Generalized Eccentricity K ${ }^{\text {th }}$ Power Sum Energy of Graphs

B. Fathima
Department of Mathematics Justice Basheer Ahmed Sayeed College for Women (Autonomous), Chennai
Tamilnadu, India.
E-mail: fathima.b@jbascollege.edu.in

Article Info

Page Number: 1062-1069
Publication Issue:
Vol. 72 No. 1 (2023)

Article History

Article Received: 15 October 2022
Revised: 24 November 2022
Accepted: 18 December 2022

Abstract

Let G be a finite, simple and undirected graph with m points and n edges. For any integer $\quad 1 \leq \mathrm{k}<\infty$, generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum matrix of G is a $m \times m$ matrix with its $(r, s)^{\text {th }}$ entry as $e^{k}{ }_{r}+e^{k}{ }_{s}$ if $r \neq s$ and zero otherwise, where e_{r} is the eccentricity of the $r^{\text {th }}$ vertex of a graph G. In this paper, the new energy of graph the under the name as generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of $\mathrm{G}\left(\mathrm{EGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})\right)$ has been introduced. Generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy $\mathrm{EGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})$ of some standard graphs has been obtained. AMS Subject Classification: 05C50

Keywords: Eccentricity, generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum matrix, generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum polynomial, eigenvalues and generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy.

1. Introduction

Huckel theory proposed a concept on energy in a graph which deals with conjugated carbon molecule. π - electron energy which is evaluated, whose value agrees with the energy of a graph. In discrete structures, adjacency matrix has many graph polynomials based on matrices such as degree sum matrix, distance matrix, Laplacian matrix, adjacency matrix. In this paper, generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum matrix of G has been newly introduced.

Let $G=(V(G), E(G))$ be a finite, simple and undirected graph with $|V(G)|=m$ vertices and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}$ edges. Let the points of G be labeled as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$. The distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ between any two vertices x and y in a graph G is the length of the shortest $x-y$ path. Eccentricity of a vertex is defined as the maximum distance between a vertex to all other vertices. The adjacency matrix of G is a $m \times m$ matrix whose (s, t)-entry is equal to one if the vertex v_{s} is adjacent to v_{t}, or else it is equal to zero [7].

In 1978, the concept energy of a graph G originated by I. Gutman [6]. Let G be a graph which containing m points and n edges and $C(G)=\left(c_{i j}\right)=\left\{\begin{array}{l}1, \text { if } v_{i} v_{j} \in E \\ 0, \text { otherwise } .\end{array}\right.$

In 2018, B. Basavanagoud, E.Chitra, the concept of Degree Square Sum (DSS) matrix had been defined. Let $u_{1}, u_{2}, \ldots, u_{m}$ be the points of a graph G and let $d_{j}=\operatorname{deg}_{G}\left(u_{j}\right)$. The Degree

Square Sum (DSS) matrix of G is an $m \times m$ matrix represented by $\operatorname{DSS}(\mathrm{G})=\left[\mathrm{dss}_{\mathrm{jk}}\right]$ and whose elements are determined as $\mathrm{dss}_{\mathrm{jk}}=\mathrm{d}_{\mathrm{j}}{ }^{2}+\mathrm{d}_{\mathrm{k}}{ }^{2}$, if $\mathrm{j} \neq \mathrm{k}$ and zero otherwise [3].

In 2020, D.S. Revankar, M.M. Patil, B.S.Durgi and S.R.Jog, have defined the eccentricity sum matrix. A simple graph G which containing m vertices labeled as $v_{1}, v_{2}, \ldots, v_{m}$. Let e_{j} be the eccentricity of $v_{j}, j=1,2,3 \ldots, m$ and $\operatorname{ES}(G)=\left[a_{i j}\right]$ is called the eccentricity sum matrix of a graph G, $a_{i j}=e_{i}+e_{j}$, if $i \neq j$ and zero otherwise [9].

