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Abstract 

In this article, we present test statistics for assessing the compatibility of a 

multivariate random sample with the multivariate normal distribution. 

Three criteria are used to develop the proposed tests: the empirical 

multivariate moment generating function, mixed partial functional 

moments, and the empirical distribution function (EDF). The suggested 

tests are weighted integrals of the deviance or square deviance of the 

EMGF from the MGF, weighted integrals of the deviance or square 

deviance between the EMPM and the MPM, and EDF-type tests based on 

the stochastic ordering of the d-dimensional sample points. We derive 

computational forms of the proposed tests and conduct simulations to find 

their approximate critical values at a nominal level of 0.05. In addition, 

simulations approximate the powers of the proposed tests for various 

sample sizes when testing the bivariate normal distribution against a set of 

alternatives. The results show that the proposed tests compete well with 

some existing ones. 

 

Keywords:Multivariate normal distribution, goodness-of-fit tests, moment 

generating functions-based tests, partial functional moments-based tests, 

empirical distribution function-based tests, power. 

 

1. Introduction 

Many test procedures have been used in the literature to test data compatibility to a bivariate or 

multivariate normal distribution. These procedures are based on some distributional attributes, as in 

the univariate case. Based on attributes, there are several approaches to constructing test statistics, 

such as graphical, moments, characteristic function, moment generating function, and empirical 

distribution function approach. Analogous to the univariate case, graphical methods have been 

developed to test for MV normality. For example, Mardia (1970) and Ozturk (1992) suggested 

various Q-Q plot tests based on Mahalanobist distance. Other graphical tests using T_3-plot, which 

is a plot based on an estimate of the third cumulant, were suggested by Ghosh (1996). 

Regarding moments-based tests, Mardia (1970, 1975), Malkovich and Afifi (1973), Small (1980), 

Mardia and Foster (1983), BozdoganRamirezand (1986), and Zhou and Y. Shao (2014) developed 

tests using skewness and kurtosis. 
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If X1, … , Xn  is a random sample from a k-variate normal distribution with a mean μ and variance-

covariance matrix Σ, then Ψ Xi , μ, Σ =  Xi − μ ′Σ−1 Xi − μ  are independent χk
2 variates. Utilizing 

this property, univariate empirical distribution function tests, including Kolmogorov-Smirnov, 

Cramer-von-Mises, and Anderson-Darling tests, can be applied to test multivariate normality by 

testing that Ψ Xi , μ, Σ  are independent and identically distributed χk
2 random variables. Koziol 

(1982, 1983) developed testprocedures utilizing this property. Sze'kelya and Rizzo (2005) and 

McAssey (2013) proposed tests based on the Mahalanobist distance, which is defined as the square 

root of  Xi − μ ′Σ−1 Xj − μ . 

Extending the Kolmogorov-Smirnov goodness of fit test and other empirical distribution function 

tests to the multivariate case was considered by many authors such as Peacock (1983), Fasano and 

Franceschin (1987), Cabaña and Cabaña (1997),  Justel et al. (1997), Lopes et al. (2007), Chiu and. 

Liu (2009), Kesemen et al. (2021). 

Epps and Pully (1983) proposed a test for the univariate normal distribution based on the 

empirical characteristic function; Baringhaus and Henze (1988), Henze and Wagner (1997), and Fan 

(1997) extended this approach to the multivariate case. In addition, there are other tests based on 

criteria different from the ones mentioned above, such as those of Royston (1992), Mudholkar et al. 

(1992), Sürücü (2006), and Zhang et al. (2012), to name a few. Finally, the Mardia (1980) article 

reviews univariate and multivariate goodness of fit tests before 1980.  

