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Abstract: The aim of this paper is to introduce new types of sets 

maximal open set (M-open) and maximal closed set( M-closed)  and 

minimal open set( m-open ) and minimal closed set( m-closed) with 

examples and theorems The relationships between them and other will 

be studied like M-compact ,M-compact sub space ,continuity function  

Keywords:m-open,m-closed,M-open,M-closed,M compact. 

Definition( 1.1). [1]:  Let X be a topological space. A proper nonempty open subset 

U of X is said to be: 

a m- open set if any open set which is contained in U is ϕ or U, and 

a m-closed setif any closed set which is contained in U is ϕ or U. 

Definition( 1.2). [2]:  Let X be a topological space. A proper nonempty open subset 

U of X is said to be: 

a M- open set if any open set which contains U is X or U, and  

M- closed set  if any closed set which contains U is X or U. 

Example (1.3): [4] Let X={1,2,3,4} with a topology  

ԏ= {ø,X,{1},{1,2},{3,4},{1,3,4}} , then the set {3,4} is m- open and the set{1,3,4} is M-open 

.Also the set {2,3,4} is M-closed and the set {2} is m-closed. 

Theorem(1.3). [1] Let X be a topological space and U ⊆ X. Then, U is m- open set if and only 

if X∖ 𝐔 M- closed set. 
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Theorem(1.4). [2] Let X be a topological space and U ⊆ X. Then, U is m- closed set if and 

only if X∖ 𝐔 M- open set. 

Corollary (1.5) [4]. Let X be a topological space with a, b ∈ X. Then we have the 

following: 

(1)  if {a}is an open set in X, then {a}is a m- open set and so X∖ {𝐚} is a  M- closed set. 

(2) if {b}is a closed set, then{b} is a m- closed set and so X∖{b} is a M- open set. 

Lemma 1.6. [1] Let (X,Ʈ) be a topological space. 

(1) If U is a m- open set and W is an open set such that U ∩ W≠ ϕ, then 

U ⊆ W. 

(2) If U and V are m- open sets such that U∩  V≠ ϕ, then U = V . 

Lemma (1.7). [1] Let (X,Ʈ) be a topological space. 

(1) If U is a M-open set and W is an open set such that U∩W≠X, then 

W ⊆ U. 

(2) If U and V are M- open sets such that U∩VX≠, then U = V . 

Theorem(1.8) :  Let  Y open in X , if U M-open in X ,then U∩Y M-open in Y. 

Proof:    Let U M-open in Y.   Let  U∩Y⊆ 𝐖  

W ∋  open in Y , U ⊆ 𝐖 ∪ 𝐔 

∵   U M-open  in  X  either  U= 𝐖 ∪ 𝐔   or     𝐖 ∪ 𝐔   =X  

If  U∩Y= (𝐖 ∪ 𝐔  ) ∩Y 

           =( W∩Y)  ∪ ( U∩Y)  

W ∪ ( U∩Y) =W  

Or   

Y∩(𝐖 ∪ 𝐔) =Y 

(Y∩W) ∪ (𝐘 ∩ 𝐔) = 𝐘  

W ∪ (𝐘 ∩ 𝐔) = 𝐘  

W=Y  ,  then  𝐔 ∩ 𝐘 = 𝐖  𝐨𝐫      𝐔 ∩ 𝐘 = 𝐘     
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Theorem (1.9) : if  U  M-open in Y ,then U is not M-open in X 

Example : l et  X={a,b,c,d,e}  

ԏ= {∅, 𝐗, {𝐚, 𝐛, 𝐝}, {𝐚, 𝐛, 𝐝, 𝐞}, {𝐚, 𝐛, 𝐜, 𝐝}}  

Y={a,b,c,d} 

ԏ𝐲= {∅, 𝐗 {𝐚, 𝐛, 𝐝},} 

{𝐚, 𝐛, 𝐝}  𝐌 − 𝐨𝐩𝐞𝐧 𝐢𝐧 𝐘 , but {𝐚, 𝐛, 𝐝}  not M- open in X  

Definition(2.1) : Cover & Finite Cover &M- Open (resp.,M- Closed) Cover 

Let {A } ∈ be a family of subsets of the space (X, ). We called the family {A } ∈  

cover of X iff X equal the union of elements of the family {A } ∈ . 

(i.e., X = ∪ ∈ A ) 

If {A } ∈ is finite and cover X, then {A } ∈ is called a finite cover of X. 

If each A , ∈ , is M-open (resp.,M- closed) in X and {A } ∈ cover X, then 

{A } ∈ is  

called an  M-open (resp.,M- closed) cover of X. 