Motivated by these papers, the concept of the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum matrix $\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})$ of G has been imported and obtained the characteristic equation $\operatorname{PGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})(\lambda)$ of the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum matrix of G .

Let G be a finite, simple and undirected graph with n vertices and m edges. For any integer $1 \leq \mathrm{k}<\infty$, a graph G whose matrix is denoted by $\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})=\left[\mathrm{ge}^{\mathrm{k}} \mathrm{S}_{\mathrm{ij}}\right]$ is determined as

$$
g e^{k} s_{i j}=\left\{\begin{array}{c}
e^{k}\left(v_{i}\right)+e^{k}\left(v_{j}\right), \text { if } i \neq j \\
0, \text { otherwise } .
\end{array}\right.
$$

The characteristic polynomial of the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum matrix $G E^{k} S(G)$ is expressed by $\operatorname{PGE}^{\mathrm{k}} S(G)(\lambda)=\operatorname{det}\left(\lambda \mathrm{I}_{\mathrm{n}}-G E^{\mathrm{k}} S(\mathrm{G})\right)$, where I_{n} is eccentricity $\mathrm{n}^{\text {th }}$ square sum unit matrix of order $n \times n$ and trace $\left(\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})\right)=0$. The characteristic roots of $\mathrm{PGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})(\lambda)$ are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$ in a non-increasing order $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\mathrm{n}}$ where λ_{1} is largest and λ_{n} is smallest eigenvalues. If G has $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$, distinct eigenvalues related to multiplicities $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}$ then the spectrum can be written as $\operatorname{Spectra}(\mathrm{G})=$ $\left(\begin{array}{cccc}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{\mathrm{n}} \\ \mathrm{m}_{1} & \mathrm{~m}_{2} & \cdots & \mathrm{~m}_{\mathrm{n}}\end{array}\right)$. The generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of G is indicated by $E G E^{\mathrm{k}} \mathrm{S}(\mathrm{G})$ and it is determined as summing-up the absolute values of the characteristic roots of G, $\mathrm{EGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\lambda_{\mathrm{i}}\right|$. Generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of wellknown graphs has been obtained.

2. Main Results

In this section, generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of some graphs has been obtained.

Theorem 2.1: If a connected graph G containing n points and $e\left(v_{i}\right)=e, 1 \leq i \leq n$, then the characteristic roots of $G E^{k} S(G)$ are $-(2 e)^{k}$ of multiplicity $(n-1)$ and $(n-1)(2 e)^{k}$ of multiplicity 1 respectively, and $E G E{ }^{k} S(G)=2(n-1)(2 e)^{k}$.

Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of a connected graph G and $\mathrm{e}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{e}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Then, $g e^{k} S_{i j}=\left\{\begin{array}{c}e^{k}\left(v_{i}\right)+e^{k}\left(v_{j}\right), \text { if } i \neq j \\ 0 \text {, otherwise. }\end{array}=\left\{\begin{array}{c}(2 e)^{k}, \text { if } i \neq j \\ 0, \text { otherwise } .\end{array}\right.\right.$
Then $\operatorname{PGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})(\lambda)=\operatorname{det}\left(\lambda \mathrm{I}_{\mathrm{n}}-\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})\right.$

$$
=\left(\lambda+(2 \mathrm{e})^{\mathrm{k}}\right)^{\mathrm{n}-1}\left|\begin{array}{cccccccc}
\lambda & -(2 \mathrm{e})^{\mathrm{k}} & \ldots & -(2 \mathrm{e})^{\mathrm{k}} & -(2 \mathrm{e})^{\mathrm{k}} & -(2 \mathrm{e})^{\mathrm{k}} & \ldots & -(2 \mathrm{e})^{\mathrm{k}} \\
-1 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
-1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
-1 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1
\end{array}\right|
$$

$\operatorname{PGE}^{\mathrm{k}} S(\mathrm{G})(\lambda)=\left(\lambda-(2 \mathrm{e})^{\mathrm{k}}(\mathrm{n}-1)\right)\left(\lambda+(2 \mathrm{e})^{\mathrm{k}}\right)^{\mathrm{n}-1}$
The characteristic roots of $G E^{k} S(G)$ are $-(2 e)^{k}$ of multiplicity $(n-1)$ and $(n-1)(2 e)^{k}$ of multiplicity 1 respectively. Thus, $E^{2} E^{\mathrm{k}}(\mathrm{G})=2(\mathrm{n}-1)(2 \mathrm{e})^{\mathrm{k}}$.

