
Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
1166 

 
 

Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

 

Analysis of Batch Encouraged Arrival Markovian Model Due to a 

Secondary Optional Service, Break-Down and Numerous Vacations 

Ismailkhan Enayathulla Khan
#1

, Rajendran Paramasivam
*2 

1 
Research Scholar, Department of Mathematics, School of advanced sciences, VIT University, 

Vellore-632014,INDIA 

E-mail: ismailkhan.e@vit.ac.in 
2 
Professor, Department of Mathematics, School of advanced sciences, VIT University, Vellore-

632014,INDIA 

* Correspondence: E-mail: prajendran@vit.ac.in. 

 
 

Article Info 

Page Number:1166 - 1177 

Publication Issue: 

Vol 72 No. 1 (2023) 

 

 

 

Article History 

Article Received: 15 October 2022 

Revised: 24 November 2022 

Accepted: 18 December 2022 

 

Abstract 

In this study, we describe a batch encouraged arrival Markovian queuing 

model due to a secondary optional service, breakdown and numerous 

vacations. In this model, encouraged arrival is introduced, the server goes 

on vacation every time the system empties and the length of the vacation 

is predicted to follow an exponential distribution. If the server returns 

from vacation and there are no customers in line, he will take another 

vacation until there is at minimum one unit in the system. The steady-state 

findings have been derived and the time-dependent Probability- 

Generating- Functions (PGF) have been determined in terms of their 

Laplace transforms. In this model, we also discover the average queue 

length and average waiting time have been obtained. 

Keywords: - Markovian model; break-down; encouraged arrival; 

numerous vacation; queue length 

 

 

Introduction 

In the literature on queuing theory, the study of queuing systems with server vacation has expanded 

in scope and interest. Server vacations are used to make better use of downtime. Vacation queuing 

models have been successfully used to a variety of situations, including production, financial 

services, telecommunication networks, internet technology, etc. Many researchers are interested in 

researching queuing models with various vacation rules, including single and multiple vacation 

policies. 

In [1], we examine several elements of the M/G/1 queuing model with possible second service. We 

looked at a group arrival queuing system with an extra service channel in [2]. We investigated at an 

M/G/1 queuing system that included two phases of service and D-policy in [3].  We studied at an 

M/G/1 queue with two phases of service and numerous efforts at moving the queue into a steady 

state in [4]. In [5], we looked into a vacation queuing system with service interruptions. An M/G/1 

Queuing model under the second optional service, general service time distribution was examined 

in [6]. We investigated batch arrivals queuing model  with system failures, start and closed timings 

and vacation rules in [7]. 
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We looked at the "optimal management policy" for heterogeneous arrival queuing model with 

system interruptions and vacations in [8]. We looked at the 𝑀𝑥  /𝐺1/𝐺2/1 retrial queues for Bernoulli 

vacations times with repeating efforts and Initial breakdowns in [9]. In [10], we looked at bulk 

arrivals queuing model using service vacations. We investigated at a second optional services in an 

M/G/1 queuing model and servers vacation under Bernoulli timing in[11]. We studied at the 

possible re-service on M[x]/(G1;G2)/1 queuing model in [12]. We analyzed two 𝑀𝑥 /M [a; b]/1 

queuing systems having stochastic breakdown using steady state modeling in [13]. 

We investigated at a second optional services in an M/G/1 queuing along with server breakdowns in 

[14]. An M/M/1/N system including encouraged arrivals was investigated in [15]. Reduction of 

waiting time in an M/M/1/N encouraged arrival queue with feedback, balking and maintaining of 

reneged customers in [16]. We investigated M/M/C/N queue including encouraged arrivals, 

reneging, retention and Feedback consumers in [17]. We investigated the behaviour of M ([X])/G/1 

using Second Optional Services, Multi Vacation, Breakdowns and Repairs in [18]. 

 

 Main model premises 
The following assumptions are follows,  

 In an encouraged arrival procedure, customers enter the system in batches of various size, 

and they are serviced one by one according to the principle of "first come, first served." 

 Let us consider,    𝐷𝑙𝑑𝑘 , 𝑡 = 1,2,3, … be the 1st order likelihood a batch of encouraged „𝑙‟ 
customers enters the systems due to a period of time “[k, k + dk], where 0 ≤ 𝐷𝑙 ≤ 1 and Σ𝐷𝑙 = 1 

and𝜆 ∗ (1 + 𝜗) > 0,  is the average encouraged arrival process. 

 Assume that t= 1,2,3, … be the 1st order likelihood of encouraged arrival of ' 𝑘 ' customers 

enter the systems due to a interval of time “[k, k + dk]” where 0 ≤ 𝐷𝑙 ≤ 1 and Σ𝐷𝑙 = 1 and𝜆 ∗
(1 + 𝜗) > 0, is the average encouraged arrival process. 

 There is a one server which givens the first important service to all encouraged arrival 

customers. Let us assume  𝐼1(𝑣 )&𝑖1(𝑣 ) being the initial service times distribution function and 
density function respectively. 

