Arithmetic Sequential Graceful Labeling on Complete Bipartite Graph

P. Sumathi ${ }^{1}$, G. Geetha Ramani ${ }^{2}$
${ }^{1}$ Department of Mathematics, C. Kandaswami Naidu College for Men, Chennai, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, New Prince Shri Bhavani College of Engineering and Technology,
Chennai, Tamil Nadu, India.
${ }^{1}$ Sumathipaul@gmail.com
²geetharamani.v@gmail.com

Article Info

Page Number: 1116-1126
Publication Issue:
Vol. 72 No. 1 (2023)

Article History

Article Received: 15 October 2022
Revised: 24 November 2022
Accepted: 18 December 2022

Abstract

Consider the graph G, which has p vertices and q edges and is simple, finite, connected, undirected, and non-trivial. $G^{\prime} s$ vertex set is $\mathrm{V}(\mathrm{G})$, while its edge set is $E(G)$. Let f be an injective function from $V(G)$ to $\{a, a+d, a+2 d, a+$ $3 d, \ldots, 2(a+q d)\} \quad$ and \quad for each edge $u v \in E(G), f^{*}: E(G) \rightarrow$ $\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ defined by $f^{*}(u v)=|f(u)-f(v)|$. Then the f is arithmetic sequential graceful labeling if $f^{*}(u v)$ is bijective. The graph having arithmetic sequential graceful labeling is called arithmetic sequential graceful graph. This paper examined the arithmetic sequential graceful labeling for a few unique graphs.

Keywords: Graceful labeling, Complete bipartite graph, Open star of graph, Join sum of graph, Path union graph

1. Introduction

A fascinating area of research in graph theory is labeling. Giving values to edges or vertices is the process of labeling. It was Alexander Rosa [2] who first proposed the idea of graceful labeling. Later, a few labeling techniques were presented. See Gallian's dynamic survey [3] for further details. Golomb [4] proved that the complete bipartite graph is graceful. Kaneria and Makadia [6] proved that star of a cycle is graceful. Kaneria et. al [7] proved that join sum of , path union of and star of are graceful graphs. Barrientos [8] proved that union of complete bipartite graph is graceful. Here, we defined arithmetic sequential graceful and shown that various types of graphs fall under this category in [8]. Here are the some of the definitions which are helpful in this article.

Definition 1.1: A graph is considered bipartite if its vertices V can be split into two separate sets V_{1} and V_{2}, and if each edge of the graph connects a vertex from V_{1} to a vertex from V_{2}. A graph is referred to be a complete bipartite graph if each vertex of V_{1} and V_{2} are connected to each other. We denote the complete bipartite graph as $K_{r, s}$.

Definition 1.2: Consider n copies of a graph G_{i}. The graph obtained by adding an edge from the graph G_{i} to $G_{i+1}, 1 \leq i \leq n-1$ and $n>2$ is called path union of G.

Definition 1.3: Consider τ copies of a graph $G_{i}, 1 \leq i \leq \tau$. The graph obtained by joining two copies of the graph G_{i} and $G_{i+1}, 1 \leq i \leq \tau-1$ by a vertex is called join sum of graphs and it is denoted by $\left\langle G_{1}, G_{2}, G_{3}, \ldots G_{\tau}\right\rangle$.

Definition 1.4: "Open star of graph" refers to a graph that is created by substituting the graphs $G_{1}, G_{2}, \ldots, G_{n}$ for each vertex of $K_{1, n}$ other than the apex vertex. Such a graph will be represented as $\mathcal{S}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$.

Definition 1.5: The open star of a graph that results when all the vertices of $K_{1, n}$ except the apex vertex are replaced by the graph G is denoted by $\mathcal{S}(n . G)$.

Definition 1.6: The star of a graph that results when all the vertices of $K_{1, n}$ are replaced by the graph G is denoted by $\mathcal{S}(G)$.