Hence, if a connected graph G containing n points and $e\left(v_{i}\right)=e, 1 \leq i \leq n$, then the characteristic roots of $G E^{k} S(G)$ are $-(2 e)^{k}$ of multiplicity $(n-1)$ and $(n-1)(2 e)^{k}$ of multiplicity 1 respectively, and $E^{k} S^{\mathrm{k}} \mathrm{S}(\mathrm{G})=2(\mathrm{n}-1)(2 \mathrm{e})^{\mathrm{k}}$.

Corollary 2.2: If a complete graph $K_{n}(n \geq 2)$ then $E G E S\left(K_{n}\right)=4(n-1)$.
Proof: Let K_{n} be the complete graph containing n vertices for all $n \geq 2$.
Since K_{n} is a connected graph with $\mathrm{e}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{e}=1,1 \leq \mathrm{i} \leq \mathrm{n}$.
Then, $\mathrm{ge}^{\mathrm{k}} \mathrm{s}_{\mathrm{ij}}=\left\{\begin{array}{c}1^{\mathrm{k}}+1^{\mathrm{k}}, \text { if } \mathrm{i} \neq \mathrm{j} \\ 0 \text {, otherwise. }\end{array}=\left\{\begin{array}{c}2(1)^{\mathrm{k}}=2, \quad \text { if } \mathrm{i} \neq \mathrm{j} \\ 0, \text { otherwise. }\end{array}\right.\right.$
By theorem 2.1, The generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum characteristic roots of K_{n} are -2 of multiplicity $(n-1)$ and $2(n-1)$ of multiplicity 1 respectively. Thus, $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{K}_{\mathrm{n}}\right)=$ 4($n-1$).

Hence, if a complete graph $K_{n}(n \geq 2)$ then $\operatorname{EGE}^{k} S\left(K_{n}\right)=4(n-1)$.
Corollary 2.3: If a complete bipartite graph $\left(K_{m, n}\right)$ then $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=(2)^{2 \mathrm{k}+1}(\mathrm{~m}+\mathrm{n}-1)$, for all $\mathrm{m}, \mathrm{n} \neq 1$.

Proof: Let G be the complete bipartite graph $\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)$ which containing $(\mathrm{m}+\mathrm{n})$ vertices for all $\mathrm{m}, \mathrm{n} \neq 1$.

Since $K_{m, n}$ connected graph with $e\left(v_{i}\right)=e=2,1 \leq i \leq m+n$.
Then, $\operatorname{ge}^{\mathrm{k}} \mathrm{s}_{\mathrm{ij}}=\left\{\begin{array}{c}2^{\mathrm{k}}+2^{\mathrm{k}}, \text { if } \mathrm{i} \neq \mathrm{j} \\ 0 \text {, otherwise. }\end{array}=\left\{\begin{array}{c}2(2)^{\mathrm{k}}=(4)^{\mathrm{k}}, \quad \text { if } \mathrm{i} \neq \mathrm{j} \\ 0 \quad,\end{array}\right.\right.$
By theorem 2.1, The generalized eccentricity k^{th} power sum characteristic roots of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ are $(4)^{\mathrm{k}}$ of multiplicity $(\mathrm{m}+\mathrm{n}-1)$ and $(\mathrm{m}+\mathrm{n}-1)(4)^{\mathrm{k}}$ of multiplicity 1 respectively, and $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=2(\mathrm{~m}+\mathrm{n}-1)(4)^{\mathrm{k}}$. Thus, $\mathrm{EGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})=(2)^{2 \mathrm{k}+1}(\mathrm{~m}+\mathrm{n}-1)$.