Based on a random sample X1, … , Xn , Zghoul (2010) proposed the following univariate normality 

test 

Tn,β = n   
∞

−∞

 Mn(t) − M0(t) 2exp −βt2 dt 

where M0(t) = exp t2/2 , t ∈ ℝ, is the moment generating function of the standard normal 

distribution,  β is a fixed positive parameter, and 

Mn(t) =
1

n
  

n

j=1

exp tYn,j , t ∈ ℝ 

is the empirical moment generating function of the standardized variables,  

Yn,j =
Xj − X n

Sn
, j = 1, … , n. 

The null hypothesis X1 is N(μ, σ2) is rejected for large values of Tn,β . 

The test of Zghoul showed strong compatibility with prominent tests such as the Anderson–

Darling test, the Shapiro–Wilk test, the Epps–Pulley test, and the D'Agostino test. This test was 

studied further by Henze and Kotch (2017), who proved that the test has attractive properties. They 

showed that the test has a non-degenerate asymptotic null distribution and is consistent against 

general alternatives. They also showed that an affine transformation of the test statistic has a non-

generic asymptotic distribution. Moreover, they proved that as the parameter associated with the 

weight function tends to infinity, an affine transformation of the test statistic approaches squared 

sample skewness. 

A test based on an empirical truncated mean was introduced and studied by Zghoul and Awad 

(2010). 
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 The test is a weighted L2-type statistic and is given by  

Tn  = n∫−∞

∞
  n−1∑i=1

n  ZjIZ j >𝑡 − ϕ(t) 
2

ϕ(t)dt. 

 Zj  here is the standardized variable Zj = (Xj − μ)/ σ.  

The idea of the test is based on the fact that if f is a differentiable density function on ℝ, and t is a 

nonzero real number, then 

∫  
∞

t
xf(x)dx = f t  if and only if  f(x) = (2π)−1e−

x 2

2 . 

Under the null hypothesis Xj~N μ, σ2 , and  ϕ t  is the expected value of the truncated variable 

ZjIZ j >𝑡 , where I is the usual indicator function. That is, 

ϕ t = E  ZjIZ j >𝑡 =
1

 2π
∫t

∞
 z e−z2/2 dz. 

ϕ t  is also used as a weight function in (2). By the laws of large numbers, n−1∑i=1
n  ZjIZ j >𝑡 

converges to its mean ϕ t . Thus, if the sample is from a distribution other than the normal 

distribution, the value of the test T is expected to be significantly large, in which case the null 

hypothesis will be rejected. This test also competes well with classical goodness of fit tests.  

As we mentioned at the beginning of this section, many articles addressed goodness of fit for 

multivariate distributions, including the multivariate normal. Nevertheless, there is still room to add 

to the field because, although some tests perform better than others, none of the suggested tests is 

best for all alternatives. In this article, we extend the tests of Zghoul (2010) and Zghoul and Awad 

(2010) to higher dimensions. First, test statistics will be introduced, and their computational forms 

will be derived. Next, the properties of the suggested tests will be studied, and then simulations will 

be conducted to compare the introduced tests with other multivariate tests. 

 2. Test Statistics 

Let X1, X2, … , Xn  be d-dimensional independent and identically distributed (iid) random vectors 

sampled from an absolutely continuous distribution function with mean μ and nonsingular 

covariance matrix Σ. Our purpose is to test the null hypothesis H0: Xj  is distributed  Nd(μ, Σ) against 

the alternative that it is not, where Nd(μ,Σ) denotes a d-dimensional normally distributed random 

vector with mean μ and covariance matrix Σ. We will first introduce two tests based on the empirical 

MGF. It is easy to verify that if X~Nd(μ, Σ), then Z=Σ−
1

2 X − μ  is distributed Nd(0, Id), where Id  is 

d × didentity matrix. The sample mean and sample covariance matrix are calculated as X n =

n−1 ∑ Xj
n
j  and Sn = n−1∑j=1

n   Xj − X n  Xj − X n 
′
. 

In this section, we propose two tests based on the empirical moment generating function and two 

other tests based on the partial sample mean. 