2. Main Results

Theorem 2.1: The graph $K_{r, s}$ admits Arithmetic Sequential Graceful labeling.
Proof: Let G be a $K_{r, s}$ graph.
$V(G)=\left\{u_{i}: 1 \leq i \leq r\right\} \cup\left\{v_{\zeta}: 1 \leq \zeta \leq s\right\}$ and
$E(G)=\left\{u_{i} v_{\zeta}: 1 \leq i \leq r, 1 \leq \zeta \leq s\right\}$
$|V|=(r+s),|E|=r s$
We define $f: V(G) \rightarrow\{a, a+d, a+2 d, a+3 d, \ldots, 2(a+q d)\}$
$f\left(u_{i}\right)=a+(i-1) d, 1 \leq i \leq r$
$f\left(v_{\zeta}\right)=a+(r s-(\zeta-1)) d, 1 \leq \zeta \leq s$
Table 1: Edge labels of the graph $K_{r, s}$

$\boldsymbol{f}^{*}(\boldsymbol{u} \boldsymbol{v}), \forall \boldsymbol{u v} \in \boldsymbol{E}(\boldsymbol{G})$	Edge labels
$f^{*}\left(u_{i} v_{\zeta}\right)$	$[r s-r(\zeta-1)-(i-1)] d, 1 \leq i \leq r, 1 \leq \zeta \leq s$

It is clear that the function f is injective and also table 1 shows that
$f^{*}: E \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ is bijective. Hence the graph $K_{r, s}$ admits arithmetic sequential graceful graph.

Illustration 2.1.1: $K_{3,5}$ and its graceful labeling shown in figure-1.

Figure-1: $K_{3,5}$ and its graceful labeling.
Theorem 2.2: The path union of complete bipartite graph is Arithmetic Sequential Graceful labeling.

Proof: Let G be a path union of complete bipartite graph.
$V(G)=\left\{u_{i, \zeta}: 1 \leq i \leq \tau, 1 \leq \zeta \leq r_{i}\right\} \cup\left\{v_{i, k}: 1 \leq i \leq \tau, 1 \leq \kappa \leq s_{i}\right\}$
and
$E(G)=\left\{u_{i, \zeta} v_{i, \kappa}: 1 \leq i \leq \tau, 1 \leq \zeta \leq r_{i}, 1 \leq \kappa \leq s_{i}\right\}$

$$
\cup\left\{u_{i, r i}, v_{i+1,1}: 1 \leq i \leq \tau-1\right\}
$$

$|V|=\sum_{i=1}^{\tau}\left(r_{i}+s_{i}\right),|E|=(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)$
We define a function $f: V(G) \rightarrow\{a, a+d, a+2 d, a+3 d, \ldots, 2(a+q d)\}$
$f\left(u_{1, \zeta}\right)=a+(\zeta-1) d, 1 \leq \zeta \leq r_{1}$
$f\left(v_{1, \kappa}\right)=a+\left[\left[(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right]-r_{1}(\kappa-1)\right] d, 1 \leq \kappa \leq s_{1}$
$f\left(u_{i, \zeta}\right)=a+\left[\sum_{l=1}^{i-1} r_{l}+(\zeta-1)\right] d, 2 \leq i \leq \tau, 1 \leq \zeta \leq r_{i}$

$$
\begin{gathered}
f\left(v_{i, \kappa}\right)=a+\left[\left[(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right]-\sum_{l=1}^{i-1} r_{l}\left(s_{l}-1\right)-(i-1)-r_{i}(\kappa-1)\right] d \\
2 \leq i \leq \tau, 1 \leq \kappa \leq s_{i}
\end{gathered}
$$

Table 2: Edge labels of the graph $<K_{r_{1}, s_{1}}, K_{r_{2}, s_{2}}, \ldots, K_{r_{\tau}, s_{\tau}}>, \tau \geq 2$

$\boldsymbol{f}^{*}(\boldsymbol{u} \boldsymbol{v})$, $\forall \boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})$	Edge labels
$f^{*}\left(u_{1, \zeta} v_{1, k}\right)$	$\left[(\zeta-1)-\left[(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right]-r(\kappa-1)\right] d$, $1 \leq \kappa \leq s_{1}, 1 \leq \zeta \leq r_{1}$
$f^{*}\left(u_{i, \zeta} v_{i, k}\right)$	$\left[\begin{array}{l}\left.\sum_{l=1}^{i-1} r_{l}+(\zeta-1)-\left[\begin{array}{c}\left.\text { (}-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right] \\ -\sum_{l=1}^{i-1} r_{l}\left(s_{l}-1\right)-(i-1)-r_{i}(\kappa-1)\end{array}\right]\right] d, \\ 2 \leq i \leq \tau, 1 \leq \zeta \leq r_{i}, 1 \leq \kappa \leq s_{i}\end{array}\right.$

It is clear that the function f is injective and also table 2 shows that
$f^{*}: E \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph $<K_{r_{1}, s_{1}}, K_{r_{2}, s_{2}}, \ldots, K_{r_{\tau}, s_{\tau}}>, \tau \geq 2$ is arithmetic sequential graceful graph.

