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1. Introduction

Huckel theory proposed a concept on energy in a graph which deals with conjugated carbon
molecule. 7 - electron energy which is evaluated, whose value agrees with the energy of a
graph. In discrete structures, adjacency matrix has many graph polynomials based on
matrices such as degree sum matrix, distance matrix, Laplacian matrix, adjacency matrix. In
this paper, generalized eccentricity k™ power sum matrix of G has been newly introduced.

Let G = (V(G), E(G)) be a finite, simple and undirected graph with |[V(G)| = m vertices and
|E(G)| = n edges. Let the points of G be labeled as v,, v,,..., vi,. The distance d(x, y) between
any two vertices x and y in a graph G is the length of the shortest x — y path. Eccentricity of a
vertex is defined as the maximum distance between a vertex to all other vertices. The
adjacency matrix of G is a m X m matrix whose (s, t)-entry is equal to one if the vertex vy is
adjacent to vy, or else it is equal to zero [7].

In 1978, the concept energy of a graph G originated by I. Gutman [6]. Let G be a graph which
1,ifViV]' €EE

containing m points and n edges and C(G) = (cjj) = {0 otherwise

In 2018, B. Basavanagoud, E.Chitra, the concept of Degree Square Sum (DSS) matrix had
been defined. Let uy,u,, ..., uy be the points of a graph G and let dj = degs(u;). The Degree
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Square Sum (DSS) matrix of G is an m x m matrix represented by DSS(G) = [dssj] and
whose elements are determined as dss;, = djz + d,%,if j # k and zero otherwise [3].

In 2020, D.S. Revankar, M.M. Patil, B.S.Durgi and S.R.Jog, have defined the eccentricity
sum matrix. A simple graph G which containing m vertices labeled as v;,v,, ..., vy,. Let gj be
the eccentricity of v; , j = 1, 2, 3..., m and ES(G) = [ajj] is called the eccentricity sum matrix
of a graph G, a;; = e;+ey,if i # j and zero otherwise [9].

Motivated by these papers, the concept of the generalized eccentricity k™ power sum matrix
GEKS(G) of G has been imported and obtained the characteristic equation PGES(G) (A) of
the generalized eccentricity k™ power sum matrix of G.

Let G be a finite, simple and undirected graph with n vertices and m edges. For any integer
1<k < oo, agraph G whose matrix is denoted by GEXS(G) = [ge*sij] is determined as

eX(v;) + eX(vy),if i #]j

K
eKs.: =
8¢ Sij { 0 , otherwise.

The characteristic polynomial of the generalized eccentricity k" power sum matrix
GEXS(G) is expressed by PGEXS(G)(A) = det (Al, — GEXS(G)), where I, is eccentricity n™
square sum unit matrix of order nxn and trace(GE*S(G)) = 0. The characteristic roots of
PGEXS(G)(A) are A4, A,, ..., A, in @ non-increasing order A;> A, > --- > A, where A, is largest
and A, is smallest eigenvalues. If G has A, A,, ..., Ay, distinct eigenvalues related to
multiplicities m,, m,,....m, then the spectrum can be written as Spectra(G) =
()\1 Ay Ay
m; 1mp v Iy
by EGEXS(G) and it is determined as summing-up the absolute values of the characteristic
roots of G, EGEXS(G) = Y, |A;|. Generalized eccentricity k™ power sum energy of well-
known graphs has been obtained.

). The generalized eccentricity k™ power sum energy of G is indicated

2. Main Results

In this section, generalized eccentricity k™ power sum energy of some graphs has been
obtained.

Theorem 2.1: If a connected graph G containing n points and e(v;) =e, 1 <i < n, then the
characteristic roots of GEXS(G) are — (2e)* of multiplicity (n —1) and (n — 1)(2e)* of
multiplicity 1 respectively, and EGEXS (G) = 2(n — 1) (2e)X.

Proof: Let v,,v,, ..., v, be the vertices of a connected graph G and e(v;) =e,1 <i<n.

e (vp) +e*(vy),if i #j _ { (2e)K,if i #j

Then, geXs;; = { _
0 , otherwise. 0 , otherwise.

Then PGEXS(G)(A) = det (Al, — GEXS(G)
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A —e)X ... —Qe)f —Re)X —(2e)k .. —(e)k
-1 1 0 0 0 0
(A4 (2e)n-1 [—1 0 1 0 0 0
(A4 (Ze)") -1 0 0 1 0 0
-1 0 0 0 1 0
-1 0 0 0 0 1

PGE'S(G)(M) = (A— (2&)*(n — 1) + (2e))1

The characteristic roots of GEXS(G) are — (2e)X of multiplicity (n — 1) and (n — 1)(2e)X of
multiplicity 1 respectively. Thus, EGEXS (G) = 2(n — 1)(2e).

