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Abstract: In this paper, least square method (LSM) based on successive 

integration technique is proposed for solving delay differential equations 

(DDEs). Continuous LSM and Discrete LSM have been presented. In this 

study we adopted four different orthogonal polynomials for weighted basis 

function. Numerical examples are considered for testing the efficiency of 

the proposed method. The proposed method gives results with very good 

accuracy. It demonstrates the reliability and efficiency of this technique for 

solving DDEs. 
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1. Introduction 

Differential equations with delay terms arise frequently in the fields of science and technology. 

Some notable applications of DDEs are in chemical kinetics [1], climate model [2] and 

biological network motif [3]. 

Many authors have been investigated and developed various analytical and numerical methods 

to solve DDEs. Evans and Raslan [4] presented Adomain decomposition method for solving 

DDEs. Mustafa and Mehmet [5] used perturbation-iteration algorithms to solve pantograph 

type DDEs. Ebimene and Ignatius [6] implemented the Elzaki transform method for solving 

DDEs. Dhinesh and Emimal [7] proposed RK method with higher order derivatives to solve 

DDEs. Vinci and Emimal [8] presented fourth order composite RK method to solve DDEs. 

The Least Square Method (LSM) is a finite element method to solve differential equations. 

Daniele [9] has applied least square method to initial and boundary value problems of 

differential equations (DEs). Siti Farhana et al. [10] have solved DEs by using LSM with an 

implementation of gradient method. Salisu [11] has investigated LSM for finding approximate 

solutions to ODEs. Parth et al. [12] have examined the performance of LSM on solving first 

order ODEs. Salisu and Abdulnasir [13] have used continuous LSM in order to solve second 

order DEs. 

In this study, we propose Continuous LSM (CLSM) and Discrete LSM (DLSM) based on 

successive integration technique for solving DDEs. We adopted four different orthogonal 

polynomials for weighted basis function. Numerical examples are considered for testing the 

efficiency of the proposed method. In section 2, basic definition of polynomials is given. The 
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description of discrete and continuous LSM for solving DDEs are provided in section 3. In 

section 4, illustrative examples are provided. 

2. Basic definition of polynomials 

In this study, we consider the most widely used classical orthogonal polynomials, namely, the 

Hermite polynomials, the Bernoulli polynomials, the Chebyshev polynomials and the 

Fibonacci polynomials.  

Hermite Polynomial 

The Hermite polynomial 𝐻𝑛(𝑡) of order n is defined on the interval (−∞,∞). There are 

different ways to define for Hermite polynomial, one of them is the so-called Rodrigues’ 

formula 

𝐻𝑛(𝑡) = (−1)
𝑛𝑒𝑡

2 𝑑𝑛

𝑑𝑡𝑛
𝑒−𝑡

2
        (1) 

From Eqn. (1), the recurrence relation for the polynomials can be derived as 

𝐻𝑛(𝑡) = 2𝑡 𝐻𝑛−1(𝑡) − 𝐻𝑛−1
′ (𝑡)       (2) 

𝐻0(𝑡) can be obtained from Eqn. (1) and the remaining terms are determined by using the 

recursion relation Eqn. (2). Thus, we have the following sequence of polynomials: 

𝐻0(𝑡) = 1 

𝐻1(𝑡) = 2𝑡 

𝐻2(𝑡) = 4𝑡
2 − 2 

𝐻3(𝑡) = 8𝑡
3 − 12𝑡 

𝐻4(𝑡) = 16𝑡
4 − 48𝑡2 + 12 

and so on. The 𝑛𝑡ℎ order Hermite polynomial 𝐻𝑛(𝑡) has a leading coefficient 2𝑛. 

