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Abstract 

In this paper, submitted defined of lattice metric space (LMS), and study basic 

properties to this space, after that provide set of new result about LMS and 

comparison with normed metric space. 
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1-Introduction 

Theory of lattice in the currentnotion was introduced be publishing Garrett Birkhoffs seminal book 

in 1940 since after that, it has been widely developed divisionthatis up to nowacquiescent new 

perceptions, applications and results. In its state as contemporary, there are several 

significanttheories of lattice applications, such as in algebraic non-classical logics semantics. 

In [1]. He introduced the definition of lattice metric function, and tie axiom of this function, and he 

definition of open and closed ball. In [2]she introduced the definition of vector 

lattice.In[3,5,8].They presented lattice norm space. In[4,10].They presented Banach space[6,11]. 

They Introduced Symmetric function. In[7,12]. They presented operators on Bochner space. In [13]. 

He introduced the defintion of bounded lattice and the properties of bounded lattice and some 

theory about it. In [14] He Introduced definition of lattice and the axiom of lattice.The metric space 

was important concept in modern Mathematics and it is generalizatdion to concept distance and 

convergence in real number .The LMS is generalization to norm metric space.our paper, we provide 

definition,proposition, remarks and theorem and example in the context of metric space and linear 

metric space. 

2-Vector lattice 

In this section we proved concept of vector lattice and basic proprties related to it.  
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Definition (2.1) [14]: 

A partially order set L is said to be lattice when each every element pair in Lhas infimum and 

supremum.  

Definition(2.2) [14]: 

Assume L is nonempty set closed under 2binarayoprationsnamed meet and goin defined,after that L 

is named lattice when the axiom as following hold in which 

𝑥,𝑦, 𝑧 𝜖𝐿. 

1. Commutative law  𝑥˄𝑦 = 𝑦˄𝑥 and 𝑥˅𝑦 = 𝑦˅𝑥 

2. Associative law (𝑥˄𝑦) ˄𝑧 = 𝑥˄ 𝑦˄𝑧 and 𝑥˅𝑦 ˅𝑧 = 𝑥˅(𝑦˅𝑧) 

3. Absorption law  𝑥˄ 𝑥˅𝑦 = 𝑥 and 𝑥˅ 𝑥˄𝑦 = 𝑥 

 

Definition(2.3) [14]: 

A lattice L is said to be complete lattice when eachL non-empty subset has an supremum and 

infimum.                          

 

Definition (2.4) [14]:A nonempty subset B of lattice L is known assub lattice when𝑖𝑛𝑓{𝑥, 𝑦},  

sup{x, y} ∈ B for wholex, y ∈ B. 

 

Instance (2.5) 

1. TheR set of all actual number withnormal relation ≤ is lattice, but not complete lattice. Since 

{𝑥  𝜖 𝑅: 𝑥 ≥  1} is a subset of R which has no supremum.The N set of whole natural number and the 

Q set of whole relation number are sublattices of R. Since𝑖𝑛𝑓 {𝑥, 𝑦},𝑠𝑢𝑝{𝑥,𝑦} 𝜖  𝑁 for all 𝑥, 𝑦  𝜖 𝑁, 

and 𝑖𝑛𝑓 𝑥,𝑦 , 𝑠𝑢𝑝{𝑥,𝑦} 𝜖 𝑄. 

2. Suppose p(x) is the set poweroff ofanonempty X set , so p(x) is the collection of wholeX subset , 

after that p(x) is partially ordered regarding the relation ⊆  if A,B ϵ  p(x) , after that inf{A,B} A ∩ B 

,sup{A , B} = A ∪ B ϵ P (x) . Hence p(x) is a lattice. F is the wholeactualset valued function 

defiened set X . After that F is partially ordered by relation. 

 3. let ≤   defiened by setting f ≤ g  if f(x) ≤ g(x)for wholexϵX. When f, g ϵ F , after that inf {f, g} 

=min {f(x),g(x)} , sup{f, g} = max {f(x),g(x)} .Hence F is a lattice . 

Definition(2.6) [14]: 

Whicheverdual statement in alattice (L, ∧, ∨) is defiened to be a steatmentwhich is gainedthrough ∧ 

and ∨ interchanging  

Example (2.7)  

The 𝑥˄ 𝑦˄𝑧 dual = 𝑥˅𝑥 𝑖𝑠 𝑥˅ 𝑦˅𝑧 = 𝑥˄𝑥 

Defintion (2.8 )[13]: 

A lattice L is named bounded when has highest element 1 and asmallest amount element 0  
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Example (2.9) 

1. Thep(s) as a set power under the intersection and union operation is a bounded lattice as long∅ is 

the smallest p(s)element, and the S set be the highest p(s)element. 

2. The+ve integer ℤ
+
set under the ≤ as normal order is unbound lattice as long it possesselement I 

nonetheless the highest element is not existing . 

Bounded lattice Properties 

When L is a lattice being bounded,after that for whicheverx ϵ L element,the identities as follow 

weget:1.𝑥˅1 = 𝑥 

2.𝑥˄1 = 𝑥 

3.𝑥˅0 = 𝑥 

4.𝑥 ˄ 0 = 0 

Theorem(2.10) 

 Every finite lattice is bounded. 

Proof: 

Let L  be any finite lattice , i.e  L={x1 ,x2  ,…xn } .Thus the highestlattice L  element be  x1∨ x2 …. . 

∨xn.Likewise, the minimumlattice L elementbe  x1 ∧x2 ….. ∧xn. As long the highest and minimum 

elements occur for lattice as finite. Therefore L be bounded. 