 Let us the  1st  services of a customer is finished, then will need for the 2nd services with 

our likelihood of customer𝑟   or will  consider  to depart from  the systems with likelihood of 

customers  1 − 𝑟  . 

 The 2nd services periods as consider to be general distribution & the density functions 

𝐼2(𝑣 )&𝑖2(𝑣 ). Then, Let us consider  𝜇𝑏(𝑦)𝑑𝑦 using the conditional - density functions of 𝑏th  

services finished due to  the period of time  [y, y + dy ]  produced that the service time is 𝑦. 

 If no customers waiting in the line, server go away for a vacations. The vacations timings 

are identically distribution with average vacation period
1

𝜀
. On re- joining from the vacations if 

server repeats no customers in the line, then it is go -away for next vacations. So the servers serve 

the dual vacation. 
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 If serves the systems will consider the  break -down at irregular and break-downs are 

consider will  occurs to a encouraged streams under the average break-down standard for Υ > 0. 

 The serves the systems ones breaks- down, it arrivals a repair processing instantly. The 

repairs periods are identically distribution with average  repairs standard for  𝛿 > 0 

Different of stochastic model involving in serve the systems are separate of all others. 

1.   Governing of system of equations: 

 𝑃𝑚
𝑏(𝑦, 𝑡. ) = Probability at period ' 𝑡. ' the serve the servers producing b

th
 services & the ' 𝑚 ' 

customer in the line adding the one serve the customer & the delayed service period customer‟s in 

 𝑦. 

 Let us 𝑃𝑚
𝑏 (𝑡. ) = represents the likelihood that period ‟t.‟ and 'm' customers in the line 

neglect the customers in 𝑏th  serve the services of𝑦. 

 𝑉𝑚    (𝑡. ) =  Probability that period at ' 𝑡. ' and  ' 𝑚' customer in the line and the serve the 

servers is on vacation of 𝑦. 

 𝑅𝑚
    (𝑡. ) = Probability that period at  „t.‟ and  the serve to be the servers not active during the  

break- down & the serve to the systems due to  repairs are ' 𝑚 ' customer in the line. 

The governed differential-difference equations as follow: 

Let us  MU(t. ) represent the line size at period t. and  Z(t. ) are as follows 

1, if the serve the system is busy under 1st important service period at  𝑡. 

2, if the serve the system is busy under 2nd serve the  service period at  𝑡. 

3, if the serve the system is on vacation at period 𝑡. 

Let us length of(t) represent 

𝐼1
0(𝑡. ) = if 𝑍(𝑡. ) = 1 Delayed service period for the 1st delayed service period at   t., 

𝐼2
0(𝑡. ) = if 𝑍(𝑡. ) = 1 Delayed service period for the 2nd service period at   𝑡., 

𝑣 0(𝑡. ) = if 𝑍(𝑡. ) = 1 Delayed vacation period of the serve the servers at period at  𝑡. 

The processing 𝑀𝑈 𝑡.  , Length of (t. ) .  We represent the likelihood for b = 1,2. 

𝑃𝑚
𝑏 (𝑦, 𝑡. ) = Probability⁡ 𝑀𝑈 𝑡.  = 𝑚, 𝐿𝑒𝑛𝑔𝑡𝑕 𝑜𝑓 (𝑡. ) = Ii

0; 𝑦 < 𝐼𝑏
0 ≤ 𝑦 + 𝑑𝑦 ; 𝑦 > 0, 𝑚 > 0 

The steady state solution we follows, 
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𝑃𝑚
𝑏 (𝑦)𝑑𝑦 = lim

𝑡.→∞
 𝑃𝑚

𝑏(y, t. ), b = 1,2y > 0; 𝑚 ≥ 0

𝑉 𝑚 = lim
𝑡.→∞

 𝑉 𝑚(𝑡. ); 𝑚 ≥ 0

𝑅 𝑚 = lim
𝑡.→∞

 𝑅 𝑚(𝑡. ); 𝑚 ≥ 0

 

Let us consider, 

𝑉 0(0) = 1, 𝑉 𝑚(0) = 0, and for b = 1,2 

𝐼𝑏 0 , 𝐼𝑏 ∞ = 1, Also 𝑉 (y)&𝐼𝑏(𝑦) are all continuous at 𝑦 = 0. 

The governed differential-difference equation as follows that: 

∂

∂𝑦
𝑃𝑚

 1  𝑦, 𝑡.  +
∂

∂𝑡
𝑃𝑚

 1  𝑦, 𝑡.  +  𝜆 ∗  1 + 𝜗 + 𝜇1 𝑦 + Υ 𝑃𝑚
 1  𝑦, 𝑡.  