Definition(2.2) :[9] Sub cover 

Let C = {A } ∈ be a cover of X and {Bi}i∈ be a sub family of C and  

cover X, then 

{Bi}i∈ is called sub cover from C. 

Definition(2.3)  : M- Compact Space 

A space X is called M-compact iff each M- open cover of X has a finite sub cover for X. 

i.e., 

X is M- compact C = {U } ∈ ; U ∈ X = ∪ ∈  U  

1, 2, … , n ; X = ∪i=1
n Uαi 

X is not M-compact C = {U } ∈ ; U ∈ X =  ∪ ∈  ∈ U  

∄ 1, 2, … , n ; X =∪i=1
n Uαi . 

Example(2.4) :If X is infinite set . Show that (X, cof) is M- compact space 

Solution :  Let  𝒢={U } ∈  be an M- open cover for X 

Tcof = }ϕ} ∪  } A⊆ X:Ac is finite}  
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Chose any sub set of 𝒢  

Let Ut0 ⊆ 𝒢 is M-open set of, Then (Ut0
c) is finite ∋ (Ut0

c)  

={b1, b2 … . bn}   

∵ X⊆∪i∈I Ui 

Since Ut0∩(Ut0
c) = ϕ , Ut0 ∪ (Ut0

c) =X 

∵ bk ∈ X ,  k= 1,…,n  

bk ∈  ∪i∈I Ui    , then there exist  

Ut1 Ut2…..Utn ,  bk ∈ Utk    k= 1,….,n 

Let 𝒢∗={Ut1 Ut2…..Utn}  

𝒢∗ ={Utk, k =  1, … . , n } is M-open cover of X  

∵𝒢∗ ⊆ 𝒢 and 𝒢∗ has finite members of X ,then 𝒢 has finite  sub cover of X  

   Hence   (X, cof) is M- compact space. 

  Remark (2.5) Every M-open cover is an open cover ,but convers is not true   

Definition(2.6) :  M-Compact Subspace 

Let (X, ) be a topological space and W be a subspace of  X. We called a space W is 

M-compact space iff every M- open cover from X cover W has a finite sub cover. i.e., 

W is M- compact {U } ∈ ; U ∈ W ∪ ∈ U  

1, 2, … , n ; W ∪i=1
n Uαi 

Theorem (2.7):  Every compact  space is M-compact  

Proof: let X be compact  space 

Let  {U }  ∈ ; U ∈ ԏ be open cover of X 

(since every M-open cover is an open cover) 

Then {U }  ∈  is an open cover of X  

Since X is compact ,then has finite sub cover  

{Uαi : α ∈∧  , i = 1, … , n} 

Thus every  M-open cover has finite sub cover  

Hence  X  is M-compact   
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Theorem(2.7) : If A and B are M- compact sets in a space (X, ), then A ∪ B is M- compact 

set. 

Proof : Let C = {U }  ∈ ; U ∈ ԏ open cover of A ∪ B 

To prove C has a finite sub cover 

∵ A ∪ B ∪ ∈ U A ∪ ∈ U B ∪ ∈ U  

(since A A ∪ B , B A∪ B) 

C cover of A and B, but A and B are M- compact 

1, … , n ; A ∪i=1
n  Uαi 

and 1, … , m ; B ∪j=1
m  Uαj 

A ∪ B ∪k=1
n+m Uαk 

C has finite sub cover for A∪B A ∪ B compact set.                        

Remark(2.8) : If A and B are M- compact sets in a space (X, ), then A ∩B is not necessary 

M- compact set.  

Solution :  

ԏ={X,ø,[0,1), (0,1],(0,1)}∪ {(
1

n
, 1), n∈ N}  

(X,ԏ) be a topological space  

A=[0,1)  ,(0,1]  are M-compact    

But  A ∩B =(0,1)  is not M-compact  

Let c={(
1

n
, 1), n∈ N} is an M-open cover of A ∩B  

Since n→ ∞ , (
1

n
, 1) → (0,1)   

∄  α1,, α2, … . . αn, then has no finite sub cover  

A ∩B ⊈ ∪i=1
n  Uαi                                                                                          ∵   A ∩B is not M- 

compact      

Theorem(2.9) : A space (X, ) is compact iff every family of m- closed subsets of X satisfy 

With the finite interaction property has a non- empty interaction . 