Bernoulli Polynomial 

The Bernoulli polynomial is named after Jacob Bernoulli which combines the Bernoulli 

numbers and binomial coefficients. The generating function of 𝑛𝑡ℎ order Bernoulli polynomial 

is defined by 

∑ 𝐵𝑛(𝑡)
∞
𝑛=0

𝑥𝑛

𝑛!
=

𝑥𝑒𝑥𝑡

𝑒𝑥−1
                (3)  

The Bernoulli polynomial is explicitly written as: 

𝐵𝑛(𝑡) = ∑ (𝑛
𝑘
)𝑛

𝑘=0 𝐵𝑛−𝑘(𝑡
𝑘)        (4) 

for n ≥ 0. 
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𝐵0(𝑡) can be obtained from Eqn. (3) and the remaining terms are determined by using the 

recursion relation. Thus, we have few terms of the Bernoulli polynomials as: 

𝐵0(𝑡) = 1 

𝐵1(𝑡) = 𝑡 − 1/2 

𝐵2(𝑡) = 𝑡2 − 𝑡 + 1/6 

𝐵3(𝑡) = 𝑡3 −
3

2
𝑡2 +

1

2
𝑡 

𝐵4(𝑡) = 𝑡
4 − 2𝑡3 + 𝑡2 −

1

30
   

Chebyshev Polynomial 

The Chebyshev polynomial related to cosine functions on the interval [−1, 1] of order n is 

defined as 

𝑇𝑛(cos 𝑡) = cos(𝑛𝑡)               (5)  

The recursion relation of Chebyshev polynomial is: 

𝑇𝑛+1(𝑡) = 2𝑡 𝑇𝑛(𝑡) − 𝑇𝑛−1(𝑡)                (6) 

𝑇0(𝑡) and 𝑇1(𝑡) can be obtained from Eqn. (5). Then the remaining terms are determined by 

from Eqn. (6). Thus, we have the following sequence of polynomials: 

𝑇0(𝑡) = 1 

𝑇1(𝑡) = 𝑡 

𝑇2(𝑡) = 2𝑡
2 − 1 

𝑇3(𝑡) = 4𝑡
3 − 3𝑡 

𝑇4(𝑡) = 8𝑡
4 − 8𝑡2 + 1   

Fibonacci Polynomial 

The Fibonacci polynomials are generated by Fibonacci numbers. The recurrence relation of 

Fibonacci polynomial is: 

𝐹𝑛(𝑡) = {

0,                                      𝑖𝑓 𝑛 = 0
1,                                       𝑖𝑓 𝑛 = 1

𝑡𝐹𝑛−1(𝑡) + 𝐹𝑛−2(𝑡),     𝑖𝑓 𝑛 ≥ 2.
 

Using this relation, we have the following sequence of polynomials: 

𝐹0(𝑡) = 0 

𝐹1(𝑡) = 1 
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𝐹2(𝑡) = 𝑡 

𝐹3(𝑡) = 𝑡
2 + 1 

𝐹4(𝑡) = 𝑡
3 + 2𝑡   

3. Solving DDEs using Least Square method based on successive integration technique 

Consider the nth order DDE 

𝑦(𝑛)(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏), 𝑦′(𝑡), 𝑦′(𝑡 − 𝜏), ), … , 𝑦(𝑛−1)(𝑡), 𝑦(𝑛−1)(𝑡 − 𝜏)),      𝑡 > 𝑡0   (7) 

with initial conditions  

𝑦(𝑖)(𝑡0) = ∅(𝑡), 𝑖 = 1, 2, 3, …    𝑡 ≤ 𝑡0                         (8)               

Here 𝜏 is the delay term and ∅(𝑡) is the history function.  

Let P(t) represent any orthogonal polynomials. For the proposed method, we assume that 

𝑦(𝑛)(𝑡) ≈ 𝐵𝑇𝑃(𝑡)𝑇 = ∑ 𝑐𝑗𝑃𝑗(𝑡)
𝑁
𝑗=0                       (9) 

where N being any positive integer,  

𝐵𝑇 = (𝑐0, 𝑐1, … 𝑐𝑁) 

𝑃(𝑡) = (𝑃0(𝑡), 𝑃1(𝑡) …𝑃𝑁(𝑡)) 

Our aim is to determine the polynomial coefficients 𝑐𝑗
′𝑠.  For this, we integrate Eqn. (9) with 

respect to t from 𝑡0 𝑡𝑜 𝑡,  

𝑦(𝑛−1)(𝑡) = 𝑦(𝑡0) + ∫ 𝐵𝑇 𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑛−2)(𝑡) = 𝑦(𝑡0) + 𝑦
′(𝑡0) + ∫ ∫ 𝐵𝑇 𝑃𝑗(𝑡) 𝑑𝑡

𝑡

𝑡0

𝑡

𝑡0

.  .  .