=  𝜆 ∗  1 + 𝜗   

∞

𝑙=1

𝐷𝑙𝑃𝑚−𝑙
 1  𝑦, 𝑡.  , 𝑚 ≥ 1 − − − − − − − − − −(1) 

∂

∂𝑦
𝑃0

 1 
(𝑦, 𝑡. ) +

∂

∂𝑡
𝑃𝑚

 1 
(𝑦, 𝑡. ) +  𝜆 ∗  1 + 𝜗 + 𝜇1 𝑦 + Υ 𝑃0

 1 
(𝑦, 𝑡. ) = 0 − − − (2) 

∂

∂𝑦
𝑃𝑚

 2 
(𝑦, 𝑡. ) +

∂

∂𝑡
𝑃𝑚

 2 
(𝑦, 𝑡. ) +  𝜆 ∗  1 + 𝜗 + 𝜇2 𝑦 + Υ 𝑃𝑚

 2 
(𝑦, 𝑡. )

=  𝜆 ∗ (1 + 𝜗) 𝑙=1
∞  𝐷𝑙𝑃𝑚−𝑙

(2)
(𝑦, 𝑡. ), 𝑚 ≥ 1 − − − − − − − − − −(3) 

∂

∂𝑦
𝑃0

 2 
(𝑦, 𝑡. ) +

∂

∂𝑡
𝑃𝑚

 2 
(𝑦, 𝑡. ) +  𝜆 ∗  1 + 𝜗 + 𝜇2 𝑦 + Υ 𝑃0

 2 
(𝑦, 𝑡. ) = 0 − − − (4) 

𝑑

𝑑𝑡
𝑉 𝑚(𝑡. ) + ( 𝜆 ∗ (1 + 𝜗) + ε)𝑉 𝑚(𝑡. ) = 𝜆  𝐷𝑙𝑉 𝑚−𝑙(𝑡. )

∞

𝑖=1

  , 𝑚 ≥ 1 − − − (5) 

𝑑

𝑑𝑡
𝑉 0(𝑡. ) + ( 𝜆 ∗ (1 + 𝜗) + ε)𝑉 0(𝑡. )

= Υ𝑉 0(𝑡) + (1 − 𝑟 )∫0

∞
 𝑃0

1(𝑦, 𝑡. )𝜇1(𝑦)𝑑𝑦 + ∫0

∞
 𝑃0

2(𝑦, 𝑡. )𝜇2(𝑦)𝑑𝑦  − − − − − −

− − − (6) 

𝑑

𝑑𝑡
𝑅 0(𝑡. ) + ( 𝜆 ∗ (1 + 𝜗) + 𝛿)𝑅 0(𝑡. ) = 0 − − − − − − − − − (7) 

𝑑

𝑑𝑡
𝑅 𝑚(𝑡. ) + ( 𝜆 ∗ (1 + 𝜗) + 𝛿)𝑅 𝑚(𝑡. )

=  𝜆 ∗ (1 + 𝜗) 𝑙=1
∞  𝐷𝑙𝑅 𝑚−𝑙(𝑡. ) + Υ∫0

∞
 𝑃𝑛−1

(1)
(𝑥, 𝑡. ) + Υ∫0

∞
 𝑃𝑚−1

(2)
(𝑦, 𝑡. ), 𝑚

≥ 1 − − − − − − − − − (8) 

 Following boundary conditions are: 

𝑃0
 1 

(0, 𝑡. ) = 𝜀𝑉 1(𝑡. ) + 𝛿𝑅 1(𝑡. ) + (1 − 𝑟 )∫0

∞
 𝑃1

(1)
(𝑦, 𝑡. )𝜇2(𝑦)𝑑𝑦 + ∫0

∞
 𝑃1

(2)
(𝑦, 𝑡. )𝜇2(𝑦)𝑑𝑦 − −

− − − − − − − −(9) 
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𝑃𝑚
 1 

(0) = 𝜀𝑉 𝑚+1(𝑡. ) + 𝛿𝑅 𝑚+1(𝑡. ) + (1 − 𝑟 )∫0

∞
 𝑃𝑚+1

(1)
(𝑦, 𝑡. )𝜇2(𝑦)𝑑𝑦

+ ∫0

∞
 𝑃𝑚+1

(2)
(𝑦, 𝑡. )𝜇2(𝑦)𝑑𝑦, 𝑚 ≥ 1 − − − − − − − (10) 

𝑃𝑚
 2  0 =  𝑃𝑚

 1  𝑦 𝜇1 𝑦 𝑑𝑦

∞

0

  , 𝑚 ≥ 0 − − − − − − − − 11  

 

2. Time varying result: 

To create function of queue line 

Now, if we represent the P.G.F as following below, 

𝑃 1 (𝑦, 𝑡. ) =  0
∞  𝑃𝑚

(1)
(𝑦, 𝑧 , 𝑡. )𝑧 𝑚 ; 𝑃(1)(𝑧 , 𝑡. ) =  0

∞  𝑃𝑚
(1)