2.1 Tests based on the empirical moment generating function  

Under H0 , the MGF of Z is MZ t = exp(−
1

2
t′ t), where t ∈ ℝd , and t′  is the transpose of t. The 

empirical MGF based on a random sample of size n from a d-dimensional distribution is 
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Mn t =
1

n
  

n

j=1

exp t′Zj . 

We will consider the following two-sided test based on the deviance of the empirical moment 

generating function from its mean. 

MT1 =  n   
∞

−∞
 

1

n
  

n

j=1

exp t′Zj − exp  −
1

2
t′ t  exp(−βt′t)dt. 

Applying the integral on both terms of the integrand yields the following computational form for 

MT1: 

MT1 =   
π

β
 

d

2 1

 n
  

n

j=1

ex p    

d

i=1

Zij
2

4β
 −  n  

2π

1 + 2β
 

d

2

. 

A weighted L2 − type test statistic usually has the form  

n   
∞

−∞

 Ψn X, t − Ψ0 t  
2
ω t dt, 

where for each t, Ψn  is a function of the sample, Ψ0 t = E Ψn X, t  , and ω t is a conveniently 

chosen weight function. Setting Ψn Z, t = Mn t ,  Ψ0 t = MZ t , and  ω t = exp(−βt′t), we 

propose the following test for multivariate normality. 

MT2 = n   
∞

−∞

 
1

n
  

n

j=1

exp t′Zj − exp −
1

2
t′ t  

2

exp(−βt′t)dt. 

We may notice that the MT1 test is just a weighted integral of the bias of Mn t  as an estimator 

for MZ t , and the MT2 test is a weighted integral of the mean square error of Mn t  as an estimator 

for MZ t . If the null hypothesis is true, the laws of large numbers assure the convergence of  Mn t  

to its expectation MZ t , hence  MT1  and MT2 are expected to be small, especially for large 

samples. Thus, it is convenient to propose rejecting H0 for large values of Tn . 

When  μ and Σ are unknown, which is usually the case, they will be replaced by their maximum 

likelihood estimates,  X n =
1

n
∑j=1

n  Xj  and Sn =
1

n
∑j=1

n   Xj − X n  Xj − X n 
′
, respectively. In this case, 

we set Zj = Sn
−1/2 Xj − X n , j = 1, … , n. 

A computational form of Tn,1can be obtained by expanding the integrand and applying term-by-

term integration: 

MT2 =
1

n
  

n

j,k=1

  ex p t′ Zj + Zk − βt  dt
∞

−∞

− 2   

n

j=1

  ex p  t′Zj −  
1

2
+ β t′ t dt +

∞

−∞

n   
∞

−∞

exp −(1 + β)t′ t  dt   
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        =  
π

β
 

d

2 1

n
  

n

j,k=1

exp    

d

i=1

 Zij + Zik 
2

4β
 − 2  

2π

1 + 2β
 

d

2

  

n

j=1

ex p    

d

i=1

Zij
2

2 + 4β
 + n  

π

1 + β
 

d

2
. 

 

2.2 Tests Based on Partial Functional Mean Characterization 

Let X be a random variable with an absolutely continuous distribution function F and probability 

density function f. We define the partial functional mean of  ψ(X) on the interval [−∞, t] as  

 μ t =  ψ(z )f z 
t

−∞

dz,  

where ψ  is chosen in such a way that the integral exists. We extend this definition to the 

multivariate case. See Mazouz and Zghoul (2022). 

Definition 4.1.  Let Z = (Z1, Z2, … , Zd) be a d-dimensional random vector with a continuous 

density function f defined on ℝdand ψ Z  is a function of Z, then for any t = (t1, … , td) ∈ ℝd ,  

 μ t1, … , td =  … ψ z f z 
td

−∞

dz
t1

−∞

 (5.1) 

is called the partial functional mean of ψ Z , provided the integral exists.  

In the following theorem, we prove a characterization of the MVN based on a partial functional 

mean.  

