequality constraints. These random values for each individual will reach to an optimal 

solution; where, only one value will be eventually identified once the solution is converged. 

 

 

 

 
 

 

 

 

 

Figure 7: Initialization at Qd25=10 MVAR 

 

 

INITIALIZATION AT 10 Mvar 
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Figure 6: Initialization at Qd25=5 MVAR 
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Table 1 tabulatesthe results for power loss profile optimized inthree conditions which are 

the real power loss undernormal conditions, after EP optimization, and afterHSEP 

optimization. When the Qd25value is subjected to 5Mvar, the result of power loss during pre-

optimization is 17.7182MW.  

 

Table1:Power LossResults for LoadVariation at Bus 25

 
 

 

 

Figure 9: Initialization at Qd25=20MVAR 
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Figure 8: Initialization at Qd25=15 MVAR 
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Optimization processes using EP resulted to loss reduction to11.3377 MW and its value is 

reduced to 9.0505 MW by using HSEP.When the Qd25is increased to 10 MVAR the power loss 

duringpre-optimization is 17.9936 MW. EP managed to reduce its power loss to 11.078 MW, 

while the proposed HSEPtechnique managed to reduce the power loss to8.0274MW.On the other 

hand, whentheQd25was subjected to15Mvar,theresultofthe power loss during pre-

optimizationis18.2652 MW. Implementation of EP as the optimization technique managed to 

reduce the power loss to 12.5034 MW; while HSEP significantly reduced the power loss 

to9.5148 MW. For the case of Qd25 is adjusted to 20 Mvar, the result of power loss during pre-

optimization is 18.6269 MW. EP reduced this value to 12.6927MW as the converged solution, 

while HSEP reduced it to 9.5033 MW. In all the load variations at Bus 25; the proposed HSEP 

technique outperformed EP.This implies that the proposed HSEP managed to exhibit 

outstanding performance over the traditional EP at all the reactive power load variation. Figure 

10 illustrates its phenomenon. Apparently, the proposed HSEP technique shows lower profile as 

compared to the traditional EP; implying the superiority of the proposed HSEP. 

 
 

Table 2: Optimal placement and Sizing UsingHSEPfor LoadVariations at 

Bus 25 

 
 

 

Figure 10: Power loss profile caused for reactive powervariation at Bus 25 
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Table 2 tabulates the results for the optimal placement and sizingofDGPV for load 

variations at Bus 25. These results are tabulated separately for the purpose to present the 

locations and sizing for the optimal DGPV solved using the proposed HSEP. 

When Qd25 is set to 5Mvar the optimal locations are Bus 20 for location 1 (loc1) and Bus 21 

for location 2 (loc2).The corresponding DGPV size for sizing 1 (x1) is 41.2499MW and for 

the sizing2(x2) is 86.0937MW.WhenQd25issetto10Mvar, the optimal locations are Bus28 for 

location 1 (loc1) and Bus 16 for location 2(loc2). The DGPV size for sizing 1 (x1) is101.3377 

MW and for the sizing 2 (x2) is 55.3617MW.WhenQd25issetto15Mvar, the optimal locations 

are Bus 21 for location 1 (loc1) and Bus14 for location 2 (loc2). This will require DGPV size 

forsizing1(x1) worth 106.831MW and for the sizing 2 (x2) is 23.4166 MW. When Qd25 is set 

to 20 Mvar the optimal placement is at Bus 17 for location 1 (loc1)and Bus 15 for location 2 

(loc2). The corresponding DGPV size for sizing1(x1)is91.38MWandforthesizing2 (x2) is 

70.6715MW. These results would be very beneficial to the power system utilities for their 

future planning action. These results could be given to the designers or vendors for the design 

purposes. 

 

B. Loading Variation Subjected to Bus29 

To extend the spectrum of this study, a second load bus, i.e. Bus 29 was subjected to reactive 

load variations. The system‟s reactive power load was varied to 5Mvar,10Mvar,15Mvar 

and20Mvar; implemented on the same IEEE 30-Bus RTS. The results during initialization 

processes for each load variation at Bus 29 are shown to show the randomness of individuals. 

The results are tabulated in Table 3and Table 4.Figure 11, Figure 12, Figure 13 and Figure 14 

show the results of initialization process to show the values of 

sizing1(x1),sizing2(x2),location1(loc1),location2(loc2)andpower losses(Ploss). These results 

present the random locations and sizing for 20 individuals at each Qd29reactive load variation. 