Example 2.2.1: Path union of $G=<K_{3,4}, K_{3,3}, K_{2,3}>$ and its graceful labeling shown in figure-2.

Figure-2: Path union of $G=<K_{3,4}, K_{3,3}, K_{2,3}>$ and its graceful labeling.
Theorem 2.3: The join sum of complete bipartite graph is Arithmetic Sequential Graceful labeling.

Proof: Let G be a $\left\langle K_{r_{1}, S_{1}}, K_{r_{2}, S_{2}}, \ldots, K_{r_{\tau}, S_{\tau}}\right\rangle$ graph, $\tau \geq 2$.

$$
\begin{aligned}
V(G)= & \left\{u_{i, \zeta}: 1 \leq i \leq \tau, 1 \leq \zeta \leq r_{i}\right\} \cup\left\{v_{i, \kappa}: 1 \leq i \leq \tau, 1 \leq \kappa \leq s_{i}\right\} \\
& \cup\left\{w_{i}: 1 \leq i \leq \tau-1\right\} \text { and }
\end{aligned}
$$

$E(G)=\left\{u_{i, \zeta} v_{i, \kappa}: 1 \leq i \leq \tau, 1 \leq \zeta \leq r_{i}, 1 \leq \kappa \leq s_{i}\right\} \cup\left\{u_{i, r_{i}}, w_{i}\right\}: 1 \leq i \leq \tau-1$
$\cup\left\{w_{i}, u_{i+1}, 1 \leq i \leq \tau-1\right\}$
$|V|=(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i}+s_{i}\right),|E|=2(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)$
We define a function $f: V(G) \rightarrow\{a, a+d, a+2 d, a+3 d, \ldots, 2(a+q d)\}$
$f\left(u_{1, \zeta}\right)=a+(\zeta-1) d, 1 \leq \zeta \leq r_{1}$
$f\left(v_{1, \kappa}\right)=a+\left[\left[2(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right]-r_{1}(\kappa-1)\right] d, 1 \leq \kappa \leq s_{1}$
$f\left(w_{\zeta-1}\right)=a+\left[2(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)-\left[\sum_{l=1}^{\zeta-1} r_{l}\left(s_{l}-1\right)\right]-(2 \zeta+3)\right] d, 2 \leq \zeta \leq \tau$
$f\left(u_{i, \zeta}\right)=a+\left[\sum_{l=1}^{i-1} r_{l}+(\zeta-1)\right] d, 2 \leq i \leq \tau, 1 \leq \zeta \leq s_{i}$
$f\left(v_{i, k}\right)=a+\left[\left[2(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right]-\sum_{l=1}^{i-1} r_{l}\left(s_{l}-1\right)-2(i-1)-r_{i}(\kappa-1)\right] d$,

$$
2 \leq i \leq \tau, 1 \leq \kappa \leq s_{i}
$$

Table 3: Edge labels of the graph $<K_{r_{1}, s_{1}}, K_{r_{2}, s_{2}}, \ldots, K_{r_{\tau}, s_{\tau}}>, \tau \geq 2$

$\boldsymbol{f}^{*}(\boldsymbol{u} \boldsymbol{v}), \forall \boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})$	Edge labels
$f^{*}\left(u_{1, \zeta} v_{1, \kappa}\right)$	$\left[(\zeta-1)-\left[2(\tau-1)+\sum_{i=1}^{\tau}\left(r_{i} s_{i}\right)\right]-r_{1}(\kappa-1)\right] d$,
$1 \leq \kappa \leq s_{1}, 1 \leq \zeta \leq r_{1}$.	

It is clear that the function f is injective and also table 3 shows that
$f^{*}: E \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph $<K_{r_{1}, s_{1}}, K_{r_{2}, s_{2}}, \ldots, K_{r_{\tau}, s_{\tau}}>, \tau \geq 2$ is arithmetic sequential graceful graph.