Definition(2.11) [13]: 

Conisder  anonempty  a lattice  L subset  L1, after that L1  is namedA L sublattice when L1 itself be 

alattice , i.e. The L operation such asx∨yϵL1  and  x∧ y ϵ L1at any time  x , y ϵ L1. 

Example (2.12) 

Deliberate all positive integer Z
+
 lattice under the of divisibilityoperation. The lattice Dn of wholen 

> 1 divisors is a Z
+
sublattice. Governwhole the D30sublattice which have aminimumof 4 elements  

D30  ={1,2,3,5,10,15,30} . 

Solution:  

The D30sub-lattice which have a minimum of 4 elements as following1.{1,2,6,30}  2.{1,2,3,30}  

3.{1,5,15,30}  4.{1,3,6,30}  5.{1,5,10,30}  6.{1,3,15,30}  7.{2,6,10,30} 

Defintion (2.13)[14]: 

Tow lattice L1  and L2  are named  isomorphism lattice whena bijection is there from  L1 to L2. Such 

as f:  L1→ L2,thus   f (x ∧ y) = f (x) ∧ f(y)and f (x ∨ y)=f(x) ∨ f (y)  for  wholex,y ϵ L1 
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Defintion (2.14)[2]: 

Let  L  be a linear space over field   F  we  say that  L is lattice if max {x,y}, min {x,y}  ϵ  L for  

wholex,y  ϵ L , Alinear is named avector lattice. 

Theorem (2.15) 

Assume L is aspace as linear after thatL is  avector lattice if  max {x,0}  ϵ  L  for  whole  X in  L 

Proof: 

Supposex,y  ϵ L , as long L is alinear  space, after that  x-y ϵ L, thus max {x –y ,0} ϵ L. Hence max 

{x,y}  ϵ L .Similartyx+y ϵ L  and max  {x+y,0 } ϵ L some  in  {x,y} ϵ L  

Definition(2.16) [13]: 

Suppose Vis a lattice as vector over ℝ, and V
+ 

be its +
ve

cone. Their functions expressed to V
+ 

from 

Vas following,for whichever x ϵ V, 

1. 𝑥+ = 𝑥 ∨ 0 . 

2. 𝑥− =  −𝑥 ∨ 0. 

3.𝑥⎹ =  −𝑥 ∨ 𝑥. 

It is simple to observe suchroles are well–definite. Further down are few3 functions assets: 

1. 𝑥+ = (−𝑥)− 𝑎𝑛𝑑 𝑥− =  −𝑥 + 

2.𝑥 = 𝑥+ − 𝑥−as long𝑥+ − 𝑥− =  𝑥˅0 −  −𝑥 ˅0 =  𝑥˅0 +  𝑥˄0 =                                    𝑥 +
0 = 𝑥.                                  

3.⎹𝑥⎸ = 𝑥+ + 𝑥−,as long  

𝑥+ + 𝑥− = 𝑥+2𝑥− = 𝑥 +  −2𝑥 ˅0 =  𝑥 − 2𝑥 ˅ 𝑥 + 0 = ⎹𝑥⎸.                           

4.𝐼𝑓 0 ≤ 𝑥,Afterthat𝑥+, 𝑥− = 0, andx⎹ = 0 . Also, 𝑥 ≤0, implies 𝑥+ = 0 

𝑥− = −𝑥and⎹𝑥⎸ = −𝑥.                                                                                                 

5.⎹𝑥⎹= 0 iff x =0 .⎹x⎹ =0 , after that (-x) ⋁ x = 0, thus x≤ 0 and –x ≤ 0 .Nonethelessafter that 0 ≤ x, 

so x = 0. 

6. 𝑟𝑥 = | 𝑟|| 𝑥|for any rϵR. If 0≤ 𝑟 , after that 0 ≤ r , after that 

⎹𝑟𝑥⎹ =  −𝑟𝑥 ∨  𝑟𝑥 = 𝑟  −𝑥 ∨ 𝑥 = 𝑟⎹𝑥⎹ = ⎹𝑟⎹⎹𝑥⎹Conversely,when r ≤ 0 , after that 

⎹𝑟𝑥⎹ =  −𝑟𝑥 ∨  𝑟𝑥 =  −𝑟  𝑥 ∨  −𝑥  = −𝑟⎹𝑥⎹ = ⎹𝑟⎹⎹𝑥⎹ .                              

7. ⎹𝑥⎹ + ⎹𝑦⎹ = ⎹𝑥 + 𝑦⎹ ∨ ⎹𝑥 − 𝑦⎹, as longLHS = (-x)  ⋁ x + (-y) ⋁ y = (-x –y)  ⋁ (z – y)  ⋁ (x +y) = RHS.
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8.⎹𝑥 + 𝑦⎹ ≤ ⎹𝑥⎹ + ⎹𝑦⎹, since⎹𝑥 + 𝑦⎹ ≤ ⎹𝑥 + 𝑦⎹ ∨ ⎹𝑥 − 𝑦⎹ =
⎹𝑥⎹ + ⎹𝑦⎹                                               

3-LMS 

Forsuch part, we proved the LMSconcept, and some properties of LMS, and we study basic 

properties of LMS,and after that we proved new result related with concept of LMS. 

Definition (3.1) [1]: 

  Assume X be anE set as non-empty isactualset numbers. A function 

 d :X× X →E 

Is named a metric function whenfulfills the axioms as follows: 

1.𝑑 𝑥, 𝑦 ≥ 0for all 𝑥,𝑦𝜖𝑋. 

