On (u,v) Distinct Congruent Spectrum of Graphs

Mrs. T. Rajasulochana ${ }^{1}$, Dr. M. Kamaraj ${ }^{2}$
${ }^{1}$ Assistant Professor,Department of Mathematics, SFR College For Women,Sivakasi. Mail id: trajasulochana136@gmail.com
${ }^{2}$ Head\&Associate Professor,Department of Mathematics, Government arts and science college,Sivakasi. Mail id: kamarajm17366@gmail.com

Article Info
Page Number: 838-846
Publication Issue:
Vol. 72 No. 1 (2023)

Article History

Article Received: 15 October 2022
Revised: 24 November 2022
Accepted: 18 December 2022

Abstract

An (u, v) distinct congruent spectrum of graph G with u vertices and $v-$ edges is an injective mapping from the set of edges to the set of nonnegative integers $\{1,2, \ldots v\}$ in such a way that the set of values of vertices obtained by the sums mod $|\mathrm{E}(\mathrm{G})|+1$.In this paper certain class of graphs are discussed.

Keywords: distinct, congruent, graphs

1 Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected graph, without multiple edges or loops. For any abelian group A (written additively) .Let $\mathrm{A}^{*}=\mathrm{A}-\{0\}$.A function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{A}^{*}$ is called a labeling of G . Any labeling induces a map $\mathrm{f}^{+}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{A}$, defined by $\mathrm{f}^{+}(\mathrm{v})=\sum f(u, v)$ where $u, v \in \mathrm{E}(\mathrm{G})$.If there exists a labeling f which induces a distinct label c on $V(G)$,we say that f is an spectrum of distinct magic labeling and that G is an distinct congruence magic graph. We denote by Z_{n} the group of integers $(\bmod n)$.In this paper , we are interested in determining for which values of $\mathrm{k} \geq 3$ a graph is DC-magic. The set $\left\{\mathrm{k}\right.$: G is Z_{n}-magic, $\left.\mathrm{n} \geq 3\right\}$ is called the Distinct-Congruent spectrum of a graph G and is denoted by DC (G).In this paper,weexamine,the DC-magic spectra of class of graphs .

2. Preliminaries

Definition 2.1
An (u, v) distinct congruent spectrum of graph G with u vertices and v-edges is an injective function from the edges of G to the set $\{1,2,3,4, \ldots \ldots . v\}$ such that the vertices assigned to the labels $(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})) \bmod |\mathrm{E}(\mathrm{G})|+1$ where $\mathrm{u}=(\mathrm{x}, \mathrm{y})$ then the vertex labels are distinct.
Example 2.2

Definition 2.3

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected graph, without multiple edges or loops. For any abelian groupA(written additively).Let $A^{*}=A-\{0\}$. A function $f: E(G) \rightarrow A^{*}$ is called a labeling of G. Any labeling induces amapf ${ }^{+}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{A}$, definedbyf ${ }^{+}(\mathrm{v})=\sum f(u, v) \bmod |\mathrm{E}(\mathrm{G})|+1$ where v is adjacent to $u,(u, v) \in E(G)$.If there exists a labeling f which induces a distinct label c on $\mathrm{V}(\mathrm{G})$, we say that f is an (u, v) distinct congruent spectrum of graph G .
Example 2.4

Definition 2.5

A tree in which every node can have a maximum of two children is called Binary Tree. In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than 2 children.At each level of i , the maximum number of nodes is 2^{i}. The height of the tree is defined as the longest path from the root node to the leaf node. The tree which is shown above has a height equal to 3 . Therefore, the maximum number of nodes at height 3 is equal to $(1+2+4+8)=15$. In general, the maximum number of nodes possible at height h is $\left(2^{0}+\right.$ $\left.2^{1}+2^{2}+\ldots .2^{\mathrm{h}}\right)=2^{\mathrm{h}+1}-1$. The minimum number of nodes possible at height h is equal to $\mathrm{h}+1$.If the number of nodes is minimum, then the height of the tree would be maximum. Conversely, if the number of nodes is maximum, then the height of the tree would be minimum. If there are ' n ' number of nodes in the binary tree.

Example 2.6

Definition 2.7

The friendship graph (or Dutch windmill graph or n-fan) F_{n} is a planar, undirected graph with $2 n+1$ vertices and $3 n$ edges.
The friendship graph F_{n} can be constructed by joining n copies of the cycle graph C_{3} with a common vertex, which becomes a universal vertex for the graph.
By construction, the friendship graph F_{n} is isomorphic to the windmill graph $\mathrm{Wd}(3, n)$. It is unit distance with girth 3, diameter 2 and radius 1. The graph F_{2} is isomorphic to the butterfly graph.