 
Figure 11, Figure 12, Figure 13 and Figure 14show the results for initialization process at 

load variations of5 MVar, 10 MVar, 15 MVar and 20 MVar. At 

5MVar(Figure11),theminimumpowerlossis8.9701 MW. The sizing at sizing 1 (x1) is 

 

Figure 11: Initialization at Qd29=5Mvar. 
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90.3301MW and sizing 2 (x2) is 78.2992 MW at bus 15 

forlocation1(loc1)andbus17forlocation2(loc2).At10 MVar (Figure 12), the minimum power 

loss is8.3831 MW. The sizing at sizing 1 (x1) is 84.1511MW and sizing 2 (x2) is 26.9317 MW 

at bus 28 forlocation1(loc1)andbus21forlocation2(loc2).At15 MVar (Figure 13), the minimum 

power loss is11.2264 MW. The sizing at sizing 1 (x1) is 55.6836MW and sizing 2 (x2) is 

73.8997 MW at bus 28 forlocation1(loc1)andbus27forlocation2(loc2).At20 MVar (Figure 14), 

the minimum power loss is8.7814 MW. The sizing at sizing 1 (x1) is 72.9748MW and sizing 2 

(x2) is 86.9264 MW at bus 28 forlocation 1 (loc1) and bus21 for location 2 (loc2). Apparently, 

all the individuals generated during initialization will result to Ploss value lower than the power 

loss calculated at the normal load flow, whereby the optimization processes using EP and 

HSEP have not been conducted yet. All random individuals will result to lower Ploss; set as the 

constraints during initialization. 

 

 

 

Figure 12: Initialization at Qd29=10 Mvar. 
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Figure 14: Initialization at Qd29=20 Mvar. 
 

 

Figure 13: Initialization at Qd29=15 Mvar. 
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Table 3 tabulates the results of power loss inthree conditions which are the real power loss 

undernormal conditions, after EP optimization, and afterHSEP optimization. When the Qd29 is 

subjected to 5Mvar, the result of power loss value during pre-optimization is 17.7284MW. 

The result of post optimization by using EP is10.9051 MW and by using HSEP it is 7.2804 

MW.When Qd29 is adjusted at 10 Mvar the result ofpre optimization is 18.1164 MW. The 

result of postoptimization by using EP is 12.1714 MW and byusing HSEP it is 9.111 MW. 

This implies that the proposed HSEP managed to achieve lower power loss value as those 

solved using the traditional EP. It implies the superiority of HSEP. 

When the Qd29 is adjustedto15Mvar,theresultofpower loss during pre-

optimizationis18.6192 MW. EP managed to reduce its value to 13.7197 MW;while HSEP 

significantly reduced its loss value to 10.3284MW.This is a significant reduction and apparently 

HSEP outperformed EP. WhentheQd29isadjustedto20Mvar, the result of power loss during pre-

optimization is 19.3855 MW. EP reduced it values to 13.8157MW while HSEP managed to 

achieve a much lower power loss to 9.3282 MW. This is again a significant reduction of 

power loss through optimization for DGPV installation in the transmission system. The 

proposed HSEP again outperformed the traditional EP in achieving a much lower loss value. 

 

 
 

 
 

Table 4 tabulates the results for the optimal placement and 

sizingofDGPVforloadvariationatBus29.WhenQd29issubjectedto 5 Mvar, the optimal locations 

solved using HSEP are Bus 28 forlocation 1 (loc1) and Bus 22 for location 2 (loc2).The 

corresponding DGPV size for sizing 1 (x1) is 

130.831MWandsizing2(x2)is29.9843MW.WhenQd29issubjected to10Mvar,theoptimallocation 

isBus17 for location 1 (loc1) and Bus 15 for location 2(loc2). The DGPV size for sizing 1 (x1) 

is94.1985 MW and for the sizing 2 (x2) is 

45.2562MW.WhenQd29isadjustedto15Mvar,theoptimallocation is Bus 19 for location 1 (loc1) 

and Bus17 for location 2 (loc2). This requires DGPV size 

forsizing1(x1)of51.0153MWandforthesizing2(x2) itis 90.6364 MW. When Qd29 is set to 20 

Table 4: Optimal placement and Sizing UsingHSEPat LoadVariations at 

Bus 29 

 
 

 

Table 3: Power Loss subjected using HSEP at Load Variation at Bus 29 
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Mvar, theoptimal locations are Bus 28 Bus 21. The optimal sizing for sizing 1 (x1) is 145.4545 

MW and for sizing 2(x2)it is 5.3365MW. 

 
Figure 15 illustrates the profiles of power loss value for load variations from 5 Mvar to 20 

Mvar subjected to Bus 29. In general, all the post-optimization profiles, solved using EP and 

HSEP are lowerthan those during the pre-optimization process; where load flow was running 

to calculate the power loss value at all the reactive load value.From the figure, HSEP exhibit 

lower power loss profile, indicating its superiority over the traditional EP. 

 

Conclusion 

This paper has presented Hybrid-Swarm Evolutionary Programming Based Technique for 

Optimal Placement and Sizing DGPV for Loss Control in Power System (HSEP). Optimal 

placement and sizing DGPV for losscontrol in power system are addressed in this studyusing 

HSEP, and compared with the traditional EP. When theHSEP algorithm is implemented on the 

IEEE 30-BusRTS, the result of powerlossis much better than EP, in terms of achieving lower 

power loss value at all reactive power loading.Various reactive loading conditionswere 

subjected to Bus25andBus 29.It implies that the proposed HSEP is consistently superior than 

the traditional EP. The developed optimization engine in HSEP could be conducted to solve 

other optimization problems in power system with minor modification or even to be tested on 

a larger test model. 
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Figure 15: Power Loss caused by reactive powervariation at Bus 

29 
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