2.𝑑 𝑥, 𝑦 = 0 iff 𝑥 = 𝑦 to the whole 𝑥,𝑦𝜖𝑋 

3.𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥 for all 𝑥,𝑦𝜖𝑋. 

4.𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥,𝑦 + 𝑑 𝑦, 𝑧 for all 𝑥,𝑦, 𝑧𝜖𝑋. 

(x,d,E) LMS. 

Theorem(3.2)                                                                                    Each metric space is metric 

oflattice . 

Evidence 

Assume (x,d) is a space as metric.Define d :X xX → E by  d(x,y)=x-y for wholex,y ϵ X  

Let x , y ϵ X ⇒ x − y ϵ X  becaue X is lattice vector space  .1 

⇒ x − y  ϵ X   d x , y ≥ 0 .                                                                                               

2. Let x , y ϵ X , after that d x , y  = 0 ⇔ x − y = 0 ⇔ x = y                                           

Suppose x, y ϵ X ⇒ d x, y = x − y = y − x = d y, x .                                                     

3. Suppose x, y, z ϵ X , after that x − y =  x − z +  z − y ≤ x − z ⇒ d x, y ≤ d x, z + d z, y  

Example (3.3) 

1. Assume X is a non-zero linear space,d is a discrete lattice metric function on  X , i .e. 

d(x,y)= 
1    𝑥 ≠ 𝑦
0  𝑥 = 𝑦

  

2.Assume  du : X × X  → E  be a function define as du (x,y)=|x-y| for wholex,y є X  after that dube a 

metric function E , and (E,du) named usual metric space . 
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3.Assumed:X × X  →E defin as d(x,y) = |x-y|+1 for wholex,yϵ X , not  to be ametric function on E . 

[1]:(3.4)Definition 

AssumeX is metric space 

1.The ball as open of center x0 ϵ X  and radius r > 0 signifiedthrough 

𝛽𝑟 𝑥0 and define as𝛽𝑟 𝑥0 =  𝑥𝜖𝑋:𝑑 𝑥, 𝑥0 < 𝑟 and the ball as closed  is    

𝛽𝑟 𝑥0 =  𝑥𝜖𝑋:𝑑 𝑥, 𝑥0 ≤ 𝑟 .                                                                                        

AnA subset of X is considered as being bounded if itbe present k >0 as |x| ≤ k for whole x ϵ A 

Remarks 

1.Every open ball and closed ball are nonempty sets because x0ϵ  βr (x0), 

 x0ϵ βr (x0). 

2.𝛽𝑟 𝑥0 = 𝑥0 + 𝛽𝑟 0 = 𝑥0 + 𝑟𝛽𝑖(0) 

Indeed 

𝛽𝑟 𝑥0 =  𝑥ϵ𝑋:𝑑 𝑥, 𝑥0 < 𝑟  𝑥0 + y: ⎹y⎹ < 𝑟 = 𝑥𝑜 +  𝑦: ⎹𝑦⎹ < 𝑟  

= 𝑥0 + 𝛽𝑟 0  

Also𝛽𝑟 0  𝑥 ∈ 𝑋: ⎹𝑥⎹ < 𝑟 =  𝑥 ϵ 𝑋:
⎹x⎹

𝑟
< 1 = 𝑟{𝑦: ⎹𝑦⎹ < 1 = 𝑟𝛽1 0  

Let  X  be metric space. An A as subset is considered as an set as an openwhenspecifiedwhichever 

point,     x ϵA , ithappens  r > 0 so, βr (x) ⊆A , and A  is named a closed  set  if  A
c
 is set as open. 

Definition(3.5)[1]: 

Let τ say that τ is anon X Topology when it fulfills the axioms as follow: 

.ϕ , 𝑥𝜖𝜏 1  

If𝐴1,𝐴2,𝐴3,… ,𝐴𝑛𝜖𝜏, after that  𝐴 𝑖𝜖𝜏.𝑛
𝑖=1 .2    

 .If𝐴𝜆𝜖𝜏 for all 𝜆𝜖 ∧, after that 𝐴𝜆 𝜖𝜏.3 

 Remark 

Since every metric lattice space is a spacetopology isnamed a metric topology on X , the space X is 

named the metric topological space. 
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Theorem(3.6) 

Assume (x,d) be a space as metric  

1. Allof X,∅besets beingopen in X. 

  𝐴𝑖𝑛
𝑖=1 will be set being open in Xafter that ,after thatset in X2.If A1,A2..An be open 

,after that 𝐴𝜆  will be set as open in x .                 .IfAλ ,∀ λ ϵ ∧ set as an open in X3 

Evidence: 

1.Let ∅ not  set as an open⇒  there exist  𝑥𝜖∅ ϶𝛽𝑟 𝑥 ⊆ ∅ ∀𝑟 > 0 

and this impossible because Ø don
,
t contain element ⇒Ø set as an open. 

As longβr (x) ⊆ X   ∀ x ϵ X  , r > 0  ⇒  X   set as an open . 