(𝑡)𝑧 𝑚 , |𝑧 | ≤ 1, 𝑦 > 0 

𝑃 2 (𝑦, 𝑧 , 𝑡. ) =  0
∞  𝑃𝑚

(2)
(𝑦, 𝑡. )𝑧 𝑛 ; 𝑃(2)(𝑧 , 𝑡. ) =  0

∞  𝑃𝑚
(2)

(𝑡)𝑧 𝑚 , |𝑧 | ≤ 1, 𝑦 > 0 

𝑉 (𝑧 , 𝑡. ) =  0
∞  𝑧 𝑚𝑉 𝑚(𝑡. ) ; 𝑅 (𝑧 , 𝑡. ) =  0

∞  𝑧 𝑚𝑅 𝑚(𝑡. ) ; 𝐷(𝑧 ) =  0
∞  𝐷𝑚𝑧 𝑚 , |𝑧 |

≤ 1 − − − −(12) 

Taking the Laplace equations (1) to (11) as follows, 
∂

∂𝑦
𝑃 𝑚

(1)
(𝑦, 𝐻) +  𝐻 + 𝜆 ∗ (1 + 𝜗) + 𝜇1(y) + Υ 𝑃 𝑚

(1)
(𝑦, 𝐻) = 𝜆 ∗ (1 + 𝜗) 𝑙=1

∞  𝐷𝑙𝑃 𝑚−𝑙
(1)

(𝑦, 𝐻), 𝑚 ≥

1-- − − − − − − − − − − (13) 

∂

∂𝑦
𝑃 0

(1)
(𝑦, 𝐻) +  𝐻 + 𝜆 ∗ (1 + 𝜗) + 𝜇1(y) + Υ 𝑃 0

(1)
(𝑦, 𝐻) = 0 − − − − − − − −(14) 

∂

∂𝑦
𝑃 𝑚

(2)
(𝑦, 𝐻) +  𝐻 + 𝜆 ∗ (1 + 𝜗) + 𝜇1(y) + Υ 𝑃 𝑚

(2)
(𝑦, 𝐻) = 𝜆 ∗ (1 + 𝜗) 𝑙=1

∞  𝐷𝑙𝑃 𝑚−𝑙
(2)

(𝑦, 𝐻), 𝑚

≥ 1 − − − − − − − − − −(15) 

∂

∂𝑦
𝑃 0

(2)
(𝑦, 𝐻) +  𝐻 + 𝜆 ∗ (1 + 𝜗) + 𝜇1(y) + Υ 𝑃 0

(2)
(𝑦, 𝐻) = 0 − − − − − − − −(16) 

(H + 𝜆 ∗ (1 + 𝜗) + v)V 0(s)

= 1 + (1 − 𝑟 )∫0

∞
 𝑃 0

(1)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 + ∫0

∞
 𝑃 0

(2)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑥 + 𝑉 ∗    V 0(H) 

(𝐻 + 𝜆 ∗ (1 + 𝜗) + 𝜀)𝑉 𝑚(𝐻) = 𝜆 ∗ (1 + 𝜗)(𝐻), 𝑚 ≥ 1 − − − − − − − − − −(17) 

(H + 𝜆 ∗ (1 + 𝜗) + 𝛿)R 0(H) = Υ∫0

∞
 𝑃 0

(1)
(𝑦, 𝐻)𝜇1(𝑦)𝑑𝑦 + Υ∫0

∞
 𝑃 0

(2)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 − − − (18) 

(𝐻 + 𝜆 ∗ (1 + 𝜗) + 𝛿)𝑅 𝑚(𝐻) = 𝜆 ∗ (1 + 𝜗)𝑅 𝑚−1(𝐻), 𝑚 ≥ 1 − − − − − − − −(19) 

𝑃 0
(1)

(𝑜, 𝐻) = X𝑉 1(𝐻) + 𝛿R 1(𝐻) + (1 − 𝑟 )∫0

∞
 𝑃 1

(1)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 + 𝑢∫0

∞
 𝑃 1

(2)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 − −

− − − − − − − −(20) 

𝑃 𝑚
(1)

(𝑜, 𝐻) = 𝜀V 1(𝐻) + 𝛿R 1(𝐻) + (1 − 𝑟 )∫0

∞
 𝑃 𝑚+1

(1)
(𝑦, 𝐻)𝜇1(𝑦)𝑑𝑦 + ∫0

∞
 𝑃 𝑚+1

(2)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦, 𝑚

≥ 1 − − − − − − − − − −(21) 

𝑃 𝑚
(2)

(𝑜, 𝐻) = ∫0

∞
 𝑃 𝑚

(1)
(𝑦, 𝐻)𝜇1(𝑦)𝑑𝑦, 𝑚 ≥ 0 − − − − − − − − − −(22) 
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We multiplication on two sides of the equations (13) and (14) by appropriate powers of 𝑧 , add over 

𝑚 and using equation (12) and explain ,algebraic formulations 

∂

∂𝑦
𝑃 (1)(𝑦, 𝑧 , 𝐻) +  𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + 𝜇1(𝑦) + Υ 𝑃 (1)(𝑦, 𝑧 , 𝐻) = 0 − − − (23) 

Effecting then as well operation on the equations (15) and (16) and utilizing equation (12), We 

follows, 

∂

∂𝑦
𝑃(2)(𝑦, 𝑧 , 𝐻) +  𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + 𝜇1(𝑦) + Υ 𝑃(2)(𝑦, 𝑧 , 𝐻) = 0 − − − (24) 

Consequently operations on the equations (17),(18),(19) and (4.9) produce. 

[𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + 𝜀]𝑉 (𝑧 , 𝐻)

= 1 + (1 − 𝑟 )∫0

∞
 𝑃 0

(1)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 + ∫0

∞
 𝑃 0

(2)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 + 𝜀V 0(Hε)  − −

− (25) 

[𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + 𝛿]𝑅 (𝑧 , 𝐻)

= Υ𝑧 ∫0

∞
 𝑃 (1)(𝑦, 𝑧 , 𝐻)𝑑𝑦 + Υ𝑧 ∫0

∞
 𝑃(2)(𝑦, 𝑧 , 𝐻)𝑑𝑦 − − − (26) 

Now, we multiplication two sides of the equation (20) by 𝑧 , multiplication on two sides of the 

equations (21)   by  𝑧 𝑚+1, add over 𝑚 from 1to ∞, sum of  the both solutions and using equation 

(12)&(17).Thus we obtain after mathematical adjustments 

𝑧 𝑃 (1)(0, 𝑧 , 𝐻) = 

(1 − 𝑟 )∫0

∞
 𝑃 (1)(𝑦, 𝑧 , 𝐻)𝜇1(𝑦)𝑑𝑦 + ∫0

∞
 𝑃 (2)(𝑦, 𝑧 , 𝐻)𝜇2(𝑦)𝑑𝑦 + 𝜀V (𝑧 , H) − (1

− 𝑟 )∫0

∞
 𝑃 0

(1)
(𝑦, 𝐻)𝜇1(𝑦)𝑑𝑦 − ∫0

∞
 𝑃 0

(2)
(𝑦, 𝐻)𝜇2(𝑦)𝑑𝑦 + 𝛿𝑅 (𝑧 , 𝐻) − − − (27) 

𝑃 (2)(0, 𝑧 , 𝐻) = ∫0

∞
 𝑃 (1)(𝑦, 𝑧 , 𝐻)𝜇1(𝑦)𝑑𝑦 − − − (28) 

Using (25) in (27), we obtain 

𝑧 𝑃 (1)(0, 𝑧 , 𝐻) = (1 − 𝑟 )∫0

∞
 𝑃 (1)(𝑦, 𝑧 , 𝐻)𝜇1(𝑦)𝑑𝑦 + ∫0

∞
 𝑃 (2)(𝑦, 𝑧 , 𝐻)𝜇2(𝑦)𝑑𝑦 + 1 − [𝐻 + 𝜆 ∗ (1

+ 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ]𝑉 (𝑧 , 𝐻) + 𝛿𝑅 (𝑧 , 𝐻) − − − (29) 

∫ 𝑖𝑛𝑔 equations on  (13), (14) & (15) in the middle of  0 and  𝑦, we obtain 

𝑃 (1)(𝑦, 𝑧 , 𝐻) = 𝑃 (1)(0, 𝑧 , 𝐻) 𝑒−(𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷(𝑧 )+Υ)𝑦−∫0

∞
 𝜇1∗ 𝑡 ∗𝑑𝑡 − − − (30) 

𝑃 (2)(𝑦, 𝑧 , 𝐻) = 𝑃 (2)(0, 𝑧 , 𝐻)𝑒−(𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷(𝑧 )+Υ)𝑦−∫0

∞
 𝜇2∗ 𝑡 ∗𝑑𝑡 − − − (31) 

Again∫ 𝑖𝑛𝑔 equations (20) with respect to “𝑦", we get 

𝑃 (1)(𝑧 , 𝐻) = 𝑃 (1)(0, 𝑧 , 𝐻)  
1 − 𝐼 1(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)

(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)
 − − − (32) 

Where 𝐼 1(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) = ∫0

∞
 𝑒−(𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷(𝑧 )+Υ)𝑦𝑑𝐼 1(𝑦) −

− − (33) 
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is the Laplace equation  of the 1
st
  stage of service period. 

Now, from the equation (20) afterwards few conspectus and using the equations (12 ) , we get 

∫0

∞
 𝑃 (1)(𝑦, 𝑧 , 𝐻)𝜇1(𝑦)𝑑𝑦 = 𝑃 (1)(0, 𝑧 , 𝐻)𝐼 1(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) − − − (34) 

Again ∫ 𝑖𝑛𝑔 equations (21) with respect to “𝑦", we have 

𝑃 (2)(𝑧 , 𝐻) = 𝑃 (2)(0, 𝑧 , 𝐻)  
1 − 𝐼 2(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)

(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)
 − − − (35) 

Where 𝐼 2(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) = ∫0

∞
 𝑒−(𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷(𝑧 )+Υ)𝑦𝑑𝐼 2(𝑦) −

− − (36) 

is the Laplace equation  of the 2
st
  stage of service period.. 