 

Theorem 2.1: Given a d-dimensional vector of random variables X with joint probability density 

function f(x): ℝd → ℝ whose all first partial derivatives exist, then  

∫  
∞

A(t)
    xj

d
j=1  f x dx = f t  iff f t =  ϕ(tj)

d
j=1  

where  A t =  [tj
d
j=1 , ∞), ϕ t = (2π)−1e−t2/2, and t is a nonzero vector of real numbers. 

Proof: Assume f t =  ϕ(tj)
d
j=1 , then  

  
∞

A(t)

   xj

d

j=1

 f x dx =   
∞

A(t)

  xj

d

j=1

 ϕ(xj)

d

j=1

 dx 

=    
∞

tj

d

j=1

 xj  ϕ xj dxj 

=    
∞

tj

d

j=1

−  ϕ′ xj dxj  

=  ϕ tj 

d

j=1

. 

Conversely, let ∫  
∞

A(t)
    xj

d
j=1  f x dx = f t , then stepwise partial differentiation of both sides of 

() with respect to tj, j = 1, … , d, yields 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
1158 

 
 

Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

 

 −1 d   tj

d

j=1

  f t =
∂

∂t
f t . 

A rearrangement of the above equation gives  
∂

∂t
f(t)

f(t)
=  −1 d   tj

d

j=1

  

The solution of this equation, after a proper normalization, is f t =  ϕ(tj)
d
j=1 .  

 

Now, let 

μX t =    xj

d

j=1

 

∞

A(t)

  f x dx =  ϕ(tj)

d

j=1

 

If X1, … , Xn  is a random sample from a d-variate normal distribution with a mean μ and variance-

covariance matrix Σ, then 

Zj = Σ−
1

2 Xj − μ ~N 0, Id . 

Therefore, the empirical analog of μX t  is 

ψn t =
1

n
   zij

d

j=1

IZij >𝑡
i
 

n

i=1

. 

 

Utilizing the characterization of Theorem 1, we introduce two test statistics:  

 A weighted integral of the deviance of the empirical from the theoretical partial functional 

mean,  

PM1 =   ψn t − μX t  ω t dt
∞

−∞

. 

 A weighted integral of the squared deviance of the empirical from the theoretical partial 

functional mean,  

PM2 =   ψn t − μX t  
2
ω t dt

∞

−∞

, 

where the weight function ω(t) is chosen so that the integrals converge.  A convenient choice for 

ω(t) is  

ω t =  2πβ2 −d/2e−∑  tj
2/2β2 n

j=1 . 

By the laws of large numbers, for fixed t,  ψn t  converges to μX t  as n approaches ∞, PM1 and 

PM2 are expected to be small, especially for a reasonably large sample size. Therefore, the null 

hypothesis must be rejected for large absolute values of the tests. 

To derive a computational form for tests Tn
1 z , and Tn

2 z  we have  
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Tn
1 z =   

1

n
  zij

d

i=1

IZij >𝑡
i

n

i=1

−  ϕ(ti)

d

i=1

  2πβ2 −d/2e−∑  ti
2/2β2 n

i=1 dt

∞

−∞

 

=
1

𝑛
   𝑧𝑖𝑗

𝑑

𝑖=1

   2𝜋𝛽2 −𝑑/2𝑒−∑  ti
2/2𝛽2 𝑛

𝑖=1

𝑧 𝑖𝑗

−∞

𝑑𝑡𝑖

𝑛

𝑗 =1

+    𝜙 𝑡𝑗  

𝑑

𝑗=1

  2𝜋𝛽2 −𝑑/2𝑒−∑  tj
2/2𝛽2 𝑛

𝑗 =1 𝑑𝒕

∞

−∞

 

=
1

𝑛
  𝑧𝑖𝑗

𝑑

𝑖=1

Φ zij /𝛽 − [2𝜋𝛽2(𝛽2 + 1)]−𝑑/2

𝑛

𝑗 =1

. 