2.Let A1 , A2 …..An  set as open in X and let  𝑥𝜖  𝐴𝑖 ⇒ 𝑥𝜖𝐴𝑖∀𝑖= 1,2,… ,𝑛        

Since Ai  is  set as an open in X ∀i =1,2….n⇒After thatexist 𝑟𝑖 > 0 ∀𝑖 = 1,2. .𝑛  

𝛽𝑟𝑖  𝑥 ⊆ 𝐴𝑖∀𝑖= 1,2…                                                     So 

put 𝑟 = min 𝑟1, 𝑟2, . . 𝑟𝑛 ⇒ 𝛽𝑟 𝑥 ⊆ 𝛽𝑟 𝑥 ∀𝑖 = 1,2…𝛽𝑟(𝑥) ⊆ 𝐴𝑖  

𝛽𝑟 𝑥 ⊆  𝐴𝑖 ⇒  𝐴𝑖  set as an open in 𝑋. 

3.Let Aλ set as an open in X for all λ ϵ ∧ , and let 𝑥𝜖  𝐴𝜆𝜆𝜖∧ ⇒ 𝑥𝜖𝐴𝜆for some λ ϵ ∧ . 

Since Aλ set as an open in X ⇒ there exist r > 0 , so, βr (x) ⊆Aλ⇒ 

𝛽𝑟 𝑥 ⊆  𝐴 ⇒  𝐴𝜆  set as an open in𝑋.                                                                                

Formula(3.7) 

Suppose (x , d) isspace asmetric  

1.X , Ø   set as an closed  in X . 

2.if A1 , A2, ….An are set as closed in X , after that Ai is  set as an closed  in X . 

3.if Aλfor all λϵ∧ set as an closed  in X , after that 𝐴𝜆𝜆𝜖∧   is set as closed in X . 

Proof: 

1.As longØ
c
 =x , and since x  set as an open in x ⇒Ø

c
 set as an open in x ⇒ Ø  set as an closed  

in x, since x
c
 =Ø and  Ø  set as an open in x ⇒ x

c
 set as an open in x ⇒ x  set as an closed  in x . 

2.Let A1 ,A2 ….An  set as an closed  in x ⇒Ai
c
 set as an open in X for  every i=1 , 2 ,…⇒ 
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 Ai
c
 set as an open in X( 𝐴𝑖

𝑐)𝑐 =  𝐴𝐴𝑛  set as an closed  in X . 

3.let Aλ set as an closed  in X for each λ ϵ ∧⇒A
c
λ set as an open in x for every  

𝜆𝜖 ∧⇒  𝑐𝐴𝜆  

 set as an open in X ⇒ ( 𝐴𝜆)𝑐 =  𝐴𝜆  set as an closed  in X . 

Theoreom (3.8) 

Suppose (X , d1) , (Y , d2) isspace as metric , let f : X→ Yfunction as unbroken . When (z , dz) is a 

subset from space as metric (x , d1),after thatfz the function be limited on Z  will be unbroken. 

proof 

Let ft : Z →Z the function is limited f on Z⇒f(x) = fz(x) for whole x ϵ Z  

 Let  G  be  set as an open in Y, as long  f is  continues  function ⇒ f
-1

 (G) is  set as an open in X 

.⇒ 𝑧 𝑓−1 (𝐺) set as an open in Z 

Since  𝑓𝑧
−1 𝐺 = 𝑧 𝑓−1(𝐺)from defin fz ⇒ the set fz

-1 
(G) open in Z⇒fz is  countinous 

Definition(3.9)[1]: 

Suppose (X,d1) , (Y,d2) be space as metric we say that the function  

f :X → Y be a sequentially continuity at the  x0 pointϵ x , if each sequence {xn} in X soxn → x0 , 

after that f (xn) → f (x0) in Y 

Theorem (3.10) 

Suppose (X, d1), (Y, d2) isspace asmetric,after that thef function: X→ Yunbroken at the x0 ϵ X 

pointiff the function is sequentially continuity at the point  

Proof 

Suppose the f function is unbroken at the  x0 point,assume {xn} is asequnce in X , so xn→x0 

We must prove f(xn) → f (x0) : 

Let ϵ >0 , as long f is unbroken at the  x0 point⇒It exist δ > 0 , 

So, every𝑥𝜖𝑋,𝑑1 𝑥, 𝑥0 < 𝛿 ⇒ 𝑑2(𝑓 𝑥 ,𝑓(𝑥0) < 𝜖 

Since xn → x0 ,  δ > 0 ⇒ there exist k ϵ ℤ
+ 

so d1 (xn , x0) <δfor every   

𝑛 > 𝑘, 𝑡ℎ𝑒𝑛 𝑑2 𝑓 𝑥𝑛 ,𝑓 𝑥0  < 𝜖∀ 𝑛 > 𝑘                                                                

From this we prove f(xn) ⇒f(x0) , that mean the ffunctionbe sequentially continuity at  x0 pointϵ x . 
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Conversely,assume the f function be sequentially continuity at the  x0 point ϵx and we prove f 

unbroken at  x0 point. 

now we prove by contradiction assume f is not unbroken  at  x0 point⇒ there exist ε>0 so, δ >0 , 

there exist x ϵ X and 𝑑1(𝑥𝑛 , 𝑥0) < 𝛿 ⇒ 

𝑑2 𝑓 𝑥𝑛 ,𝑓 𝑥0  ≥ 휀 ⇒ ∀𝑛𝜖ℤ+, 𝑡ℎ𝑒𝑟𝑒𝑥𝑖𝑠𝑡𝑥𝑛𝜖𝑋 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑1 𝑥, 𝑥0 <
1

𝑛
⇒ 𝑑2 𝑓 𝑥 ,𝑓 𝑥0  ≥ 휀                                                        

so that mean𝑥𝑛 → 𝑥0𝑖𝑛 𝑋 𝑏𝑢𝑡 𝑓(𝑥𝑛) ↛ 𝑓(𝑥0)in Y and this contradiction ⇒ f unbroken at x0 . 