Now, from the equation (21) afterwards few conspectus and using the equations (12 ) , we get 

∫0

∞
 𝑃 (2)(𝑦, 𝑧 , 𝐻)𝜇2(𝑦)𝑑𝑦 = 𝑃 (2)(0, 𝑧 , 𝐻)𝐼 2(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) − − − (37) 

Using the equations (34) and (37) in (26) we have, 

[𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + 𝛿]𝑅 (𝑧 )

= Υ𝑧 𝑃 (1)(0, 𝑧 , 𝐻)

 
1 − 𝐼 1(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)𝐼 2(𝐻 + 𝜆 ∗ (1 + 𝜗) −

𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)
 

(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)
− −

− (38) 

Now, using the equations. (28) (31), (33),(34),(36) & (37) in the  equation (29) and working for 

𝑃 (1)(0, 𝑧) we obtain 

𝑃 (1)(0, 𝑧 , 𝐻) =
𝑓1(𝑧 )𝑓2(𝑧 )[1 − (𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ))𝑉 (𝑧 , 𝐻)]

𝐶𝑅 
− − − (39) 

Where 𝐶𝑅 = 𝑓1(𝑧 )𝑓2(𝑧 ) 𝑧 − (1 − 𝑟 )𝐼 1(𝐻 + −𝜆 ∗  1 + 𝜗 ∗ 𝐷(𝑧 ) + Υ) − 𝑟 𝐼 1(𝐻 + 𝜆 ∗ (1 + 𝜗) −

𝜆∗(1+𝜗)𝐷(𝑧 +Υ 𝐼2(𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷(𝑧)+Υ−Υ𝛿𝑧 1−1−𝑟𝐼1𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷𝑧

+Υ−𝑟𝐼1𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷𝑧+Υ𝐼2𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷𝑧+Υ 

𝑓1(𝑧 ) = H + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)D(𝑧 ) + Υ and 𝑓2(𝑧 ) = H + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 +

𝜗)D(𝑧 ) + 𝛿 − − − (40) 

Substitute value of the term  𝑃(1)(0, 𝑧) from the equations (32) into the  equation (23), (26) & (28) 

we obtain 𝑃 (1)(𝑧 , 𝐻) =
𝑓2(𝑧 ) 1−𝐼 1(𝐻+𝜆∗(1+𝜗)−𝜆∗(1+𝜗)𝐷(𝑧 )+Υ) 

𝐶𝑅 
[1 − (𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 +

𝜗)𝐷(𝑧 ))V(𝑧 , 𝐻)] − − − (41) 

𝑃 (2)(𝑧 , 𝐻)

=
𝑓2(𝑧 )𝐼 1(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) 1 − 𝐼 2(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) 

𝐶𝑅 
[1

− (𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ))V(𝑧 , 𝐻)]  − − − (42) 
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𝑅(𝑧 , 𝐻) =

Υ𝑧  

1 −  1 − 𝑟  𝐼 1 𝐻 + 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧  + Υ −

𝑟 𝐼 1 𝐻 + 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧  + Υ 

𝐼 2(𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ)

 

𝐶𝑅 
[1 − (𝐻 + 𝜆 ∗ (1 + 𝜗)

− 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ))V(𝑧 , 𝐻)]  − − − (43) 

In this part we have elaborate steady -state probability –distribution function  for the queuing 

model. To description of the steady- state probability. By –using the   Tauberian property, 

lim
𝐻→0

 𝑓 (𝐻) = lim
𝑡→∞

 𝑓(𝑡. ) 

𝑃(1)(𝑧 ) =
𝑓2(𝑧 ) 1 − 𝐼1(𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) 

𝐶𝑅 
𝜆 ∗ (1 + 𝜗)(𝐷(𝑧 ) − 1)𝑉 (𝑧 ) − −

− (44) 

𝑃(2)(𝑧 )

=
𝑓2(𝑧 )𝐼1(𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) 1 − 𝐼2(𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷(𝑧 ) + Υ) 

𝐶𝑅 
𝜆 ∗ (1

+ 𝜗)(𝐶(𝑧 ) − 1)𝑉 (𝑧 )  − − − (45) 

𝑅  𝑧  =

Υ𝑧  
1 −  1 − 𝑟  𝐼1 𝐻 + 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧  + Υ −

𝑟 𝐼1 𝐻 + 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧  + Υ 

𝐼2 𝐻 + 𝜆 ∗ (1 + 𝜗) − 𝜆 ∗ (1 + 𝜗)𝐷 𝑧  + Υ 
 

𝐶𝑅 
∗ 𝜆 ∗  1 + 𝜗 (𝐷(𝑧 )

− 1)𝑉 (𝑧 ) − − − (46) 

 

In sequence to define  𝑃(1)(𝑧), 𝑃(2)(𝑧), R(z) entirely, we get to define the un-known 𝑉 (1) which 

shows in the right- sides of the equations (44), (45) and (46). We have use the normalizing -

condition. 