𝑦′(𝑡) = ∑ 𝑦(𝑖)(𝑡0) + ∫ ∫ …
𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇 𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

𝑁−1
𝑖=0

𝑦(𝑡) = ∑ 𝑦(𝑖)(𝑡0)
𝑁
𝑖=0 + ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇 𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0 }
 
 
 
 

 
 
 
 

               (10) 

Now, for delay terms  

http://philstat.org.ph/


Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

1108 

𝑦(𝑛−1)(𝑡 − 𝜏) = 𝑦(𝑡0) + ∫ 𝐵𝑇 𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑛−2)(𝑡 − 𝜏) = 𝑦(𝑡0) + 𝑦
′(𝑡0) + ∫ ∫ 𝐵𝑇 𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡

𝑡

𝑡0

𝑡

𝑡0

.  .  .

𝑦′(𝑡 − 𝜏) = ∑ 𝑦(𝑖)(𝑡0)
𝑁−1
𝑖=0 + ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇 𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑡 − 𝜏) = ∑ 𝑦(𝑖)(𝑡0)
𝑁
𝑖=0 + ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇 𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0 }
 
 
 
 

 
 
 
 

                (11) 

By substituting (10) and (11) in (7), we get the residue function R(t). The coefficients 𝑐𝑗′𝑠 can 

be obtained using the LSM which is based on weighted residuals minimization. In this study, 

we introduce Continuous Least Square Method (CLSM) and Discrete Least Square Method 

(DLSM).  

Continuous Least Square Method (CLSM) 

In CLSM, we make the residue function R tend to zero by minimizing the error function 

𝐸 = ∫ 𝑅2(𝑡)𝑑𝑡
Ω

              (12) 

for 𝑡 𝜖 Ω. 

To obtain an optimum solution with minimal error E, we differentiate the Eqn. (12) with respect 

to 𝑐𝑗  and then equate to zero. Thus, we have 

𝜕𝐸

𝜕𝑐𝑗
=

𝜕

𝜕𝑐𝑗
 ∫ 𝑅2(𝑡)  𝑑𝑡 = 0,  for 𝑗 = 1, 2, … ,𝑁, 

which implies 

∫ 𝑅(𝑡) 
𝜕𝑅(𝑡)

𝜕𝑐𝑗
 𝑑𝑡  

𝑡=1

𝑡=0
= 0, for 𝑗 = 1, 2, … ,𝑁         (13) 

This yields an algebraic system of linear and nonlinear equations subject to the linear and 

nonlinear terms involving in the Eqn. (7). By solving this system of equations, we get the 

respective polynomial co-efficient 𝑐𝑗’s from which the solution of the DDE (7) can be obtained. 

Discrete Least Square Method (DLSM) 

In DLSM, we consider the residuals at the points  𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑁. Let  

𝐸 = ∑ 𝑅2(𝑡)𝑁
𝑖=1            (14) 

To obtain an optimum solution with minimal error E, we differentiate the Eqn. (14) with respect 

to 𝑐𝑗  and then equate to zero. Thus, we have 

𝜕𝐸

𝜕𝑐𝑗
= 0,  for 𝑗 = 1, 2, … , 𝑁, 
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This yields an algebraic system of linear and nonlinear equations. By solving this system of 

equations, we get the respective polynomial coefficients 𝑐𝑗’s from which the solution of the 

DDE (7) can be obtained. 