Illustration 2.3.1: Join sum of $G=<K_{3,4}, K_{3,3}, K_{2,3}>$ and its graceful labeling shown in figure-3.

Figure-3: Join sum of $G=<K_{3,4}, K_{3,3}, K_{2,3}>$ and its graceful labeling.
Theorem 2.4: The graph $\mathcal{S}\left(\tau . K_{r, s}\right)$ is Arithmetic sequential graceful labeling.
Proof: Let G be a $\mathcal{S}\left(\tau . K_{r, s}\right)$ graph.
$V(G)=\left\{u_{l i}: 1 \leq l \leq \tau, 1 \leq i \leq r\right\} \cup\left\{v_{l \zeta}: 1 \leq l \leq \tau, 1 \leq \zeta \leq s\right\} \cup\left\{u_{0}\right\}$ and
$E(G)=\left\{v_{l \zeta} u_{l \zeta}: 1 \leq l \leq \tau, 1 \leq \zeta \leq s, 1 \leq i \leq r\right\} \cup\left\{u_{0} u_{l, 1}: 1 \leq l \leq \tau\right\}$
$|V|=\tau(r+s)+1, \quad|E|=\tau(r s+1)$
We define a function $f: V(G) \rightarrow\{a, a+d, a+2 d, a+3 d, \ldots, 2(a+q d)\}$
$f\left(u_{0}\right)=a$
$f\left(v_{1, \zeta}\right)=a+\zeta d, 1 \leq \zeta \leq s$
$f\left(u_{1, i}\right)=a+[\tau(r s+1)-(i-1) s] d, 1 \leq i \leq r$
$f\left(v_{2, \zeta}\right)=f\left(v_{1, \zeta}\right)+[\tau(r s+1)-(r s+1)] d, 1 \leq \zeta \leq s$

$$
\begin{aligned}
f\left(u_{2, i}\right) & =f\left(u_{1, i}\right)-[\tau(r s+1)-(r s+1)] d, 1 \leq i \leq r \\
f\left(v_{l, \zeta}\right) & =f\left(v_{l-2, \zeta}\right)-\left[(-1)^{l}(r s+1)\right] d, 1 \leq \zeta \leq s, 3 \leq l \leq \tau \\
f\left(u_{l, i}\right) & =f\left(u_{l-2, i}\right)-\left[(-1)^{l}(r s+1)\right] d, 1 \leq i \leq r, 3 \leq l \leq \tau
\end{aligned}
$$

From the function $f^{*}: E(G) \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ we get the edge labels of the graph $S\left(\tau . K_{r, s}\right), s \geq 1$ as follows

Table:4 Edge labels of the graph $S\left(\tau . K_{r, s}\right), s \geq 1$
\(\left.\left.$$
\begin{array}{|c|l|}\hline \boldsymbol{f}^{*}(\boldsymbol{u} \boldsymbol{v}), \forall \boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G}) & \text { Edge labels } \\
\hline f^{*}\left(u_{0}, u_{1,1}\right) & {[\tau(r s+1)] d} \\
\hline f^{*}\left(u_{0}, u_{2,1}\right) & (r s+1) d \\
\hline f^{*}\left(u_{0}, u_{l, i}\right) & f\left(u_{l-2, \mathrm{i}}\right)+\left[(-1)^{l}(r s+1)\right] d, \\
1 \leq \mathrm{i} \leq r, 1 \leq \zeta \leq s\end{array}
$$\right] \begin{array}{l}{[\tau(r s+1)-(\mathrm{i}-1) s-\zeta] d,}

1 \leq \mathrm{i} \leq r, 1 \leq \zeta \leq s\end{array}\right]\)\begin{tabular}{l}
$1 \leq \mathrm{i} \leq r, 1 \leq \zeta \leq s$

\hline$f^{*}\left(v_{1 \zeta}, u_{1, i}\right)$

\hline$f^{*}\left(v_{2, \zeta}, u_{2, i}\right)$

\hline$f^{*}\left(v_{l, \zeta}, u_{l, i}\right)$

$f\left(u_{l-2, i}\right)-f\left(v_{l-2, \zeta}\right)+2\left[(-1)^{l}(r s+1)\right] d$,

$3 \leq l \leq \tau, 1 \leq i \leq r, 1 \leq \zeta \leq s$

\hline
\end{tabular}

It is clear that the function f is injective and also table 4 shows that $f^{*}: E \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph $S\left(\tau . K_{r, s}\right)$ is arithmetic sequential graceful graph.