𝑃 1 (1. ) + 𝑃 2 (1. ) + 𝑉 (1) + 𝑅 (1) = 1 − − − (47) 

𝑃(1)(1) =
𝜆 ∗  1 + 𝜗 𝛿𝑑′(1) 1 − 𝐼1(Υ) 

𝑐𝑟 
𝑉 (1) − − − (48) 

𝑃(2)(1) =
𝜆 ∗  1 + 𝜗 𝛿𝐷′(1)𝐼1(Υ) 1 − 𝐼2(Υ) 

𝑐𝑟 
𝑉 (1) − − − (49) 

𝑅 (1) =
𝜆 ∗  1 + 𝜗 Υ𝐷′(1) 1 − (1 − 𝑟 )𝐼1(Υ) − 𝑟 𝐼1(Υ)𝐼2(Υ) 

𝑐𝑟 
𝑉 (1) − − − (50) 

where 𝑐𝑟 = Υ𝛿 1 − C𝑟 𝐼1(Υ)𝑖2(Υ) −  1 − 𝐼1(Υ)𝐼2(Υ) 𝜆 ∗  1 + 𝜗 𝐷′(1)(Υ + 𝛿)  

𝑃(1)(1), 𝑃(2)(1)&𝑅(1) represent the steady- state probability, that the -server is giving 1
st
&2nd  

stage of the  service and  the server during a repair without neglect to the no. of customers in the 

line. Now, we using the -equations (48), (49), (50) into, the normalized -condition (47) and 

streamlining, we get 
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𝑉 (1) =  1 −
𝜆 ∗  1 + 𝜗 𝐷′(1)

𝛿 (1 − 𝑟 )𝐼1(Υ) + 𝑟 𝐼1(Υ)𝐼2(Υ) 
−

𝜆 ∗  1 + 𝜗 𝐷′(1)

Υ (1 − 𝑟 )𝐼1(Υ) + 𝑟 𝐼1(Υ)𝐼2(Υ) 

+
𝜆 ∗  1 + 𝜗 𝐷′(1)

𝛿
+

𝜆 ∗  1 + 𝜗 𝐷′(1)

Υ
 − − − (51) 

and hence, using factor 𝑟𝑕𝑜 of the- system is provided by 

𝑟𝑕𝑜 =  
𝜆 ∗  1 + 𝜗 𝑑′(1)

𝛿 (1 − 𝑟 )𝐼1(Υ) + 𝑟 𝐼1(Υ)𝐼2(Υ) 
+

𝜆 ∗  1 + 𝜗 𝑑′(1)

Υ (1 − 𝑟 )𝐼1(Υ) + 𝑟 𝐼1(Υ)𝐼2(Υ) 
−

𝜆 ∗  1 + 𝜗 𝑑′(1)

𝛿

−
𝜆 ∗  1 + 𝜗 𝑑′(1)

Υ
 − − − (52) 

Where 𝑟𝑕𝑜 < 1  is the stability- condition due to the steady- states condition exits. 

3. The average queue line & systems size: 

 

Let 𝑃𝑢(𝑧 ) represent the P.G.F of the queue line in especial of the -server state. Then sum of the  

equations (34), (35) and (36) we get 

𝑃𝑢(𝑧 ) = 𝑃(1)(𝑧 ) + 𝑃(2)(𝑧 ) + 𝑅 (𝑧 )𝑃𝑢(𝑧 ) =
M(𝑧 )

C(𝑧 )
− − − (53)

𝑀 𝑧  =  𝜆 ∗  1 + 𝜗 𝐷 𝑧  − 1  
1 −  1 − 𝑟  𝐼 1 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧  + Υ 

−𝑟 𝐼 1 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧  + Υ 𝐼 2  
𝜆 ∗  1 + 𝜗 −

𝐷 𝑧  + Υ
 
 

(Υ𝑧  +𝑓2(𝑧 ) 𝑉 (𝑧 )

𝐶 𝑧  = 𝑓1 𝑧  𝑓2 𝑧   
𝑧 − (1 − 𝑟 )𝐼 1(−𝜆 ∗  1 + 𝜗 𝐷(𝑧 ) + Υ) − 𝑟 𝐼 1(𝜆 ∗  1 + 𝜗 

−𝜆 ∗  1 + 𝜗 𝐷(𝑧 ) + Υ)𝐼 2(−𝜆 ∗  1 + 𝜗 𝐷(𝑧 ) + Υ)
 