Hence, if a complete bipartite graph $K_{m, n}$ then $\operatorname{EGE}^{k} S\left(K_{m, n}\right)=(2)^{2 k+1}(m+n-1)$, for all $m, n \neq 1$.

Theorem 2.4: If a connected graph G which containing n vertices and $e\left(v_{1}\right)=1, e\left(v_{i}\right)=2$, $2 \leq \mathrm{i} \leq \mathrm{n}$, then the generalized eccentricity k^{th} power sum eigenvalues of G are $-2^{\mathrm{k}+1}$, $(\mathrm{n}-2) 2^{\mathrm{k}}+\sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 k}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}} \quad$ and $\quad(\mathrm{n}-2) 2^{\mathrm{k}}-$ $\sqrt{\left(n^{2}-4 n+4\right) 2^{2 k}+(n-1)\left(2^{k}+1\right)^{2}}$ with multiplicities $(n-2), 1$ and 1 respectively, and $E G E^{k} S(G)=(n-2) 2^{\mathrm{k}+1}+2(\mathrm{n}-2) 2^{\mathrm{k}}$.

Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of a connected graph G and $\mathrm{e}\left(\mathrm{v}_{1}\right)=1, \mathrm{e}\left(\mathrm{v}_{\mathrm{i}}\right)=2,2 \leq$ $\mathrm{i} \leq \mathrm{n}$.

Then, ge $^{k} S_{i j}=\left\{\begin{array}{c}e^{k}\left(v_{1}\right)+e^{k}\left(v_{j}\right), \text { if } 1 \neq j \\ e^{k}\left(v_{i}\right)+e^{k}\left(v_{j}\right), \text { if } i \neq j \\ 0, \text { otherwise }\end{array}=\left\{\begin{array}{c}2^{k}+1, \text { if } 1 \neq j \\ 2^{k+1}, \text { if } i \neq j \\ 0, \text { otherwise }\end{array}\right.\right.$
Then $\operatorname{PGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})(\lambda)=\operatorname{det}\left(\lambda \mathrm{I}_{\mathrm{n}}-\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})\right)$

$$
\begin{aligned}
& =(\lambda+ \\
& \left.2^{\mathrm{k}+1}\right)^{\mathrm{n}-2}\left|\begin{array}{cccccccc}
\lambda & -\left(2^{\mathrm{k}}+1\right) & \ldots & -\left(2^{\mathrm{k}}+1\right) & -\left(2^{\mathrm{k}}+1\right) & -\left(2^{\mathrm{k}}+1\right) & \ldots & -\left(2^{\mathrm{k}}+1\right) \\
-1 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
-1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
-1 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1
\end{array}\right| \\
& =-\left(\lambda+2^{k+1}\right)^{n-2}\left(\lambda^{2}-\left((n-2) 2^{k+1} \lambda-\left(2^{k}+1\right)^{2}(n-1)\right)\right. \\
& =-\left(\lambda+2^{\mathrm{k}+1}\right)^{\mathrm{n}-2}\left\{\left(\lambda+(\mathrm{n}-2) 2^{\mathrm{k}} \pm \sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 \mathrm{k}}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}}\right\}\right. \\
& =-\left(\lambda+2^{\mathrm{k}+1}\right)^{\mathrm{n}-2}\left\{\left(\lambda+(\mathrm{n}-2) 2^{\mathrm{k}}+\sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 \mathrm{k}}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}}\right\}\right. \\
& \left\{\left(\lambda+(n-2) 2^{k}-\sqrt{\left(n^{2}-4 n+4\right) 2^{2 k}+(n-1)\left(2^{k}+1\right)^{2}}\right\}\right.
\end{aligned}
$$

Thus, generalized eccentricity $k^{\text {th }}$ power sum characteristic roots of G are -2^{k+1}, $(n-$ 2) $2^{\mathrm{k}}+\sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 \mathrm{k}}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}}$ and $(\mathrm{n}-2) 2^{\mathrm{k}}-$ $\sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 \mathrm{k}}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}}$ with multiplicities $(\mathrm{n}-2), 1$ and 1 respectively. Thus, $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})=(\mathrm{n}-2) 2^{\mathrm{k}+1}+2(\mathrm{n}-2) 2^{\mathrm{k}}$.