Example 2.8

3. Main Results

Theorem 3.1

Thetreegraph $T_{2} \operatorname{isan}(u, v)$ distinctcongruentspectrum Z_{n} ofG.

Proof

$\operatorname{LetV}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots . . \mathrm{e}_{\mathrm{n}}\right\}$
Claim Thisan(u,v)distinctcongruentspectrum.

An injective function is defined by $f: E(G) \rightarrow\{1,2,3, \ldots . . q\}$ such that $f\left(e_{i}\right)=i, 1 \leq i \leq n$ Then the induced vertex labeling $\mathrm{f}^{+}(\mathrm{v})=\sum f(u, v) \bmod |\mathrm{E}(\mathrm{G})|+1$ where v is adjacent to u arealldistinct.
Construction 3.2
Since by using definition of labeling we label the edges by 1,2 from Z_{3}. We considered the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ in clock wise direction.

Labeling

Verification

$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ Vertices
$f\left(v_{1} v_{2}\right)=1, f\left(v_{1} v_{3}\right)=2$.
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=3, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=1, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=2$.
Therefore all are distinct
Congruency
$3 \equiv \underline{\mathbf{0}}(\bmod \mathbf{3})$
$1 \equiv 1(\bmod 3)$
$2 \equiv \underline{\mathbf{2}}(\bmod 3)$
Therefore T_{2} is a distinct congruence magic graph. T3:-
Let the integer set be $\mathrm{Z}_{7}=\{0,1,2,3,4,5,6\}$ Construction:-
Since by using the definition of labeling, we label the edges by $1,2,3,4,5,6$ fromZ $_{7}$.

Labeling

$3 \quad$ Fig2:L $\underset{\sim}{\underset{\sim}{4}}, \mathbf{T 3})=\mathbf{Z 7}$

Verification 3.3

$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{~V}_{6}, \mathrm{v}_{7},-$ Vertices
$f\left(v_{1} v_{2}\right)=1, f\left(v_{2} v_{3}\right)=3, f\left(v_{2} v_{4}\right)=4, f\left(v_{1} v_{5}\right)=6$,
$\mathrm{f}\left(\mathrm{v}_{5} \mathrm{v}_{6}\right)=5, \mathrm{f}\left(\mathrm{v}_{5} \mathrm{v}_{7}\right)=2$,
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=7, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=8, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=3, \mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=4$,
$\mathrm{f}^{+}\left(\mathrm{v}_{5}\right)=13, \mathrm{f}^{+}\left(\mathrm{v}_{6}\right)=5, \mathrm{f}^{+}\left(\mathrm{v}_{7}\right)=2$
Thereforeallaredistinct

Congruency

$7 \equiv \underline{\mathbf{0}}(\bmod 7)$
$8 \equiv \mathbf{1}(\bmod 7)$
$\equiv \mathbf{\underline { \mathbf { 3 } }}(\bmod 7)$
$4 \equiv \mathbf{4}(\bmod 7)$
$13 \equiv \mathbf{6}(\bmod 7)$
$5 \equiv \underline{\mathbf{5}}(\bmod 7)$
$2 \equiv$ ($\bmod 7$)
ThereforeT ${ }_{3}$ isadistinctcongruencemagicgraph. $\mathbf{F}(\mathbf{3 , 7}$)
LettheintegersetbeZ ${ }_{22}=\{0,1,2,3,4,5, \ldots .21\}$

Construction3.4:-

Since by using the definition of labeling, we label the edges by $1,2,3,4,5, \ldots 21$ fromZ ${ }_{22}$.

Labeling

Fig3: $\mathbf{D C}(\mathbf{F}(\mathbf{3}, 7))=\mathbf{Z 2 2}$

Verification 3.5

$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{~V}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}, \mathrm{v}_{11}, \mathrm{~V}_{12}, \mathrm{v}_{13}, \mathrm{v}_{14}, \mathrm{v}_{15},-$-Vertices
$\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=1, \mathrm{f}\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)=2, \mathrm{f}\left(\mathrm{v}_{5} \mathrm{v}_{6}\right)=3, \mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{8}\right)=4, \mathrm{f}\left(\mathrm{v}_{9} \mathrm{v}_{10}\right)=5, \mathrm{f}\left(\mathrm{v}_{11} \mathrm{v}_{12}\right)=6, \mathrm{f}\left(\mathrm{v}_{13} \mathrm{v}_{14}\right)=8, \mathrm{f}\left(\mathrm{v}_{15} \mathrm{v}_{1}\right)=7, \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{15}\right)=$ $9, f\left(v_{3} \mathrm{v}_{15}\right)=10, f\left(\mathrm{v}_{4} \mathrm{v}_{15}\right)=11, f\left(\mathrm{v}_{5} \mathrm{v}_{15}\right)=12, f\left(\mathrm{v}_{6} \mathrm{v}_{15}\right)=13, \mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{15}\right)=14, \mathrm{f}\left(\mathrm{v}_{8} \mathrm{v}_{15}\right)=15, \mathrm{f}\left(\mathrm{v}_{9} \mathrm{v}_{15}\right.$ $)=16, f\left(v_{10} v_{15}\right)=17, f\left(v_{11} v_{15}\right)=18, f\left(v_{12} v_{15}\right)=19, f\left(v_{13} v_{15}\right)=20,, f\left(v_{14} V_{15}\right)=21, f^{+}\left(v_{i}\right)=\operatorname{distinct}$
,for all
$\mathrm{i}=1,2, \ldots 15$ Thereforeallaredistinct.Therefore $\mathrm{F}(3,7)$ isadistinctcongruencemagicgraph.
F $(3,4)$
LettheintegersetbeZ ${ }_{13}=\{0,1,2,3,4,5, \ldots .12\}$ Construction:-
Sincebyusingthedefinitionoflabeling,welabeltheedgesby $1,2,3,4,5, \ldots 12$ from $_{13}$.
Labeling 3.6