Hence, if a connected graph G containing n points and e(vi) = e, 1 <i<n, then the
characteristic roots of GE*S(G) are — (2e)* of multiplicity (n — 1) and (n — 1)(2e)¥ of
multiplicity 1 respectively, and EGEXS (G) = 2(n — 1) (2e)X.

Corollary 2.2: If a complete graph K, ( n>2) then EGE*S(Kn) =4(n — 1).
Proof: Let K, be the complete graph containing n vertices for all n > 2.
Since K,, is a connected graph withe(v;) =e=1,1<i<n.

Then, geks;; = {1k +1Kifi#j _ {2(1)k =2, ifi#]
) 1] - —_

0 , otherwise. 0 , otherwise.

By theorem 2.1, The generalized eccentricity k' power sum characteristic roots of K,, are —2
of multiplicity (n— 1) and 2(n — 1) of multiplicity 1 respectively. Thus, EGE¥S(K,) =
4(n —1).

Hence, if a complete graph K, (n > 2) then EGE*S(Ky) = 4(n — 1).

Corollary 2.3: If a complete bipartite graph (K, ,) then EGE*S(K, ) = (2%*! (m + n — 1),
forall m,n # 1.

Proof: Let G be the complete bipartite graph (K, ,) which containing (m+n) vertices for all
m,n #* 1.

Since K, ,, connected graph withe(v;) =e=2,1<i<m+n.

2K + 2K if | ¢j:{2(2)k = (4)X, ifi#j

Then, geXs:; ={
gersi 0 , otherwise. 0 ,otherwise.

By theorem 2.1, The generalized eccentricity k™ power sum characteristic roots of K, , are —
(4)¢ of multiplicity (m +n—1) and (m +n—1) (4)* of multiplicity 1 respectively, and
EGE*S(Kyn) = 2(m 4+ n — 1) (4)X. Thus, EGE*S (G) = (2)*** (m + n — 1).

Hence, if a complete bipartite graph Ky, , then EGE*S(Kmn) = (2)%*! (m + n — 1), for all

m,n * 1.
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Theorem 2.4: If a connected graph G which containing n vertices and e(vy) = 1, e(v;) = 2,
2 <i<n, then the generalized eccentricity k™ power sum eigenvalues of G are —2k*1,
(n —2)2K +/(n2 — 4n + 4)22K + (n — 1)(2k + 1)2 and (n —2)2k -
J(n2 —4n + 4)22k + (n — 1)(2k + 1)2  with multiplicities (n —2), 1 and 1 respectively,
and EGES (G) = (n — 2)25*! + 2(n — 2)2K.

Proof: Let v,,v,, ..., v, be the vertices of a connected graph G and e(v;) = 1, e(v;) = 2, 2<
i<n.
ef(vy) +eX(vp),if 1#j (2K 4+ 1,if 1 #j
Then, ge*s;j = { ek(v;) + eX(vy),if i #j =4 2K+Lif i # ]
0 , otherwise 0 , otherwise

Then PGEXS(G) () = det (AI, — GEXS(G))

=\ +
A =+ .. =K+ —@K+1) —@k+1) .. —k+D
-1 1 0 0 0 0
gk+iyn-2 (=1 0 1 0 0 0
-1 0 0 1 0 0
-1 0 0 0 1 0
-1 0 0 0 0 1

= —(A+ 2KHN-"2 (22 - ((nm— 2)2KH 1) — (2K + 1)?(n-1))

= —(A+ 250" A+ (n—2)2K + /(0% —4n + 4)2 + (n— D25 + 1)? }

=—(A+ 2" A+ (n—2)2K+ /(0% — 4n + 4)2% + (n— D(2* + D?}

{A+Mm—2)2K—/(n2 —4n +4)22k + (n — 1)(2k + 1)? }
Thus, generalized eccentricity k™ power sum characteristic roots of G are —2K*1, (n—
2)2% +,/(n2 — 4n + 4)22k + (n — 1)(2k + 1)2and (n —2)2k —
J(n2 — 4n + 4)22k + (n — 1)(2k + 1)2 with multiplicities (n — 2), 1 and 1 respectively.

Thus, EGEXS(G) = (n—2) 2K*1 + 2(n — 2) 2K,
Hence, if a connected graph G which containing n vertices and e(v,) = 1, e(v;) =2, 2<i < n,
then the generalized eccentricity k™ power sum characteristic roots of G are —2X+1, (n —
2)2% +/(n2 — 4n + 4)22k + (n — 1)(2k + 1)2 and (n—2)2% —
J (02 — 4n + 4)22k + (n — 1)(2k + 1)2 with multiplicities (n —2), 1 and 1 respectively,
and EGEXS (G) = (n — 2)2K*! + 2(n — 2)2k.

Corollary 2.5: If a star graph Sn (n > 2) then EGEXS(Sn) = (n — 2)2K+1 4+ 2(n — 2)2K.
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Proof: Let Sn be the star graph with n vertices for all n > 2.