4. Numerical examples 

Here, linear and nonlinear DDEs are considered for testing the efficiency of the proposed 

method. We solved these DDEs by using CLSM and DLSM based on successive integration 

technique by using four orthogonal polynomials, namely Hermite, Bernoulli, Chebyshev, and 

Fibonacci. Here, for convenience, in the case of CLSM, we denote them as H-CLSM, B-

CLSM, C-CLSM and F-CLSM respectively. Similarly, in the case of DLSM, we denote them 

as H-DLSM, B-DLSM, C-DLSM and F-DLSM respectively. 

Problem 1  

𝑦"(𝑡)  =  
3

4
 𝑦(𝑡) + 𝑦 (

𝑡

2
) − 𝑡2 + 2 

with 𝑦′(0) = 0 and 𝑦(0) = 0. 

The analytical solution is 𝑦(𝑡) = 𝑡2. 

The numerical results obtained by the proposed methods CLSM and DLSM using the four 

polynomials with different values of N have been compared with the exact solution. The 

absolute error results at t = 1 are given in Table 1 and Table 2. The solution graphs by CLSM 

and DLSM with N = 7 are presented in Fig. 1 and Fig. 2. 

Table 1 Error Results in CLSM for Problem 1 

 

 

 

 

Table 2 Error Results in DLSM for Problem 1 

 

 

 

 

 

 

Methods N = 3 N = 5 N = 7 

H-CLSM  6.85 e-09 3.92 e-10 7.42 e-10 

B-CLSM  1.25 e-09 1.40 e-09 1.23 e-09 

C-CLSM  1.07 e-10 1.02 e-08 3.04 e-09 

F-CLSM  1.37 e-08 2.70 e-09 7.16 e-09 

Methods N = 3 N = 5 N = 7 

H-DLSM  1.34 e-09 4.22 e-16 2.68 e-17 

B-DLSM  6.18 e-10 1.75 e-10 5.73 e-10 

C-DLSM  5.80 e-09 1.78 e-09 4.14 e-0.9 

F-DLSM  1.58 e-09 5.60 e-15 7.96 e-13 
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Fig. 1 CLSM - Solution (Problem 1) 

 

Fig. 2 DLSM - Solution (Problem 1) 

Problem 2 

𝑦′(𝑡) + 𝑡𝑦(𝑡 − 𝑡2) + 𝑡𝑦2(𝑡) = 1 + 𝑡2 

with 𝑦(0) = 0. 

The analytical solution is 𝑦(𝑡) = 𝑡. 

The numerical results obtained by the proposed methods CLSM and DLSM using the four 

polynomials with N = 5 have been compared with the exact solution. The absolute error results 

are given in Table 3 and Table 4. The solution graphs by CLSM and DLSM with N = 7 are 

presented in Fig. 3 and Fig. 4. 

Table 3 Error Results in CLSM for Problem 2 

t H-CLSM B-CLSM C-CLSM F-CLSM 

0.2 1.39e-13 4.07e-09 2.47e-14 1.54e-08 

0.4 1.09e-12 8.70e-09 2.39e-13 1.16e-08 
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0.6 8.37e-13 1.30e-08 1.52e-13 4.80e-08 

0.8 5.39e-13 1.57e-08 9.77e-14 1.42e-08 

1.0 2.76e-14 1.54e-08 1.88e-14 5.62e-09 

 

Table 4 Error Results in DLSM for Problem 2 

t H-DLSM B-DLSM C-DLSM F-DLSM 

0.2 4.31e-13 1.08e-11 1.74e-15 7.16e-15 

0.4 1.70e-13 9.16e-12 3.16e-15 5.09e-15 

0.6 7.07e-13 7.85e-12 4.54e-15 1.46e-14 

0.8 8.50e-13 1.96e-11 4.86e-15 5.20e-14 

1.0 5.57e-14 2.90e-10 3.52e-16 1.49e-13 

 

Fig. 3 CLSM - Solution (Problem 2) 

 

Fig. 4 DLSM - Solution (Problem 2) 

Problem 3 

𝑑3𝑦(𝑡)

𝑑𝑡3
= −𝑦(𝑡) − 𝑦(𝑡 − 0.3)  + 𝑒−𝑡+0.3, 0 ≤ 𝑡 ≤ 1    

with 𝑦(0) = 1, 𝑦′(0) = −1  and   𝑦′′(0) = 1. 

