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1. Introduction

Let G(U) be a class of analytic functions f defined in an open unit disk U = {z € C : |z| < 1} and
normalized by conditions f(0) =0, f'(0) =1 in U. An analytic function f € G(U) has Taylor
series expansion of the form:

F2) =z + z oz (z€U). 1)
=2

The well-known Koebe-One Quarter Theorem [12] state that the image of the open unit U under
each univalent function in contains disk with the radius i. Thus every univalent function f has an
inverse f ~lis satisfying such that:

U f(2)=z,zeU

and

1
f(f H(w) = o, w € Dy = {w €C,: |w| <ry(f),re(f) = Z}

Let X denote the class of all bi-univalent functions in U. Since f in X has the form (1), a computation
shows that the inverse g = f~1 has the following expansion,

g(w) = fY(w) = w—a,w?+ (243 — az)w? — (5a5 — 5a,a; + a)w* + -, w €U
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Let B be the class of all analytic and univalent functions in the unit open disk. These univalent
functions are invertible but the inverse function may not be defined on the entire disk U, for f in
G(U). An analytic function f is called bi-univalent in U if both f and f~are univalent in U. The
class of bi-univalent functions was introduced by Lewin [14] and proved that |a,| = 1.51, for the
function of the form (1). Subsequently, Brannan and Clunie[9] conjectured that |a,| > V2. Later,

Netanyahu in [17], on the other hand, showed that r}lgleazl = %. Also several authors studied classes

of bi-univalent analytic functions and found estimates of the coefficients estimate problem for each
of the following Taylor-Maclaurin coefficients |a,| and |a;| for functions in these
classes([1,2,3,4,5,6,7]). For functions f € G(U) and h € G(U) of the form (1) in the following form:

h(z) =z+ Z bz ,(z€U). (2)
=2

in the year 1970, the concept of quasi-subordination was first mentioned by [19]. For two analytic
functions g and f in U, we say that the function f is quasi subordinate to g in U, if there exist
analytic functions ¢ and F, with |¢p(z)| <1,F(0) =0and |F(z)| <1, such that f(z)=
¢ (2) g(F(z)), also denote this quasi-subordination by [13], as follows:

f(2) <4 9(), z€U. (3)

Note that if ¢(z) = 1, then f(2z) = g(F(2)), hence f(z) < g(z), [16]. Furthermore if F(z) = z,
f(z) = ¢p(2)g(z) and this case f is majorized by g , written f(z) < g(z) in U. Ma-Minda [15]
defined a class of starlike function by using the method of subordination and studied classes §*(IT)
and C(IT) which is defined by:

S*(UD) = {f € G: Z]{(S) <(z), zE€ U},
and
e = {f €G:1+ Z]]:(g) <(z), zE€ U},
where
¢(z) = By + Bz + Byz% + -, (4)
and,
N(z) =1+ Cz+Cz%+,0> 0, (5)

where I1(z) is an analytic and univalent function with positive real part in U, IT is symmetric with
respect to the real axis and starlike with respect to I1(0) = 1 and I1'(0) > 0. A function f € $*(II)
is called starlike or convex of Ma-Minda type respectively [10] and [22].
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We introduce and study here certain new subclasses of class X.

Brannan and Taha([10] and [11]) “obtained initial coefficient bounds for certain subclasses of bi-
univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly
starlike, starlike and convex functions. Later Srivastava et al. [21] introduced and investigated
subclasses of bi-univalent functions and obtained bounds for the initial coefficients. Recently, Ali et
al. [3] obtained the coefficient bounds for bi-univalent Ma-Minda starlike and convex functions”.
Some more important results on  coefficient inequalities can be found in,

([31.[8].[13].[201.[23],[24]).
We need the following Lemma in achieving results.

Lemma (1) [18]: If p € P, then |p;| < 2 for each i, where P is the family of all analytic functions p,
for which Re{p(z)} > 0,z € U where p(z) =1+ p,z+ p,z*> + -,z € U.