Since Sy is connected graph withe(vy) =1,e(v;) =2, 2 <i <n.

By theorem 2.4, The generalized eccentricity k™ power sum characteristic roots of S, are —
2k+1 )

(n —2)2X +/(n? — 4n + 4)22k + (n — 1)(2k + 1)2 and (n—2)2k —
V(02 — 4n + 4)22K + (n — 1)(2k + 1)2

with multiplicities (n —2), 1 and 1 respectively. Thus, EGEXS (Sp) = (n—2)2K*! +
2(n — 2)2k.

Hence, if star graph Sp (n>2) then EGEXS(Sn) = (n — 2)2K+1 + 2(n — 2)2k.

4 (n—1) (59K, ifnis odd,

Theorem 2.6: If Cn is a cycle, n > 3, then EGEXS(Cy) = N
4(n—1) (E)k ,if nis even.
Proof: Let G be the cycle graph C, with n verticesv;, 1 <i<n,n>3.

;,ifnisodd,l <i<n,
Then e(v;) =42
— ,ifniseven, 1 <i<n.

Case(i): when nis odd, n > 3.

PGEXS(G)(}) = det (Al — GEXS(G))

= —(+ &

2k-1
(n-1k (n—1)K (n—-1)K (n-1)k (n-1)K
}\ - 2k-1 - 2k-1 - 2k-1 - 2k-1 - 2k-1
-1 1 0 0 0 0
-1 0 1 0 0 0
-1 0 0 1 0 0
-1 0 0 0 1 0
-1 0 0 0 0 1

_O\-I_ (n 1) )n 1()\ (n_l)(n 1) )

_ 1k
Thus, the characteristic roots of GEXS(Cn) are S of multiplicity (n—1) and (n —

2k-1

1) (n 1) of multiplicity 1 respectively.
Thus, the generalized eccentricity k™ power sum energy of the cycle Cn when n is odd is

EGEXS (Cn) = 4(n — )(5HX.
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Case(ii): when nis even, n > 4.
PGEXS(G)(A) = det (A, — GEXS(G))
A nk k rlk rlk nk
- 2k-1 - 2k-1 - 2k-1 - 2k-1 - 2k-1
-1 1 0 0 0 0
A VO R T
=\ + Zk_l) -
-1 0 0 1 0 0
-1 0 0 0 1 0
-1 0 0 0 0 1
k k
=+ "= (0 - 1) ).
-1k

Thus, the generalized eccentricity k™ power sum characteristic roots of Cp are — = of

(n-1)K
2k—1

multiplicity (n — 1) and (n — 1)

of multiplicity 1 respectively.
Hence, the generalized eccentricity k™ power sum energy of the cycle C, when n is even is
EGE*S(Cn) =4 (n — 1) Q.

4(n—1) (59X, ifnis odd,

Hence, if Cn is a cycle, n > 3, then EGEXS (Cy) = X
4(n—1) (E)k ,if nis even.

Theorem 2.7: If W, is a wheel graph, n > 4, then EGEKS(W,) =
{ 12, ifn = 4,

(n —2)2K*1 4+ 2(n — 2)2%,if n > 5.

Proof: Let W = (V(G),E(G)) be a wheel graph with n vertices where V(G) = {v; : 1 <i <
n}.

Case (i): when n = 4.
Let W, be a wheel graph with four vertices {v;,v,, v3,v,}.
Since W4 is a connected graph with e(v;) =1,1 <i < 4.

By theorem 2.1, The generalized eccentricity k™ power sum characteristic roots of W, are —2
and 6 with multiplicities 3 and 1 respectively. Thus, EGEXS (G) = 12.

Case (ii): when > 5.
Since Wh, is connected graph e(v;) =1,e(v;)=2,2<i<n,n =>5.

By theorem 2.4, The generalized eccentricity k™ power sum characteristic roots of S, are —
2k+1’
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(n —2)2K +,/(n2 — 4n + 4)22k + (n — 1)(2k + 1)2 and (n—2)2k —
V(0% — 4n + 4)22k + (n — 1) (2k + 1)2

with multiplicities (n—2), 1 and 1 respectively. Thus, EGEXS(Wy) = (n—2)2K+1 +
2(n — 2)2k.

Hence, if W, is a wheel graph, n > 4, then EGEKS(W, =
{ 12, ifn = 4,

(n—2)2K1 4+ 2(n—2)2%if n > 5.
3. Conclusion

In this paper, generalized eccentricity k™ power sum energy of a graph G has been newly
defined. Generalized eccentricity k™ power sum energy of some standard graphs has been
attained. Eccentricity sum energy [9] and degree square sum energy [3] of graph G have been
introduced and some results have been proved for k= 1, 2 which has been extended to the
GEKS(G) for 1< k < oo, Analogous work can be also carried for other families of
graphs.
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