Hence, if a connected graph G which containing n vertices and $e\left(v_{1}\right)=1, e\left(v_{i}\right)=2,2 \leq i \leq n$, then the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum characteristic roots of G are -2^{k+1}, $(n-$ 2) $2^{k}+\sqrt{\left(n^{2}-4 n+4\right) 2^{2 k}+(n-1)\left(2^{k}+1\right)^{2}}$ and $(\mathrm{n}-2) 2^{\mathrm{k}}-$ $\sqrt{\left(n^{2}-4 n+4\right) 2^{2 k}+(n-1)\left(2^{k}+1\right)^{2}}$ with multiplicities $(n-2), 1$ and 1 respectively, and $E^{2} E^{\mathrm{k}} \mathrm{S}(\mathrm{G})=(\mathrm{n}-2) 2^{\mathrm{k}+1}+2(\mathrm{n}-2) 2^{\mathrm{k}}$.

Corollary 2.5: If a star graph $S_{n}(n \geq 2)$ then $\operatorname{EGE}^{k} S\left(S_{n}\right)=(n-2) 2^{k+1}+2(n-2) 2^{k}$.

Proof: Let S_{n} be the star graph with n vertices for all $n \geq 2$.
Since S_{n} is connected graph with $e\left(v_{1}\right)=1, e\left(v_{i}\right)=2,2 \leq i \leq n$.
By theorem 2.4, The generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum characteristic roots of S_{n} are $2^{\mathrm{k}+1}$,
$(\mathrm{n}-2) 2^{\mathrm{k}}+\sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 \mathrm{k}}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}}$ and $\quad(\mathrm{n}-2) 2^{\mathrm{k}}-$ $\sqrt{\left(n^{2}-4 n+4\right) 2^{2 k}+(n-1)\left(2^{k}+1\right)^{2}}$
with multiplicities $(n-2), 1$ and 1 respectively. Thus, $\operatorname{EGE}^{k} S\left(S_{n}\right)=(n-2) 2^{k+1}+$ $2(n-2) 2^{\mathrm{k}}$.

Hence, if star graph $\mathrm{S}_{\mathrm{n}}(\mathrm{n} \geq 2)$ then $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{S}_{\mathrm{n}}\right)=(\mathrm{n}-2) 2^{\mathrm{k}+1}+2(\mathrm{n}-2) 2^{\mathrm{k}}$.
Theorem 2.6: If C_{n} is a cycle, $n \geq 3$, then $\operatorname{EGE}^{k} S\left(C_{n}\right)=\left\{\begin{array}{l}4(n-1)\left(\frac{n-1}{2}\right)^{k}, \text { if } n \text { is odd, } \\ 4(n-1)\left(\frac{n}{2}\right)^{k}, \text { if } n \text { is even. }\end{array}\right.$
Proof: Let G be the cycle graph C_{n} with n vertices $\mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{n} \geq 3$.
Then $\mathrm{e}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}\frac{\mathrm{n}-1}{2} \text {, if } \mathrm{n} \text { is odd, } 1 \leq \mathrm{i} \leq \mathrm{n}, \\ \frac{\mathrm{n}}{2} \text {, if } \mathrm{n} \text { is even, } 1 \leq \mathrm{i} \leq \mathrm{n} .\end{array}\right.$
Case(i): when n is odd, $\mathrm{n} \geq 3$.
$\operatorname{PGE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})(\lambda)=\operatorname{det}\left(\lambda \mathrm{I}_{\mathrm{n}}-\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})\right)$

$$
\begin{gathered}
= \\
\left|\begin{array}{cccccccc}
\lambda & -\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}} & \cdots & -\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}} & -\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}} & -\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}} & \cdots & -\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}} \\
-1 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1
\end{array}\right| \\
\\
\\
\\
\end{gathered}
$$

Thus, the characteristic roots of $G E^{k} S\left(C_{n}\right)$ are $-\frac{(n-1)^{k}}{2^{k-1}}$ of multiplicity $(n-1)$ and ($n-$ 1) $\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}}$ of multiplicity 1 respectively.