Illustration 2.4.1: $\mathcal{S}\left(3 . K_{r, s}\right)$ and its graceful labeling shown in figure-4.

Figure -4: $\mathcal{S}\left(3 . K_{r, s}\right)$ and its graceful labeling.
Theorem 2.5: The graph $\mathcal{S}\left(K_{r, s}\right)$ admits Arithmetic Sequential Graceful labeling.
Proof: Let $V(G)=\left\{u_{0, i}: 1 \leq i \leq r\right\} \cup\left\{v_{0, \zeta}: 1 \leq \zeta \leq s\right\}$
$\cup\left\{u_{\kappa, i}: 1 \leq \kappa \leq r+s, 1 \leq i \leq r\right\}$
$\cup\left\{v_{\kappa, \zeta}: 1 \leq \kappa \leq r+s, 1 \leq \zeta \leq s\right\}$ and

$$
\begin{aligned}
E(G)= & \left\{u_{0, i} v_{0, \zeta}: 1 \leq i \leq r, 1 \leq \zeta \leq s\right\} \\
& \cup\left\{u_{\kappa, i} v_{\kappa, \zeta}: 1 \leq \kappa \leq r+s, 1 \leq i \leq r, 1 \leq \zeta \leq s\right\} \\
& \cup\left\{u_{0, i} u_{\kappa, i}: 1 \leq \kappa \leq r+s, 1 \leq i \leq r\right\} \\
& \cup\left\{v_{0, \zeta} v_{\kappa, \zeta}: 1 \leq \kappa \leq r+s, 1 \leq \zeta \leq s\right\} \\
|V|= & (r+s)(r+s),|E|=(r+s+1)(r s)+(r+s)
\end{aligned}
$$

We define a function $f: V(G) \rightarrow\{a, a+d, a+2 d, a+3 d, \ldots, 2(a+q d)\}$
$f\left(u_{0, i}\right)=a+(i-1) d, 1 \leq i \leq r$
$f\left(v_{0, \zeta}\right)=a+[(r+s+1) r s+(r+s)-(\zeta-1) r] d, 1 \leq \zeta \leq s$
$f\left(u_{1, i}\right)=a+[(r+s+1) r s+(r+s)-(r s+1)+i] d, 1 \leq i \leq r$
$f\left(v_{1, \zeta}\right)=a+(\zeta r) d, 1 \leq \zeta \leq s$
$f\left(u_{\kappa, i}\right)=f\left(u_{(\kappa-2), i}\right)+(r s+1) d, 2 \leq \kappa \leq r+s, 1 \leq i \leq r$
$f\left(v_{\kappa, \zeta}\right)=f\left(v_{(\kappa-2), \zeta}\right)-(r s+1) d, 2 \leq \kappa \leq r+s, 1 \leq \zeta \leq s$
From the function $f^{*}: E(G) \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ we get the edge labels of the graph as follows

Table:5 Edge labels of the graph $\mathcal{S}\left(K_{r, s}\right) s \geq 1$

$\boldsymbol{f}^{*}(\boldsymbol{u} \boldsymbol{v}), \forall \boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}(\boldsymbol{G})$	Edge labels
$f^{*}\left(v_{0, \zeta} u_{0, i}\right)$	$\begin{aligned} & {[(r+s+1) r s+(r+s)-(\zeta-1) r(i-1)] d,} \\ & 1 \leq i \leq r, 1 \leq \zeta \leq s \end{aligned}$
$f^{*}\left(v_{1, \zeta} u_{1, i}\right)$	$\begin{gathered} {[(r+s+1) r s+(r+s)-(r s+1)+i-\zeta r] d} \\ 1 \leq i \leq r, 1 \leq \zeta \leq s \end{gathered}$
$f^{*}\left(v_{\kappa, \zeta} u_{\kappa, i}\right)$	$\begin{aligned} & {\left[f\left(u_{(\kappa-2), i}\right)-f\left(v_{(\kappa-2), \zeta}\right)+2(r s+1)\right] d,} \\ & \quad 2 \leq \kappa \leq r+s, 1 \leq i \leq r, 1 \leq \zeta \leq s \end{aligned}$
$f^{*}\left(u_{0,1} u_{1, i}\right)$	$\begin{aligned} & {[(r+s+1) r s+(r+s)-(r s+1)+i] d} \\ & 1 \leq i \leq r \end{aligned}$
$f^{*}\left(u_{0, i} u_{i, i}\right)$	$\begin{aligned} & {\left[f\left(u_{(i-2), i}\right)+(r s+1) d-(a+(i-1) d)\right]} \\ & 2 \leq i \leq r \end{aligned}$
$f^{*}\left(v_{0,1} v_{(r+1), 1}\right)$	$[(r+s+1) r s+r+s-r] d$
$f^{*}\left(v_{0, \zeta} v_{(r+\zeta), \zeta}\right)$	$\begin{aligned} & {\left[f\left(v_{(\zeta-2), \zeta)}\right)-(r s+1) d\right]-\left[a+\left[\begin{array}{c} (r+s+1) r s \\ +(r+s)-(\zeta-1) r \end{array}\right] d,\right.} \\ & 2 \leq \zeta \leq s \end{aligned}$