−Υ𝛿𝑧  1 −  1 − 𝑟  𝐼 1 𝜆 ∗  1 + 𝜗 − 𝜆 ∗  1 + 𝜗 𝐷 𝑧 + Υ − 𝑟 𝐼 1  
𝜆 ∗  1 + 𝜗 −

I2(−𝜆 ∗  1 + 𝜗 𝐷(𝑧 ) + Υ)
  

 

Let 𝐿𝑢  represent the average no. of customer in the line with steady -state solution. Thus we obtain 

𝐿𝑢 =
𝑑

𝑑𝑧 
 𝑃𝑢 (𝑧 )  at 𝑧 = 1 

𝐿𝑢 = lim𝑧 →1  
𝐶 ′(1)𝑀′′ (1) − 𝑀′(1)𝐶 ′′ (1)

2𝐶 ′(1)2
− − − (54) 

Where primes & dual primes in the equation (46) represent 1
st
 and 2 nd derivative at  𝑧 = 1, 

respectfully. Calling out the derivation at 𝑧 = 1 we get 
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𝑀′(1) = 𝜆 ∗  1 + 𝜗 𝐷′(1)(Υ + 𝛿)𝑉 (1) 1 − (1 − 𝑟 )𝐼 1(Υ) − 𝑟 𝐼 1(Υ)𝐼 2(Υ) − − − (55)

𝑀′′ (1) =  1 − (1 − 𝑟 )𝐼 1(Υ) − 𝑟 𝐼 1(Υ)𝐼 2(Υ)  
𝐶 ′′  1  𝛼 + 𝛽 𝑉 1 − 2 𝜆 ∗  1 + 𝜗 𝐷′ 1  

2
𝑉  1 

+2𝜆 ∗  1 + 𝜗 𝐷′ (1)Υ𝑉 (1) +
 

 2𝜆 ∗  1 + 𝜗 𝐷′ 1  Υ + 𝛿 𝑉 ′ 1  − 2𝜆 ∗  1 + 𝜗 3 𝐷′ 1  
3
 Υ + 𝛿 𝑉  1  

 1 − 𝑟  𝐼 2
′  Υ 

+𝑟 𝐼 1(Υ)𝐼 2
′ (Υ) + 𝑟 𝐼 2(Υ)𝐼 1

′ (Υ)
 − (56)

𝐶 ′(1) = Υ𝛿 (1 − 𝑟 )𝐼 1
′ (Υ) + 𝑟 𝐼 1(Υ)𝐼 2

′ (Υ) −  
1 −  1 − 𝑟  𝐼 1

′  Υ +

𝑟 𝐼 1(Υ)𝐼 2
′ (Υ)

  (Υ + 𝛿)𝜆 ∗  1 + 𝜗 𝐷′(1) 

− − −(57)
 𝐶 ′′ (1) = 2Υ𝛿(1 − 𝑟 )𝐼 1

′ (Υ) + 𝑟  𝐼 1(Υ)𝐼 2
′ (Υ) + 𝐼 2(Υ)𝐼 2

′ (Υ)  − (Υ + 𝛿)𝜆 ∗  1 + 𝜗 𝐷′′ (1) 1 − (1 − 𝑟 )𝐼 1(Υ) 

− 𝑟 𝐼 1(Υ)𝐼 2(Υ) − 2(Υ + 𝛿)𝜆 ∗  1 + 𝜗 𝐷′(1) 1 − (1 − 𝑟 )𝐼 1
′ (Υ) − 𝑟  𝐼 1(Υ)𝐼 2

′ (Υ) + 𝐼 2(Υ)I 2
′ (Υ)  − −(58)

 

Then. If substitute the values of  from  the equation (55), (56), (57)& (58) into (54) we produce 𝐿𝑢  

in the- closed form. Then we find the average system size “L “using Little's law formula. Thus we 

get 

𝐿𝐸𝑁𝐺𝑇𝐻 = 𝐿𝑢

+  
𝜆 ∗  1 + 𝜗 𝑑′(1)

𝛿 (1 − 𝑟 )𝐼1(Υ) + 𝑟 𝐼1(Υ)𝐼2(Υ) 
+

𝜆 ∗  1 + 𝜗 𝑑′(1)

Υ (1 − 𝑟 )𝐼1(Υ) + 𝑟 𝐼1(Υ)𝐼2(Υ) 

−
𝜆 ∗  1 + 𝜗 𝑑′(1)

𝛿
−

𝜆 ∗  1 + 𝜗 𝑑′(1)

Υ
  

where 𝐿𝑢  have been established by  the equation (54) and 𝑟𝑕𝑜 is produced from the  equation (45). 

6. Conclusion: 

The encouraged arrival is very beneficial for a variety of organizations in terms of managing 

operations, planning, implementing and developing services for customers and other areas. In this 

study, a batch encouraged arrival Markovian queuing model due to a secondary optional- service, 

break-down and numerous vacations.The P.G.F in the line established due to the arbitrary variable 

methods. This method will be very much of the used in fabricate and tele-communication networks. 

It‟s comparatively Poisson arrival is encouraged arrival more effective.  
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