Thus, the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of the cycle C_{n} when n is odd is $E \operatorname{EGE}^{\mathrm{k}} S\left(\mathrm{C}_{\mathrm{n}}\right)=4(\mathrm{n}-1)\left(\frac{\mathrm{n}-1}{2}\right)^{\mathrm{k}}$.

Case(ii): when n is even, $\mathrm{n} \geq 4$.
$\operatorname{PGE}^{\mathrm{k}} S(\mathrm{G})(\lambda)=\operatorname{det}\left(\lambda \mathrm{I}_{\mathrm{n}}-\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})\right)$

$$
\begin{aligned}
& =\left(\lambda+\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}}\right)^{\mathrm{n}-1}\left|\begin{array}{cccccccc}
\lambda & -\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}} & \cdots & -\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}} & -\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}} & -\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}} & \cdots & -\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}} \\
-1 & 1 & \cdots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1
\end{array}\right| \\
& =\left(\lambda+\frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}}\right)^{\mathrm{n}-1}\left(\lambda-(n-1) \frac{\mathrm{n}^{\mathrm{k}}}{2^{\mathrm{k}-1}}\right) .
\end{aligned}
$$

Thus, the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum characteristic roots of C_{n} are $-\frac{(\mathrm{n}-1)^{\mathrm{k}}}{2^{\mathrm{k}-1}}$ of multiplicity $(n-1)$ and $(n-1) \frac{(n-1)^{k}}{2^{k-1}}$ of multiplicity 1 respectively.

Hence, the generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of the cycle C_{n} when n is even is $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{C}_{\mathrm{n}}\right)=4(\mathrm{n}-1)\left(\frac{\mathrm{n}}{2}\right)^{\mathrm{k}}$.

Hence, if C_{n} is a cycle, $n \geq 3$, then $E G E^{k} S\left(C_{n}\right)=\left\{\begin{array}{l}4(n-1)\left(\frac{n-1}{2}\right)^{k}, \text { if } n \text { is odd, } \\ 4(n-1)\left(\frac{n}{2}\right)^{k}, \text { if } n \text { is even. }\end{array}\right.$
Theorem 2.7: If W_{n} is a wheel graph, $n \geq 4$, then $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{W}_{\mathrm{n}}\right)=$ $\left\{\begin{array}{cl}12, & \text { if } n=4, \\ (n-2) 2^{k+1}+2(n-2) 2^{k}, & \text { if } n \geq 5 .\end{array}\right.$

Proof: Let $W_{n}=(V(G), E(G))$ be a wheel graph with n vertices where $V(G)=\left\{v_{i}: 1 \leq i \leq\right.$ n\}.

Case (i): when $\mathrm{n}=4$.
Let W_{4} be a wheel graph with four vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$.
Since W_{4} is a connected graph with $\mathrm{e}\left(\mathrm{v}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq 4$.
By theorem 2.1, The generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum characteristic roots of W_{4} are -2 and 6 with multiplicities 3 and 1 respectively. Thus, $E G E^{k} S(G)=12$.