The analytical solution is 𝑦(𝑡) = 𝑒−𝑡. 

The numerical results obtained by the proposed methods CLSM and DLSM using the four 

polynomials with N = 7 have been compared with the exact solution. The absolute error results 
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are given in Table 5 and Table 6. The solution graphs by CLSM and DLSM with N = 7 are 

presented in Fig. 5 and Fig. 6. 

For this example, the numerical results obtained by using the proposed new approach based on 

successive integration technique are compared with the results by the conventional operational 

matrix approach of polynomial collocation method which are available in literature [14]. The 

comparative results for N = 8 are presented in Table 7 and Table 8. 

Table 5 Error Results in CLSM for Problem 3 

t H-CLSM B-CLSM C-CLSM F-CLSM 

0.2 1.20e-08 3.07e-11 9.26e-09 6.70e-09 

0.4 3.07e-09 3.87e-11 2.77e-09 5.12e-09 

0.6 5.77e-08 1.14e-10 3.96e-08 1.98e-09 

0.8 8.01e-08 3.02e-10 5.68e-08 1.93e-08 

1.0 1.31e-07 5.36e-10 9.23e-08 1.96e-08 

 

Table 6 Error Results in DLSM for Problem 3 

t H-DLSM B-DLSM C-DLSM F-DLSM 

0.2 3.76e-11 3.86e-11 4.22e-11 3.76e-11 

0.4 2.14e-10 2.15e-10 2.38e-10 2.14e-10 

0.6 5.25e-10 5.32e-10 5.49e-10 5.25e-10 

0.8 9.66e-10 9.93e-10 9.98e-10 9.66e-10 

1.0 1.53e-09 1.58e-09 1.60e-09 1.53e-09 

 

Table 7 Comparative Error Results for Problem 3 (Hermite Polynomial) 

t 
Polynomial 

Collocation Method 

Proposed Least Square Method 

H-CLSM H-DLSM 

0.2 6.20e-09 3.38e-10 1.38e-12 

0.4 5.76e-08 4.85e-09 7.33e-12 

0.6 1.79e-07 1.07e-08 1.77e-11 
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0.8 3.73e-07 1.91e-08 3.25e-11 

1.0 6.36e-07 3.08e-08 5.13e-11 

 

Table 8 Comparative Error Results for Problem 3 (Chebyshev Polynomial) 

t 
Polynomial 

Collocation Method 

Proposed Least Square Method 

C-CLSM C-DLSM 

0.2 3.70e-07 3.05e-09 3.53e-12 

0.4 2.38e-06 9.42e-09 5.78e-11 

0.6 5.97e-06 2.68e-08 1.78e-10 

0.8 3.48e-05 4.56e-08 3.65e-10 

1.0 2.03e-04 7.30e-08 6.28e-10 

 

Fig. 5 CLSM - Solution (Problem 3) 

 

Fig. 6 DLSM - Solution (Problem 3) 

 

5. Conclusion 

In this paper, Continuous and Discrete Least Square Methods have been presented to solve 

differential equations with delay terms. Here four different orthogonal polynomials are utilised 

for weighted basis function. Numerical examples of linear and nonlinear DDEs are given to 

test the efficiency of the proposed method.  

From the numerical results, it is clear that the results obtained by the continuous and discrete 

least square methods are reasonably good in accuracy. It is observed that results by discrete 

square least method gives slightly better results than the continuous least square method. From 

the comparative Tables 7 and 8, it is evident that the proposed method based on successive 
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integration technique gives better results than the conventional matrix approach. Hence the 

proposed least square method is very effective and reliable to solve delay differential equations. 
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