And  

𝑇𝑛
2 𝒛 =   

1

𝑛
  𝑧𝑖𝑗

𝑑

𝑖=1

𝐼Zij >𝑡
𝑖

𝑛

𝑗 =1

−  𝜙 𝑡𝑖 

𝑑

𝑖=1

 

2

 2𝜋𝛽2 −𝑑/2𝑒−∑  ti
2/2𝛽2 𝑛

𝑖=1 𝑑𝒕

∞

−∞

 

=
1

n2
  zij

d

i=1

zik   2πβ2 −d/2e−∑  tj
2/2β2 n

j=1

(zij ⋀zik )

−∞

dtj

n

j,k=1

−
2

n
  zij

d

i=1

  ϕ ti 

d

i=1

 2πβ2 −
d

2 e
−∑  

ti
2

2β2 n
i=1

dti

zij

−∞

n

j=1

+    ϕ ti 

d

i=1

 

2

 2πβ2 −
d

2 e
−∑  

ti
2

2β2 n
i=1

dti

∞

−∞

 

=
1

n2
  zijzik

d

i=1

Φ  (β2 + 1)/β2(zij⋀zik ) 

n

j,k=1

−
2[2π(β2 + 1)]−d/2

n
   zij

d

i=1

Φ( (β2 + 1)/β2zij + [2π(β2 + 1)]−d/2

n

j=1

. 

 

2.3 Empirical Distribution Function based tests 

Following Koziol (1982), three tests analogous to the Kolmogorov-Smirnov, Cramer-von Mises, 

and Anderson-Darling tests are considered. To conduct these tests, we first compute the value of the 

null distribution at each of the d-dimension sample points, then sort these values, and then evaluate 
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the value of the tests as in the univariate case. To illustrate, let zij , i = 1 … , d; j = 1, … , n, be the 

sample points from some d-dimensional distribution, and F0(z1j, z2j , … , zdj ) are the sorted values of 

the assumed distribution under the null hypothesis, then the computation formulas for KS, CvM, and 

AD tests: 

a) KS = max1≤j≤n   F0( z1j, z2j, … , zdj ) −
i−1

n
,

i

n
− F0( z1j , z2j, … , zdj )  

b) CvM =
1

12n
+ ∑j=1

n    
2j−1

2n
− F0( z1j, z2j , … , zdj ) 

2

 

c) AD =

−n − ∑  n
j=1

2i−1

n
 ln  F0 z1j, z2j , … , zdj  + ln  1 − F0 z1 n+1−j , z2 n+1−j ,… , zd n+1−j    . 

3. Simulated Percentage Points 

In this section, we simulate specific percentiles for the proposed tests and other tests to which the 

performance of the proposed tests will be compared. The percentiles required to calculate the powers 

of tests for significance levels α = 0.01, 0.05, and 0.1, and sample sizes n = 20, 30, 50, and 100 

will be simulated. In each case, 10,000 replications will be performed. In addition to the suggested 

tests, the following tests will be considered for comparison purposes:  

 

1) Mardia (1970) tests 

 

 a) Skewness-based test: 

 

MA =
1

6n
∑i=1

n  ∑j=1
n    xi − X n 

′Σ −1 xj − X n  
3
 

where  

Σ =
1

n
∑j=1

n   Xj − X n  Xj − X n 
′

 

b) Kurtosis-based test: 

 

MB =  
n

8d(d + 2)
 
1

n
∑i=1

n    Xi − X n 
′Σ −1 Xi − X n  

2
− d(d + 2) . 

2) Characteristic function-based test:  

 

Baringhaus and Henze (1988) developed this test as a generalization of the univariate normality 

test by Epps and Pully (1983). 
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BHEP = n∫ℝd    
1

n
∑j=1

n  eit′ Σ −1/2 Xj−X n  − e−|t|2/2 
2

ω(t)dt 

=
1

n
∑i,j=1

n  e−
1

2
 X i−Xj 

′
Σ −1 Xi−X j − 21−d/2  ∑j=1

n  e−
1

4
 X i−Xj 

′
Σ −1 Xi−X j + n3−d/2. 