 Definition (3.11) [1]: 

Alattice metric linear space X is considered as normablewhen the lattice  metric function is induced 

by a metric. 

Theorem(3.12) 

Assume X isspace as metric  

 .Eachball as open in X is  set as an open  .1  

  .2.Every ball as closed in X is closed  

AnX subset is open iff it beopen balls family union .3  

 .Any finite X subset is closed  .4  

Evidence: 

. Suppose x0 ϵ X and  r >0 . To prove βr (x0) is  set as an open 1  

Let 𝑥𝜖𝛽𝑟 𝑥0 ⇒   x − 𝑥0 < 𝑟 ⇒ 𝑟 −   r − 𝑥0 > 0                                                   

put𝑟1 = 𝑟 −  𝑥 − 𝑥0 ⇒ 𝑟1 > 0. To prove𝛽𝑟1 𝑥 ⊆ 𝛽𝑟 𝑥0  

𝐿𝑒𝑡 𝑦𝜖𝛽1 𝑥 ⇒  𝑦 − 𝑥 < 𝑟1 ⇒  𝑦 − 𝑥 < 𝑟 −  𝑥 − 𝑥0 ⇒ |y − x| + |x − 𝑥0|     < 𝑟 

𝑆𝑖𝑛𝑐𝑒  𝑦 −  𝑥0 ≤ 𝑦 − 𝑥 +  𝑥 − 𝑥0 ⇒ 𝑑 𝑦, 𝑥0 < 𝑟                                                

𝑦𝜖𝛽𝑟 𝑥0 ⇒ 𝛽𝑟 𝑥0 𝑖𝑠𝑜𝑝𝑒𝑛 𝑠𝑒𝑡.                                                                                     

2.𝐿𝑒𝑡 𝐴 = (𝛽𝑟(𝑥0))𝑐 .𝑇𝑜 𝑝𝑟𝑜𝑣𝑒 𝐴 𝑖𝑠 𝑜𝑝𝑒𝑛       

𝑠𝑖𝑛𝑐𝑒 𝛽𝑟 𝑥0 =  𝑥ϵX: ⎹x − 𝑥0⎹ ≤ r , after that A =  xϵX: ⎹𝑥 − 𝑥0⎹ > 𝑟  

𝐿𝑒𝑡𝑥ϵA ⇒ ⎹x − 𝑥0⎹ > 𝑟.𝑃𝑢𝑡 𝑟2 = ⎹x − 𝑥0⎹ − 𝑟 ⇒ 𝑟2 > 0. To prove                    
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𝛽𝑟2 𝑥 ⊆ 𝐴                                                                                                      

𝐿𝑒𝑡 𝑦  𝛽𝑟2 𝑥 ⇒ ⎹𝑦 − 𝑥⎹ < 𝑟2 ⇒ ⎹𝑦 − 𝑥⎹ < ⎹𝑥 − 𝑥0⎹ − r ⇒ ⎹x − 𝑥0⎹ − 

⎹𝑦 − 𝑥⎹ > 𝑟                                                                                                     

Since⎹𝑥 − 𝑥0⎹ ≤ ⎹𝑥 − 𝑦⎹ + ⎹𝑥 − 𝑥0⎹ − ⎹𝑦 − 𝑥⎹ ≤ ⎹𝑦 − 𝑥0⎹ 

⇒ ⎹𝑦 − 𝑥0⎹ > 𝑟 ⇒ 𝑦ϵ 𝐴 ⇒ 𝛽𝑟2(𝑥) ⊆ 𝐴 ⇒ 𝐴 is an  set as an open⇒A
C 

 

= 𝛽𝑟 𝑥0 is  set as an closed . 

3. If  A = Ø the proof ends . If A ≠ Ø. 

Suppose A is open in X,after that for all x є A , there is rx>0 so, 

𝐵𝑟𝑥  𝑥 ⊆ 𝐴 ⇒ 𝐴 ⊆  𝐵𝑟𝑥
𝑥𝜖𝐴

 𝑥 ⊂ 𝐴 ⇒ 𝐴 =  𝐵𝑟𝑥
𝑥𝜖𝐴

 𝑥 ⇒ 𝐴 

  is the open balls union. 

Conversely,assume: A be the open balls union  

Since every open ball is set as an open, and the set as an openunion is set as an open,after thatA is 

set as an open. 

4. Let  A ={a}. To prove  A  is closed  

𝐿𝑒𝑡 𝑥𝜖𝐴𝑐 ⇒ 𝑥 ≠ 𝑎 ⇒  𝑎 − 𝑥 > 0.𝑃𝑢𝑡 𝑟 = 𝑑 𝑎, 𝑥 ⇒ 𝑟 > 0                                  

As long a − x ≥ r ⇒ a ∉ 𝛽𝑟 𝑥 ⇒ 𝛽𝑟 𝑥  𝐴 = ∅ ⇒ 𝛽𝑟 𝑥 ⊂ 𝐴𝑐 ⇒ 𝐴𝑐 

Is  set as an open, after that A is closed 

Let  B be  a finite set if  B = Ø , the  end proof , if B ≠ Ø , after that 

 B = {b1,….,bn}, 

Since {b1} is closed  for everyi=1,2,….., n , after that B =  {bi}  is  closed. 