2. The Subclass #2(a, 8,7y, IT)
Definition (1): Let a function f € X, with § > 0, a € C\{0} and 0 <y < 1, such that f belong to
the class 7—[2“(0(, B,v, 1), if the following are holds:
' B
zf'(z)\ (f(2) 1, "
(T2 +20@ @ - <, @6 -

f(@) z

and,

14 B 1
<w;((g)a)))> (gi)w)> + P (¢'(w) + ywg' (w) — 1) <, (1(w) — 1),

where g = {1,

Theorem (1): If f is given by (1) belongs to the subclass f € ;' (a,B,y,11) (for B >0, a €
C\{0} and 0 <y < 1), then:

. a|BoC4| 2aBy(C; +1C; — G
la,| < min ,
al+pB)+2Q+y) JaB+1D(B +2)+6(1+2y)
and
( 2aBy(C; + G, — G + a|Cy||Bo + Byl )
aB+1DPB+2)+6(1+2y) a+p)+3(1+2y)
las| < min< >

|a®|(2 = B = BHIBol?IC4|? + la|(C1|By — Bol + BolC; — C1l)
2(2a + af +3 + 6y) (a1 + B) + 2(1 + )’ aZ+p)+3(1+2y)
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Proof: Since f € }Cf(a,ﬁ,y, IT), then there exist an analytic functions r,s: U —» U with ¢(0) =
$(0) =0, |x(z)| < 1 and |s(z)| < 1, the function P defined by (2) satisfied:

(Z/f (i?) <@> +-(f'@) +yzf"(2) - D = d(D1((2) - 1) (6)
and
wg'(w) g(w) "
+— (9 (w) +ywg"(w) = 1) = ¢p(w)[(s(w) — D]. (7
g(w)
Define the functions « and v as an analytic and have positive real parts in U by:
u(z) = 1tig; =1+ Lyz+ Lz% + - (8)
1) b + A0 9
v(w)—l_s(w)— + w0+ R0 + -, 9
which are equivalently:
_ 2
t(2) =z—+i=%llllz+<£2—%>zz+---l (10)
and
r—-1 1 £y°
S((U) Zv—ﬂzzl&la)+<&2—7>a)z+"'l. (11)
Now; in view of (6), (7), (10) and (11):
()~ (Z)) FL 0@ e '@ -1 = 9 |1 (557) - 1)) (12)
and
! 1
(‘”j(g’;)) (g“(“’)> += (0 (@) +y0g" (@) ~ 1 = $(v) [ < ~—)- 1)] (13)

It is clear that the series expansions for f and g given by (6) and (7) as follow:

: 1
(ié?) <f(z)> @D+ @D =D =1+ <1 e ;”) ay7

Vol. 72 No. 1 (2023) 994

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2094-0343
2326-9865

+<(,3+2)2(,3—1)a%+<2+ﬁ+3(1zzy)>a3>22+,,, (14)

wg' (@) (¢@\ 1 ,
(Q(w) )( ” > +E(ge(w)+ngw (w)—1)

:1—<1+,8+2(1;y)>a2w

s Kﬁz +58 N 6(1 + 2y) N 3) 2 <a(2 +p)+3(1+ 2)/)> aBl 5

2 a 2 a W™ —...
.(15)

By using (8) and (9) with (4) and (5):

vl ()

1 1 1 :
= E‘Boclﬁlz + EB:[C1L1 + EBocl LZ +

£y

+173 L% |22+ (16)
2 4 ov-2+~1

and

v—1
(@) lH ((’U’ + 1) B 1>l
1 1 1 /512 1 2| 2
= E'Boclfalw + EBlleal + EBOCl foy + BN + ZBoczkl w
T (17)

Now equating (14) and (16) and comparing the coefficients to z and z?2:

2(1 +)/) 1
1+p+ a;, = 5By(1 L, (18)
a 2
and
+ 2 -1 3(1+2
(B+2)(pB )a§+<2+ﬁ+ ( Y)>a3
2 a
1 1 £,%\ 1 5
= §B1C1L1 + EBOQ L, + > + ZBOCZLl . (19)

In the same steps (15) and (17)

_ (1 . 2(1; y)) a, = %BOlecl (20)
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2458 6(1+2 2+B)+3(1+2
(B B, 6 V)+3)ag_(“( B) + 3( yvas
2 (04 o
1 1 %
= EBlclkl + EBOQ kz + T
1 2
+ Z‘BOcZ/&zl . (21)
By (18) and (20) we obtain:
Ly =—# (22)
yields:
a|BoC4 |
<
| Ta(l+p)+2(1+7y) (23)
adding (19) and (21), we get:
1 1 2 2
2 jBOQ(Lz + /52) + ZBO|C2 - C1|(£1 + f%)
az = (24)
((ﬁz +38+2)+ M)
implies
& < 2a|Bo|(Cy + 1C2 — G4 . (25)
(a(B2+3B +2) +6(1+2y))
Next, to find the upper bound for |a;z|, by subtracting (21) from (19) :
a2+ p)+301+2y) 1 1
< . 2a; = a5 + EBOQ(LZ —#y) + 5731(:1(1:1 — #41).
By using Lemma 1 and (24):
2a|Bo|(Cy + 1C, — CG1D) a|Ci|(IBo + Byl) (26)

a3l < (a(B2+3B +2) +6(1 +2y)) * a2+pB)+3(1+2y)°
Now by (18) and (19), we find:

las| < || la®|(2 = B = BB, |*IC, |?
azl = a2+ £)+3(1+2y) 2(a(1+ﬁ)+2(1+]’))2
(27)

+ C11B1 — Bol + BolC, — G4,

applying Lemma (1) in ((26) and (27)), we get the result. The proof is complete.
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Taking B = 1 and y = 0, in theorem (1), we get the following result.
Remark 1: If a function f is given by (1) belongs to the subclass }[g (a,1,0,11), then:

zf'@\(f@\ 1

( @ )(7) + E(f (z)—1) <, 0(x(2) - 1) (28)
and,

wg' () (g@) 1 |

(g(w) )( ” >+E(g(a))—1) <, (s(w) —1). (29)

Corollary 1: If afunction f is given by (1) belongs to the subclass 3 (o, 1,0, IT), then:

] < mind UBoGl [aBo(G +1GC — G
o Sa+2” 3(a+1)

and

aBo(C; + 1 — GI)  alCylIBy + Byl |al(Ci|By — Byl + BolC; — C1|)}

|a3|Smin{ ,
3a+ 3 3a+ 3 3a+ 3

Corollary 2: : If afunction f is given by (1) belongs to the subclass }fgu,o,o, IT), then:

@, | < min |BoCyl [Bo(Cy +1C2 — CiD
2l = 3 4

and

Bo(Cy +1C = CD - G IBy + B4
+ ,
4 5
1B, 1% C4 | + (G1IBy = Bol + Byl = GID [
45 5

las| < min

3. The Subclass J3 (8, )
Definition 2: Leta function f € G, is said to be in the class J?(B,H), (0<B<1), ifit
satisfies the following quasi-subordination:

zf"(2) zf"@) |,

and,
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wg'' (w) wg'(w)
(1—3)( o 1) +B< @) T (w)) <q (@)~ 1), (31)
where g = f1
Theorem 2: If f is given by (1) belong to the subclass J?(B, IT), where 0 < 8 < 1, then:
. )IBoCil  |Bo(Cy + G — CiD)
|az|Smm{ > \/ 2= 3p) } (32)
and
las|
- (Bo(Cy +1C = GiI) | [GIBo + Byl |BollCGil | GiIBy — Bol + BolC, — (4
T T B i e ey Soe s D