We will restrict our computations to the two-dimensional case. 

The simulated critical values for all tests under consideration at α = 0.1, 0.05, and 0.01 levels for 

the one-sided and two-sided tests and different sample sizes are displayed in Tables 1 and 2.  

 

Table 1. Simulated critical values at 𝛼 = 0.1, 0.05, 0.01 for the one-sided tests under 

consideration for sample sizes 𝑛 = 10, 20, 30, 50. 

 

 

 

Test 

 

n 

𝛼 

Test 

𝛼 

0.1 0.05 0.01 0.1 0.05 0.01 

90% 95% 99% 90% 95% 99% 

MA 10 

20 

30 

50 

4.874 

6.328 

6.840 

7.163 

6.303 

7.994 

8.565 

9.083 

8.289 

11.833 

12.573 

13.036 

CvM 0.724 

1.313 

1.888 

3.028 

0.770 

1.375 

1.965 

3.138 

0.855 

1.514 

2.147 

3.320 

BHEP 10 

20 

30 

50 

0.456 

0.465 

0.468 

0.473 

0.516 

0.535 

0.538 

0.547 

0.661 

0.689 

0.706 

0.719 

AD 3.633 

6.418 

9.386 

15.059 

3.821 

6.756 

9.679 

15.465 

4.173 

7.353 

10.367 

16.136 

G 10 

20 

30 

50 

7.406 

10.275 

12.254 

13.045 

9.422 

13.950 

16.648 

17.678 

14.351 

26.307 

29.938 

30.984 

MGF2 1.390 

3.088 

4.582 

7.804 

1.564 

3.470 

5.345 

8.954 

2.048 

4.822 

7.422 

12.244 

 

Table 2. Simulated critical values at α = 0.1, 0.05, 0.01 for the two-sided tests under 

consideration for sample sizes n = 10, 20, 30, 50. 

 

Test 

 

 

 

N 

𝛼 

0.1 0.05 0.01 

 5% 95% 2.5% 97.5% 0.5% 99.5% 

MB 10 

20 

30 

50 

-1.160 

-1.250 

-1.343 

-1.419 

 

0.215 

0.611 

1.105 

1.233 

-1.234 

-1.339 

-1.473 

-1.578 

0.404 

1.281 

1.534 

1.652 

-1.347 

-1.421 

-1.697 

-1.867 

0.854 

1.651 

2.378 

2.831 

MGF1 10 

20 

30 

2.458 

3.505 

4.350 

2.660 

4.052 

4.785 

2.449 

3.514 

4.330 

2.660 

3.948 

4.880 

2.434 

3.533 

4.298 

2.763 

3.837 

5.140 
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50 5.663 

 

6.170 5.639 6.277 5.599 

 

6.676 

PM1 10 

20 

30 

50 

-0.033 

-0.032 

-0.031 

-0.031 

 

-0.025 

-0.024 

-0.027 

-0.027 

 

-0.033 

-0.032 

-0.032 

-0.031 

-0.024 

-0.026 

-0.026 

-0.027 

-0.034 

-0.032 

-0.032 

-0.032 

-0.023 

-0.026 

-0.025 

-0.026 

 

4. Power simulation and Conclusions  

 

Simulated powers of the proposed tests and other tests, which are taken into account, are 

displayed in Table 3. The powers are calculated at nominal level α and samples of size n =

10, 20, and 50 against the following alternatives: 

 Bivariate Student T distributions with 2 and 8 degrees of freedom; BT(2) and BT(8).  

 Bivariate chi-square distribution with 4 degrees of freedom; BCHI(4). 

 Bivariate Skew Normal distribution with shape parameters 0.5 and 0.9; BSKN(0.5) and 

BSKN(0.9). 

 Bivariate Stable distribution with index parameter α = 1.2 and skewness parameter β =

−0.8 and 0.8; STB(1.2,-0.8) and BSTB(1.2,0.8). 