It is clear that the function f is injective and also table 5 shows that
$f^{*}: E \rightarrow\{d, 2 d, 3 d, 4 d, \ldots, q d\}$ is bijective. Hence $\mathcal{S}\left(K_{r, s}\right)$ is arithmetic sequential graceful graph.

Illustration 2.5.1: $\mathcal{S}\left(K_{3,2}\right)$ and its graceful labeling shown in figure -5 .

Figure -5: $\mathcal{S}\left(K_{3,2}\right)$ and its graceful labeling.

3. Conclusion

Here we demonstrated arithmetic sequential graceful labeling of some graphs obtained by complete bipartite graphs. Present work contributes five new results. We discussed gracefulness complete bipartite graph, Open star of graph, Join sum of graph, Path union graph. The labeling patten is showed by means of illustrations which dispense better understanding of attained results.

References

1. Barnes, J. A., \& Harary, F. (1983). Graph theory in network analysis. Social networks, 5(2), 235-244.
2. Rosa, A. (1967). On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966).
3. Gallian J A, "A dynamic survey of Graph labeling", The Electronic Journal of Combinatorics, (2020), pp. 77-81.
4. S. W. Golomb, How to number a graph, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York, (1972) 2337
5. Kaneria, V. J., Meghpara, M., \& Makadia, H. M. (2014). Graceful labeling for open star of graphs. Int. J. Math. Stat. Invention,(IJMSI), 2(9), 19-23.
6. Kaneria, V. J., \& Makadia, H. M. (2012). Some graceful graphs. Journal of Mathematics Research, 4(1), 54.
7. Kumar, A., Dhabliya, D., Agarwal, P., Aneja, N., Dadheech, P., Jamal, S. S., \& Antwi, O. A. (2022). Cyber-internet security framework to conquer energy-related attacks on the internet of things with machine learning techniques. Computational Intelligence and Neuroscience, 2022 doi:10.1155/2022/8803586
8. Kumar, S. A. S., Naveen, R., Dhabliya, D., Shankar, B. M., \& Rajesh, B. N. (2020). Electronic currency note sterilizer machine. Materials Today: Proceedings, 37(Part 2), 1442-1444. doi:10.1016/j.matpr.2020.07.064
9. Mandal, D., Shukla, A., Ghosh, A., Gupta, A., \& Dhabliya, D. (2022). Molecular dynamics simulation for serial and parallel computation using leaf frog algorithm. Paper presented at the PDGC 2022-2022 7th International Conference on Parallel, Distributed and Grid Computing, 552-557. doi:10.1109/PDGC56933.2022.10053161 Retrieved from www.scopus.com
10. Kaneria, V. J., Makadia, H. M., Jariya, M. M., \& Meghpara, M. (2014). Graceful labeling for complete bipartite graphs. Appl. Math. Sci, 8(103), 5099-5104.
11. Barrientos, C. (2005). The gracefulness of unions of cycles and complete bipartite graphs. J. Combin. Math. Combin. Comput, 52, 69-78.
12. Sumathi P, Geetha Ramani G (2022) Arithmetic Sequential Graceful Labeling on Star Related Graphs. Indian Journal of Science and Technology 15(44): 2356-2362. https://doi.org/ 10.17485/IJST/v15i44.1863