Proof: Let f € (_‘]g(ﬁ, 1), and g = f~1, then there are analytic functions r,s: U —» U with t(0) =
$(0) =0,|x(z)] < 1and|s(z)| < 1, the function ¢ defined by (4) verify:

A=) (F+1) 48 ( ZEG sz”’(2)> = P@)[G:(2) ~ 1] (39)
and

a-p) (e v1) 4 p (G D 4029 =r@MIG@ - DI @9
Define the functions « and + as an analytic and have positive real parts in U by:
w(z) = 1 J_rzg; =1+ Lyz+ Lz + o
() = 1 J_rzg =14+ Byw+ Ayw? +

which are equivalently:

=2t (-5 s
W= 1 2T\ 2T )2

and
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s(w) = Z—: = %[klw + <k2 —%) w? + l
Now; in view of (6), (7), (10) and (11):
qu qu o) w— 1
(1—ﬁ)(7+1>+ﬁ<7+zzf )—.‘P(Z)lﬂ((m) —1>] (36)
and
wg' (W) wg'' (w) o) v—1
(1- ﬁ)( et 1) + ﬁ( oyt ) = P(w) ln <<0_+ 1) - 1)] (37)

It is clear that the series expansions for f and g given by (6) and (7) as follow:

1-p) <i + 1) +p <Zf 4 szm>

f f'
=1 -pB)+2a,z+ (6(1—B)as —4a3)z? + - (398)
B wg''(w) wg' (w) ) ,,,)
(9 ) (9,
=1-p)- 20w
+[4Q2 = 38)a? — 6(1 — B)as]w?—... . (39)

By using (8) and (9) with (4) and (5):

()

1 1 1 Ly 1 2|
=§BOC1LIZ+ §B1C1L1+EBOC1 L, +T +ZBOC2L1 z=+ - (40)

and

v—1
s |n((559)-1)
1 1 1 £2\ 1 2]
= EBocl%lw + EBlcl’kl + EBocl kz + T + ZBOCZ’&I w
+o (41)

Now equating (38) and (40) and comparing the coefficients to z and z2:
1
2a; = EBOC1L1 (42)

and
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, 1 1 £%\ 1 )
6(1—pBlaz —4a; = 531C1L1 + EBOQ L + N + ZBOC2L1 . (43)
In the same steps (39) and (41)
1
—2a2 = EBoclkl (44')
and
, 1 1 %) 1 )
4(2—-3p)a; —6(1—Plas = EB1C1/"/1 + EBOQ #, + B + ZBoczlﬁ : (45)
By (42) and (44) we obtain:
Ly =—# (46)
yields:
ja,] < 220 (47)
adding (43) and (45), we get:
1 1
5BoCi (L + #2) + 7 Bo(IC; — DT + £D)
a; = (48)
2 4(1-3p)
implies
Bo(Cy +1C; — C4])
2 o 20\ 2 1
=51 -38) (49)
Next, to find the upper bound for |as|, by subtracting (45) from (43) :
, 1 1
12(1 = Blaz — 43 —3pB)a; = EBOQ(Lz — #y) + §B1C1(L1 —#4).
By using Lemma 1 and (48):
Bo(Cy +1C — Gil) | 1GIIBy + B4
az| < + 50
Gl="ma e T ea-p 0
Now by (42) and (43) we find:
|BollCy| | CiIBy — Bol + BolC, — G4
az| < + 51
=305 61— ) GD
This the proof is completem
1000
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Corollary 3: If fis given by (1) belongs to the class ]g(o, IT), where 0 < $ < 1, then, we have :

|BoCil | Bo(Cy +1C2 — C4D)

a,| < min )
a| > >

and
| . {BO(Cl +1CG—GD  1GlBo + Byl BollCil  CiIBy — Bol + BolC, — C1|}
as| < min + ) + )
2 6 3 6
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