 Bivariate Lognormal distribution with shape parameters 0.2, 0.5, and 1; BLN(0.2), BLN(0.5), 

and BLN(1). 

 

Table 3. Simulated power points (rejection proportions) for the tests under consideration at 

nominal level α = 0.05 when testing BVN against a set of alternatives. 

 

 𝐧 = 𝟏𝟎 

 Test 

Alternativ

e MA MB 

BHE

P 

MGF

1 

MGF

2 

PM

1 

PM

2 

G 

KS 

Cv

M AD 

BT(2) 47 44 47 52 19 23 12 50 17 15 11 

BT(8) 10 09 10 14 00 08 06 12 07 07 10 

BCH(4) 19 13 25 20 26 14 13 21 22 37 34 

BSN(.5) 04 05 05 08 05 06 05 05 05 05 04 

BSN(.9) 05 06 05 09 06 06 05 06 05 06 05 

BST(1.2,-

8) 

61 54 65 61 59 04 05 63 05 61 54 

BST(1.2,8

) 

59 52 62 60 58 14 14 61 44 59 51 

BLN(2) 07 07 08 11 09 09 08 08 10 13 11 

BLN(5) 22 16 28 24 29 14 13 25 23 38 22 

BLN(1) 58 44 70 54 60 18 16 58 48 58 44 
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 𝐧 = 𝟐𝟎 

 Test 

MA MB BHEP MGF1 MGF2 PM1 PM2 G KS CvM AD 

Alternative            

            

BT(2) 71 71 72 71 47 31 12 75 33 21 71 

BT(8) 19 15 14 17 14 13 05 21 11 08 07 

BCH(4) 51 25 58 29 48 18 11 45 55 75 51 

BSK(.5) 05 05 05 05 05 09 04 05 05 05 05 

BSK(.9) 05 06 06 06 05 08 03 06 05 06 06 

BST(1.2,-.8) 91 84 93 85 89 10 10 91 28 91 84 

BST(1.2,.8) 92 85 93 86 90 28 21 92 83 86 82 

BLN(.2) 14 09 14 10 17 12 06 14 22 24 14 

BLN(.5) 57 32 61 35 55 21 14 50 54 57 32 

BLN(1) 95 73 97 75 89 31 23 90 95 73 97 

 𝐧 = 𝟓𝟎 
 Test 

Alternative MA MB BHEP MGF1 MGF2 PM1 PM2 G KS CvM AD 
BT(2) 92 98 98 98 86 46 20 97 50 30 20 
BT(8) 31 36 24 33 27 14 08 39 09 08 05 

BCH(4) 96 59 97 58 81 22 20 86 80 99 96 
BSN(.5) 05 05 06 05 05 07 05 06 06 05 05 
BSN(.9) 06 06 06 06 06 07 06 07 07 08 08 

BST(1.2,-
.8) 

100 100 100 100 100 57 65 100 100 60 11 

BST(1.2,.8) 100 100 100 100 100 50 42 100 100 99 99 
BLN(.2) 37 18 32 18 30 11 09 30 27 45 47 
BLN(.5) 96 70 97 69 87 24 23 100 90 81 99 
BLN(1) 100 99 100 98 100 45 45 100 100 100 100 

 
We can draw the following conclusions from Table 3: 

 For most alternatives, the power increases considerably when n increases from 10 to 50.  

 All tests have poor performance when testing against bivariate skew-normal distributions. 

 None of the tests outperforms all of the others for all alternatives.  

 The power of all tests rises as the scale parameter increases when testing against a lognormal 

distribution.  

 Most of the tests perform well for stable distribution alternatives.  

 MB and MGF1 have almost similar performance for most alternatives, and MB and BHEP 

have almost similar performance for most alternatives. 

 Empirical distribution function-based tests, particularly KS and AD, perform best for CH(4) 

and LN(0.2) alternatives. 
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