Definition (3.13) [1]: 

Assume Xisspace as metric, and let  A ⊆  X  

1. Wholesets as an openunion in X contained in A is named theA interior, signified by int (A).  

i.e.  𝑖𝑛𝑡 𝐴 =  {𝐵 ⊆ 𝑋:𝐵𝜖𝑇, 𝐵 ⊆ 𝐴}. Thus int (A) is the biggest set as an open contained in A. 

And 𝑖𝑛𝑡 𝐴 ⊆ 𝐴. Hence 𝑖𝑛𝑡  𝐴 =  𝑥: 𝜖𝐴:∃𝑟 > 0,𝛽𝑟 𝑥 ⊆ 𝐴 , (𝑥𝜖𝐴:∃𝑟 > 0, 
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𝑥 + 𝑟𝐵1 0 ⊂ 𝐴}                                                                                                             

2-All the set as an closed s intersection have A is named the A closuresignified by Ā. 

i.e.𝐴 =  {𝐵 ⊆ 𝑋:𝐵𝑐𝜖 𝑇,𝐴 ⊆ 𝐵}. Thus Ā is the least set as an closed containing A , and A ⊆ Ā. 

Hence𝐴 =  𝑥𝜖𝑋:∀ 𝑟 > 0,∃ 𝑦𝜖𝐴 ϶ 𝑥 − 𝑦 < 𝑟 ,𝐴 =  (𝐴 + 𝑟𝐵1

𝑟>0

(0))                

3.Anx ϵ X point isnamed a limit A point whenevery set as an open G in X so, x ϵ G and A ∩ (G 

|{x}) ≠ Ø . All limit A points set is denoted by Ά and isnamed the derived set of  A . 

𝐻𝑒𝑛𝑐𝑒 Ἀ =  𝑥𝜖𝑋:∀ 𝑟 > 0, ∃ 𝑦𝜖𝐴 ϶ 𝑦 ≠ 𝑥,  𝑥 − 𝑦  < 𝑟  

4. The boundary of a subset A is defined as the difference between the closure and the subset A 

interior, i.e. ꝺ (A) = Ā ∩ (int (A))ᶜ .Hence 

ꝺ 𝐴 =  𝑥𝜖𝑋:∀ 𝑟 > 0, ∃ 𝑦𝜖𝐴 , 𝑧𝜖𝐴𝑐  ϶  𝑥 − 𝑦 < 𝑟 ,  𝑥 − 𝑧 < 𝑟  

5.The A exterior is the complement of Ā and signified by ext (A) , i.e. 

𝐸𝑥𝑡  𝐴 = (𝐴)𝑐   .                                                                                                               

Theorem (3.14) 

Suppose X be space asmetric .If  M  is a subspace of  X  , after that  M  is subspace of X. 

Proof: 

𝑆𝑖𝑛𝑐𝑒 0 𝜖 𝑀 ⇒ 𝑀 ⊂ 𝑀 ⇒ 0 𝜖 𝑀, 𝑠𝑜 𝑀 ≠ ∅                                                                   

Let 𝑥,𝑦 𝜖 𝑀 and 𝛼,𝛽𝜖𝐹 . To prove 𝛼 𝑥 + 𝛽𝑦 𝜖𝑀                                                         

Let 𝑟 > 0                                                                                                                    

1.If 𝛼 ≠ 0 and 𝛽 ≠ 0 , after that
𝑟

2 𝛼 
and

𝑟

2 𝛽 
> 0 

There exist  a , b ϵ M  so 

| 𝑥 − 𝑎 | <
𝑟

2 𝛼 
and| 𝑦 − 𝑏| <

𝑟

2 𝛽 
 

Since M is subspace and a ,b ϵ M , after that α a + β b ϵ M 

 α𝑥 + 𝛽𝑦 − (𝛼𝑎 + 𝛽𝑏)| = 𝛼 𝑥 − 𝑎 + 𝛽 𝑦 − 𝑏  

|(𝛼𝑥 + 𝛽𝑦) −  𝛼𝑎 + 𝛽𝑏   ≤  α   x − a +  β|| y − b | <  α  
𝑟

2 α 
+ |β |

𝑟

2 β 
= r 

⇒ αx + βy ϵ M.       
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 -If 𝛼 = 0 and 𝛽 = 0, after that 𝛼𝑥 + 𝛽𝑦 = 0 𝜖 𝑀 ⊂ 𝑀2 

-If 𝛼 = 0 𝑜𝑟 𝛽 = 0, after that 𝛼𝑥 + 𝛽𝑦 = 𝛽𝑦 𝑜𝑟 𝛼𝑥 + 𝛽𝑦 = 𝛼𝑥, so 𝛼𝑥 + 𝛽𝑦 𝜖 𝑀 3  

Hence M  is subspace of  X. 

Definition(3.15) [1]: 

Assume X is aset as non-empty. A series in X is any function from  ℕ  (all natural numbers set) into 

X. When ƒ is a series in X , the image ƒ (n) of  n ϵ ℕ is usually , signified by xₙ . It is ordinary to 

signify the classical sequence of the symbol {xₙ}.So, {xₙ} the actual numbers sequence if X =E. 

Sometime, we write it as {x₁ ,x₂ ,……,xₙ,……}.The n image xₙ  is named the nth term of the 

sequence . 

Note that, there is difference between the sequence and its range . For example ,the rang of the 

order {(-1)ⁿ }is {xₙ :n ϵ ℕ}={-1,1}but the sequence is {xₙ}={(-1)ⁿ} ={1,-1,1,-1 ….}. 