Fig4:DC(F 11)=Z13

Verification 3.7

$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}, \mathrm{v}_{9}$-Vertices
$f\left(v_{1} v_{2}\right)=1, f\left(v_{3} v_{4}\right)=2, f\left(v_{5} v_{6}\right)=3, f\left(v_{7} v_{8}\right)=5, f\left(v_{1} v_{9}\right)=6, f\left(v_{2} v_{9}\right)=7, f\left(v_{3} v_{9}\right)=8, f\left(v_{4} v_{9}\right)=9, f\left(v_{5} v_{9}\right)=10$,
$\mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{9}\right)=11, \mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{9}\right)=12, \mathrm{f}\left(\mathrm{v}_{8} \mathrm{v}_{9}\right)=4, \mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=7, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=8, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=10, \mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=11, \mathrm{f}^{+}\left(\mathrm{v}_{5}\right)=13$,
$\mathrm{f}^{+}\left(\mathrm{V}_{6}\right)=14, \mathrm{f}^{+}\left(\mathrm{V}_{7}\right)=17, \mathrm{f}^{+}\left(\mathrm{v}_{8}\right)=9$
Therefore all are distinct

Congruency 3.8

$7 \equiv \underline{\mathbf{7}}(\bmod 13)$
$8 \equiv \underline{\boldsymbol{8}}(\bmod 13)$
$10 \equiv 10(\bmod 13)$
$11 \equiv 11(\bmod 13)$
$13 \equiv \mathbf{0}(\bmod 13)$
$14 \equiv 1(\bmod 13)$
$17 \equiv \underline{4}(\bmod 13)$
$9 \equiv \mathbf{\underline { 9 } (\operatorname { m o d } 1 3)}$

Therefore $\mathrm{F}(3,4)$ is a distinct congruence magic graph.

F(3,6):-

Let the integer set be $Z_{19}=\{0,1,2,3,4,5, \ldots .18\}$ Construction:-
Since by using the definition of labeling, we label the edges by $1,2,3,4,5, \ldots 18$ from $_{19}{ }_{19}$.

Labeling 3.9 :-

Fig4: $\mathbf{D C}(\mathbf{F}(\mathbf{3}, 6))=\mathbf{Z 1 9}$

Verification 3.10

$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7} \mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}, \mathrm{~V}_{11}, \mathrm{v}_{12}, \mathrm{v}_{13}$-Vertices
$f\left(v_{1} v_{2}\right)=1, f\left(v_{3} v_{4}\right)=2, f\left(v_{5} v_{6}\right)=3, f\left(v_{7} v_{8}\right)=4, f\left(v_{9} v_{10}\right)=5, f\left(v_{11} v_{12}\right)=6, f\left(v_{1} v_{13}\right)=7, f\left(v_{2} v_{13}\right.$ $)=9, f\left(v_{3} v_{13}\right)=10, f\left(v_{4} v_{13}\right)=11, f\left(v_{5} \mathrm{~V}_{13}\right)=12, f\left(\mathrm{v}_{6} \mathrm{~V}_{13}\right)=13$,
$f\left(v_{7} v_{13}\right)=14, f\left(v_{8} v_{13}\right)=15, f\left(v_{9} v_{13}\right)=16, f\left(v_{10} v_{13}\right)=17, f\left(v_{11} v_{13}\right)=18, f\left(v_{12} v_{13}\right)=8$
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=8, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=10, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=12, \mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=13$,
$\mathrm{f}^{+}\left(\mathrm{V}_{5}\right)=15$,
$\mathrm{f}^{+}\left(\mathrm{v}_{6}\right)=16, \mathrm{f}^{+}\left(\mathrm{v}_{7}\right)=18, \mathrm{f}^{+}\left(\mathrm{v}_{8}\right)=19, \mathrm{f}^{+}\left(\mathrm{v}_{9}\right)=21, \mathrm{f}^{+}\left(\mathrm{v}_{10}\right)=22, \mathrm{f}^{+}\left(\mathrm{v}_{11}\right)=24$
$\mathrm{f}^{+}\left(\mathrm{V}_{12}\right)=14$
Therefore all are distinct