Case (ii): when ≥ 5.
Since W_{n}, is connected graph $\mathrm{e}\left(\mathrm{v}_{1}\right)=1, \mathrm{e}\left(\mathrm{v}_{\mathrm{i}}\right)=2,2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{n} \geq 5$.
By theorem 2.4, The generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum characteristic roots of S_{n} are $2^{\mathrm{k}+1}$,
$(\mathrm{n}-2) 2^{\mathrm{k}}+\sqrt{\left(\mathrm{n}^{2}-4 \mathrm{n}+4\right) 2^{2 \mathrm{k}}+(\mathrm{n}-1)\left(2^{\mathrm{k}}+1\right)^{2}}$ and $\quad(\mathrm{n}-2) 2^{\mathrm{k}}-$ $\sqrt{\left(n^{2}-4 n+4\right) 2^{2 k}+(n-1)\left(2^{k}+1\right)^{2}}$
with multiplicities $(n-2), 1$ and 1 respectively. Thus, $\operatorname{EGE}^{\mathrm{k}} \mathrm{S}\left(\mathrm{W}_{\mathrm{n}}\right)=(\mathrm{n}-2) 2^{\mathrm{k}+1}+$ $2(\mathrm{n}-2) 2^{\mathrm{k}}$.

Hence, if W_{n} is a wheel graph, $n \geq 4$, then $\operatorname{EGE}^{k} S\left(W_{n}\right)=$ $\left\{\begin{array}{cl}12, & \text { if } n=4, \\ (n-2) 2^{k+1}+2(n-2) 2^{k}, & \text { if } n \geq 5 .\end{array}\right.$

3. Conclusion

In this paper, generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of a graph G has been newly defined. Generalized eccentricity $\mathrm{k}^{\text {th }}$ power sum energy of some standard graphs has been attained. Eccentricity sum energy [9] and degree square sum energy [3] of graph G have been introduced and some results have been proved for $\mathrm{k}=1,2$ which has been extended to the $\mathrm{GE}^{\mathrm{k}} \mathrm{S}(\mathrm{G})$ for $\quad 1 \leq \mathrm{k}<\infty$. Analogous work can be also carried for other families of graphs.

Ackowledgement

The author is highly thankful to anonymity referee for their significant comments.
Refrences:

1. M. Ahmed Naji and N. D. Soner, The maximum eccentricity energy of a graph, Int. J.
2. Sci. Engin. Research, 7(2016), 5-13.
3. R. Balakrishnan, The energy of a graph, Linear Alg. Appl., 387(2004), 287-295.
4. B. Basavanagoud and E.Chitra, Degree Square sum Energy of Graphs, International Journal of Mathematics and its Applications, 6(2-B) (2018), 193-205.
5. Agrawal, S. A., Umbarkar, A. M., Sherie, N. P., Dharme, A. M., \& Dhabliya, D. (2021). Statistical study of mechanical properties for corn fiber with reinforced of polypropylene fiber matrix composite. Materials Today: Proceedings, doi:10.1016/j.matpr.2020.12.1072
6. Anupong, W., Azhagumurugan, R., Sahay, K. B., Dhabliya, D., Kumar, R., \& Vijendra Babu, D. (2022). Towards a high precision in AMI-based smart meters and new technologies in the smart grid. Sustainable Computing: Informatics and Systems, 35 doi:10.1016/j.suscom.2022.100690
7. Anupong, W., Yi-Chia, L., Jagdish, M., Kumar, R., Selvam, P. D., Saravanakumar, R., \& Dhabliya, D. (2022). Hybrid distributed energy sources providing climate security to the agriculture environment and enhancing the yield. Sustainable Energy Technologies and Assessments, 52 doi:10.1016/j.seta.2022.102142
8. D.M. Cvetkovic, M.Doob and H.Sachs, Spectra of Graphs, Academic Press, New York, 1980.
9. B. Fathima, Generalized eccentricity $\mathrm{k}^{\text {th }}$ power product energy of graphs, South East Asian J. of Mathematics and Mathematical Sciences, Vol. 19, Proceedings (2022), 35-42.
10. I. Gutman, The energy of a graph, Ber. Math.- Stat.. Sekt. Forschungsz. Graz 103 (1978), 1-22.
11. F. Harary, Graph Theory, Addision-Wesley Publishing Co., Reading, Mass. Menlo, 1969.
12. X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, 2012.
13. D.S. Revankar, M.M. Patil, B.S.Durgi and S.R.Jog, On Eccentricity sum Energy of some Graphs, Journal of Xi'an University of Architecture \& Technology, Vol.12(7), 2020, 120-127.