Definition (3.16)[1]: 

An{xₙ} sequence in space asX metric isconsidered as 

1.Converge to the x ϵ X point  ,Whenlim d (x n ,x ) =0 ,such as. When for each ɛ >0, it be present as 

k ϵ ℤ
+
 so, d (xₙ, x) <ɛ for whole n ≥ k .  and we write limxₙ→x  or xₙ =x  as  n→∞ it tracks that xₙ 

→x  iff  d(xₙ , x)→0 

2. Sequence of Cauchyin X, when for every ɛ > 0 

, it be present as k ϵ ℤ
+
   so, d(xₙ, xₘ) < ɛ for all  n,m  ≥ k 

4. Bounded,when there is M > 0 so, |x ₙ|  ≤  M for all n. 

Theorem (3.17) 

AssumeX is a lattice normed space and let A ⊆  X  

1. Limit point of sequence is unique. 

2. Every convergence lattice arrangement is  sequence of Cauchy, nevertheless the converse not 

correct. 

3. Eachsequence of Cauchy is bounded, lattice but the converse not true  

4.x ϵ Ā when f   it be present as anarrangement {xₙ} in A so xₙ→x 

5. When a sequence of Cauchy in X has a convergent sub-sequence, after that the sequence is 

convergent. 

6. When {yₙ} and {xₙ} are sequences of Cauchyin X,after that d (xₙ-yₙ) is convergent in  E 
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Proof: 

1.Assume {xₙ} is anX  sequence so, xₙ→x and xₙ→y  

If 𝑥 ≠ 𝑦, 𝑡ℎ𝑒𝑛 𝑑 𝑥 − 𝑦 > 0. put  𝑥 − 𝑦 = 휀 ⇒ 휀 > 0                                            

Since xₙ→x , after that it be present as k₁ ϵ ℤ
+ 

 so |xₙ-x| <ɛ

2
  for all n > k₁ 

Also since xₙ → y , after that it be present as k₂ ϵ ℤ
+ 

 so |xₙ-y| <휀

2
   for wholen > k2 

 𝑥𝑛 − 𝑥 <
휀

2
 , 𝑑 𝑥𝑛  ,𝑦 <

휀

2  
 Taking k = max {k1 , k2} , we get 

For whole  n > k 

ε = 𝑥 − 𝑦 ≤  𝑥𝑛 − 𝑥 + 𝑥𝑛 − 𝑦 <
휀

2
+

휀

2
= 휀 .                                                              

This contradiction . Hence x = y 

2. Assume {xn} be a converge X sequence, after that it be present as  x ϵ  X so 

xn→ x   suppose  ɛ > 0 

For whole n >k Since xn→ x , after that it be present as  k ϵ ℤ
+ 

 so, |xn –x| <
휀

2
 

If 𝑛,𝑚 > 𝑘, after that 𝑥𝑛 − 𝑥 <
휀

2
 , |𝑥𝑚 − 𝑥| <

휀

2
 

|𝑥𝑛 − 𝑥𝑚 | ≤ |𝑥𝑛 − 𝑥| + |  𝑥𝑚 − 𝑥 | <
휀

2
+

휀

2
= 휀                                                         

Therefore {xn} is sequence of Cauchyin X. 

3. Let {xn} be a sequence of Cauchy in  X 

Let ɛ = 1 , after that it be present as k ϵ ℤ
+
 so, |xn-xm| < 1 for whole  n , m > k 

After that, for all n≥ 𝑘 ,  𝑥𝑛  = |𝑥𝑛 + 𝑥𝑘  +𝑥𝑘 ≤ 𝑥𝑛 − 𝑥𝑘 | + |  𝑥𝑘  | < 1 + |𝑥𝑘  |     

Take r=max {| 𝑥1| , |𝑥2| , . . , |𝑥𝑘−1| ,1 + |𝑥𝑘 | }, 𝑡ℎ𝑒𝑛 |𝑥𝑛 | ≤ 𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 

  Therefore {xn} is a sequence being bounded in  X  

 . Suppose x ϵ Ā4 

Since Ā = A ∪ A', after that x ϵ A ∪ A' ,either x ϵ A or x ϵ  A'  

If x ϵ A , after that {x} is a sequence in A so  x 

Or x ϵ A' ,after that A ∩ (Br(x) ⎹{x}  ≠ Ø  
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ℤ
+
 For whole n  (x)| {x}Xn ϵ A ∩ (β 

After that {xn} is a sequence in A .TO prove xn → x 

x ϵ Ā When f  it be present as a sequence {xn} so, xn→ x 

 < ɛ Let ɛ > 0 , after that there is k ϵ ℤ
+
so

1

𝑘
 

Since𝑥𝑛  ϵ β  𝑥  𝑥𝑛 − 𝑥  <
1

𝑛
⇒ for whole 𝑛𝜖ℤ+ 

Let 𝑛 > 𝑘 ⇒
1

𝑛
<

1

𝑘
⇒ | 𝑥𝑛 − 𝑥|  <

1

𝑘
< 휀 ⇒ 𝑥𝑛 →x 

Conversely,consider {xn} is a sequence in A so, xn→x 

To prove x ϵ Ā , i.e.x ϵ A ∪A'.If  x ϵ A after that x ϵ Ā 

Or x  A , Iet G be set as open in   X  so,  x ϵ G , after that there is r >0 

So Bᵣ (x) ⊆  G  

Since r >0 and xₙ→x  after that there is k ϵ ℤ
+
so|xₙ-x| <r for whole n > k 

⇒xₙ ϵ Bᵣ (x)for all n >k , Since xₙ ϵ A for whole n ϵ ℤ
+⇒A ∩(Bᵣ (x) |{x}) ≠ ∅ 

Since𝐵𝑟 𝑥 ⊂ 𝐺 ⇒ 𝐴 ∩ (𝐺| {𝑥}) ≠ ∅ ⇒ 𝑥𝜖A′ ⇒ xϵA 

5. Suppose {xₙ} is a  sequence of Cauchy in a space as metric (X , d) and suppose {xi ₙ}be a 

subsequence of {xₙ}converging to 𝑥0𝜖 𝑋, 𝑖. 𝑒. 𝑥𝑖𝑛 → 0   .To prove  xn →x0 

Let ɛ >0 , since {xin  }is converge  ⇒{xin }is a  sequence of Cauchy , after that there is 