Congruency

$8 \equiv$ ($\bmod 19)$
$10 \equiv 10(\bmod 19)$
$12 \equiv 12(\bmod 19)$
$13 \equiv \mathbf{1 3}(\bmod 19)$
$15 \equiv 15(\bmod 19)$
$16 \equiv 16(\bmod 19)$
$18 \equiv \mathbf{1 8}(\bmod 19)$
$19 \equiv \mathbf{0}(\bmod 19)$
$21 \equiv \mathbf{2}(\bmod 19)$
$22 \equiv \mathbf{3}(\bmod 19)$
$24 \equiv$ 5 $(\bmod 19)$
$14 \equiv \underline{\mathbf{4}}(\bmod 19)$
Therefore $\mathbf{F}(\mathbf{3}, \mathbf{6})$ is a distinct congruence magic graph.

Theorem 3.11

The conjecture that the Friendship graph $\mathbf{F}(\mathbf{3}, \mathbf{n})$ is an (u,v) distinct congruent spectrum Z_{n} Of G .

Theorem 3.12

The conjecture that the Tree graph $\mathbf{T}_{\mathbf{n}}$ is an (u,v) distinct congruent spectrum Z_{n} Of G.

4. Conclusion

The main aim of this paper is to explore role of Graph Labeling in Communication field. Graph Labeling is powerful tool that makes things ease in various fields of networking A overview is presented especially to project the idea of Graph Labeling. Researches may get some information related to graph labeling and its applications in communication field and can get some ideas related to their field of research.

References

[1] A.Ahmed,A.Q.BaigandM.Imran,Onsuperedgemagicnessofgraphs,UtilitasMath.,toap pear.
[2] E.T.BaskoroandA.A.G.Ngurah,Onsuperedgemagictotallabelings,Bull.Inst.Combin.Appi 1.,37 (2003),82-87.
[3]E.T.Baskoro,I.W.SudarsanaandY.M.Cholily,Howtoconstructnewsuperedgemagicgraphsfromsomeoldones,J.Indones.Math. Soc.(MIHIM),11:2(2005),155-162.
[4] M.Ba ca,Y.Lin andF.A.Muntaner-Batle,Superedge-antimagiclabelingsof thepathliketrees,UtilitasMath.,73 (2007),117-128.
[5] M.BǎcaandM.Miller,SuperEdgeAntimagicGraphs,BrownWalkerPress,BocaRaton,Flori daUSA,(2008).
[6] H.Enomoto,A.S.Llado, T.Nakamigawaand G.Ringle,Superedge-magicgraphs, SUTJ.Math., 34 (1980),105-109.
[7] R.M.Figueroa-Centeno, R.Ichishima, and F.A.Muntaner-Batle, The place of superedgemagiclabelingamongotherclassesoflabeling,DiscreteMath.,231(2001),153-168.
[8] R.M.Figueroa-Centeno,R.IchishimaandF.A.Muntaner-Batle,Onsuperedgemagicgraph,ArsCombin.,64 (2002),81-95.
[9] J.A.Gallian,Adynamicsurveyofgraphlabeling,Elec.J.Combin.,17(2014).
10]M.Hussain,E.T.BaskoroandSlamin,Onsuperedgemagictotallabelingofbananatrees,Util itasMath.,79 (2009),243-251.
[11] M.Javaid,M.Hussain,K.AliandH.Shaker,Superedgemagictotallabelingonsubdivisionoftr ees,UtilitasMath.,toappear.
[12] A.KotzigandA.Rosa,Magicvaluationsoffinitegraphs,Canad.Math.Bull.,13(1970),45
1-461. [13] A.Kotzig and A.Rosa, Magic valuation of complete graphs, Centre deRecherchesMathematiques,UniversitedeMontreal,(1972),CRM-175.
[14] S.M.LeeandQ.X.Shah,Alltreeswithatmost17verticesaresuperedgemagic,16thMCCCCConference,Carbondale,UniversitySouthernIllinois,November(2002).
[15] A.A.G.Ngurah,R.Simanjuntakand E.T.Baskoro,On (super)edgemagictotallabelingofsubdivision ofK1,3,SUTJ.Math.,43 (2007),127-136.
[16] A.Raheem,A.Q.Baig,Antimagictotallabelingofsubdivisionofcaterpillar,ScienceInter nationalJournal,toappear.