𝑘𝜖ℤ+so| 𝑥𝑖𝑛 − 𝑥𝑖𝑚 | < 휀 for all  n , m ≥ k 

Since {im } is an increasing strictly positive integers sequence  

Making m→∞ , we have 𝑑 𝑥𝑛 , 𝑥0 < 휀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑘 ⇒ 𝑥 → 𝑥0 

Definition(3.18)[1]: 

A space as metric X is complete if eachsequence of Cauchy is converges the point x ϵ X 

Theorem (3.19) 

Eachcomplete space metric subspace is complete when f is closed  

Evidence 

Assume M is a sub-space of a complete space as metric X 
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Suppose that M   is complete. To prove M is closed 

Suppose x ϵ M,after that a {x n}sequence in M so, xₙ → x, hence {xₙ} be 

a sequence of Cauchy in M ,  since  M  is complete , thus is y ϵ M as long x n → y , but the limit is 

unique ,𝑦 = 𝑥 ⇒ 𝑥𝜖𝑀 ⇒ 𝑀 ⊆ 𝑀 𝑏𝑢𝑡 𝑀 ⊆ 𝑀,after thatM  =  M . Hence M isclosed. 

Conversely, suppose that Mbe closed  

Assume {xₙ} be a  sequence of Cauchy in M , as long𝑀 ⊆ 𝑋 ⇒ {𝑋𝑛}be a  sequence of Cauchy in  X 

as long  X is complete , after that there is  x ϵ X so   xₙ → x , 

since  xₙ ϵ M , after that  x ϵ M  Since  M is closed , 𝑡ℎ𝑒𝑛 𝑀 = 𝑀 ⇒ 𝑥𝜖𝑀 ⇒ {𝑋𝑛} 

converge  in  M , after that  M is complete space . 

Theorem (3.20) 

Suppose{yₙ} and {xₙ} are 2 sequences in space as metric X so,   xₙ→ x  and  yₙ→y  

1.𝑥𝑛  + 𝑦𝑛 → 𝑥 + 𝑦 

2.𝜆𝑥𝑛 → 𝜆𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ϵ F 

3.| 𝑥𝑛 | → | 𝑥|  

4.| 𝑥𝑛 − 𝑦𝑛| → | 𝑥 − 𝑦|  

5.If {𝜆𝑛}is a sequence in  F so𝜆𝑛 → 𝜆 , after that𝜆𝑛𝑥𝑛 → 𝜆𝑥 

proof: 

1.  𝑥𝑛 + 𝑦𝑛 −  𝑥 + 𝑦  =   𝑥𝑛 − 𝑥 +  𝑦𝑛 − 𝑦  ≤  𝑦𝑛 − 𝑦 ≤  𝑥𝑛 − 𝑥 + | 𝑦𝑛 − 𝑦|  

2.𝜆𝑥𝑛 → 𝜆𝑥 

|λ𝑥𝑛 | = | 𝜆| | 𝑥𝑛 | , 𝑠𝑖𝑛𝑐𝑒| 𝑥𝑛 |  →0  and  n→∞,  

after that λ |xn| → 0 as n→∞ 

  λ𝑥𝑛  →  𝜆𝑥   

λ𝑥𝑛 → 𝜆𝑥                                                                                                                  

3.Since  𝑥𝑛  − x  ≤  𝑥𝑛 − 𝑥  and| 𝑥𝑛 − 𝑥| →0 as n→∞, after that 

| |𝑥𝑛  | − | x | | →0 as n→∞,i.e. | 𝑥𝑛 |  → | 𝑥| 

4. | |𝑥𝑛 − 𝑦𝑛  − x − y| | ≤ | (𝑥𝑛 − 𝑦𝑛  − x − y ≤ 𝑥𝑛 − x + 𝑦𝑛 − y |  

Since  𝑥𝑛 − 𝑥 → 0 and  𝑦𝑛 − 𝑦 → 0 as n → ∞,after that  𝑥𝑛 − 𝑦𝑛 | 

−  x − y → 0 as n → ∞                                                                                             

      5. |𝜆𝑛𝑥𝑛 − 𝜆𝑥 = 𝜆𝑛𝑥𝑛 − 𝜆𝑛𝑥 − 𝜆𝑥 = 𝜆𝑛 𝑥𝑛 − 𝑥 +  𝜆𝑛 − 𝜆 𝑥  ≤ 𝜆𝑛 |  

 𝑥𝑛 − 𝑥 +  𝜆𝑛 − 𝑦   x  
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Since  𝑥𝑛 − 𝑥 → 0 and  𝜆𝑛 − 𝜆 → 0as n  →∞ ,after that| 𝜆𝑛𝑥𝑛 − 𝜆𝑥|  as n→∞.    
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