Proof : ( ) Suppose  that X be M-compact space and F= { Cα: ∈ } be a family of m- 

closed sets of M-compact with finite interaction property 

To prove ∩αϵ⋀  Cα . 
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Suppose ∩αϵ⋀  Cα  

 Let 𝒢 ={Oα: X ∖  Cα :α ∈ ⋀} 

𝒢  is family of M-open set in X 

∪α∈⋀ Oα=X 

𝒢 is M- open cover of  X , since X is M-compact then  must be have  

finite sub cover 

X= ∪i=1
n Oαi= ∪{ X ∖  Cα} = X ∖∩i=1

n  Cαi  

I.e 

∩i=1
n  Cαi must be empty  

This is contradiction the fact that F has finite interaction property  

Thus F has the finite members of F must to be non-empty 

 ( ) every family m-closed subset of X with finite interaction 

Let  𝒢= {Uα : α ∈ ⋀} be an M-open cover of X, so that  

X= ∪α∈⋀ Uα    

Taking complements  

X-X=X-(∪α∈⋀ Uα )  

ϕ =∩{ X-(Uα : α ∈ ⋀} 

Thus { X-(Uα : α ∈ ⋀} is family of m-closed sets with empty interaction 

Suppose  this family does not have a finite interaction property  

There exist a finite number of sets  

X= Uαi              i=1….,n           ∋       𝒢=∩{ X-Uαi : α ∈ ⋀ ∶i=1…n } 

X-𝒢= X-∩{ X-Uαi : α ∈ ⋀ ∶i=1…n } 

Hence X is M-compact 

Theorem (2.10) Each m-closed subset of a M-compact space is M- compact. 

Proof: Let A be a m- closed subset of the M- compact space X and  

let C = {U }  ∈ ; U ∈ ԏ be M-open cover of A  

let { Uα : α ∈∧  }∪{X∖ A} be M-open cover of X 

. Since X is M- compact  
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∃ {Uαi : α ∈∧  , i = 1, … , n}∪{X∖ A} be a finite sub cover of X 

Then {Uαi ∩ A : α ∈∧  , i = 1, … , n} be a finite sub cover of A  

Hence A is M-compact 

Remark (2.11) M-compact  ↛ compact  

Example  if X infinite set ,a∈ X 

 ԏ={A: a∈ A}∪{ϕ}  

Solution :  

X is M-compact ,since every M-open cover has finite sub cove, 

{a, Xα,Xβ ,…}∖ {Xi} 

∪{a, Xα,Xβ ,…}∖ {Xj}  ∋ j ≠ i  , finite sub cover for every M-open cover of X ,but X is not 

compact since X is infinite set, then has no finite 

sub cover 

theorem(2.12) if X is finite set and T is a topology on X ,then (X,ԏ) is M-compact  . 

proof:  let X={𝐗𝟏 , 𝐗𝟐, … . 𝐗𝐧} 

let  𝒢= {Ui , i ∈ N } is a M-open cover of X ,then  

∀xj ∈ X there exist Uij ∈ 𝒢 ∋ xj ∈ Uij, then  

𝒢∗={Uij}i=1
n  is finite sub cover of X  

Hence X is M- compact  

Definition (3.1) [10]  a function  f :( X,ԏ) → (Y, Ω) between two topological space  is called 

continuous if for every open set  V⊆ Y, it is f −1(V) is open in X.  

Definition (3.2):function  f :( X,ԏ) → (Y, Ω) between two topological space  is called M- 

continuous if for every M- open set  V⊆ Y, it is f −1(V) is open in X.  

Definition (3.3):function  f :( X,ԏ) → (Y, Ω) between two topological space  is called M∗ -

continuous if for every M-  open set  V⊆ Y, it is f −1(V) is M- open in X.  

Definition (3.4):function  f :( X,ԏ) → (Y, Ω) between two topological space  is called M∗∗-

continuous if for every  open set  V⊆ Y, it is f −1(V) is M- open in X.  

Theorem(.) :[8] The continuous image of compact space is compact. i.e., 

If f : (X, ) (Y, ') is continuous function and X is compact space, then f(X) is 

compact. 
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Theorem(3.5)The image compact  space is M- compact. i.e., 

If f : (X, ) (Y, ') is M- continuous function and X is compact space then f(X) is M-

compact 

Proof : Let f : (X, ) (Y, ') be M- continuous and X compact space. 

To prove, f(X) M- compact in Y 

 Let C = {V } ∈ open cover for f(X) 

f(X) ∪α  ∈ V ; V ∈ ' ∈  

Since  f is M- continuous ,we know that each of  𝐟−𝟏(V ) is open in X .since  X is compact 

there are exist finite sub cover 1, … , n   

 ∪i=1
n  f −1(Vαi)  ⟹ f(x) f( ∪i=1

n  f −1(Vαi) )     X   

  ∪i=1
n f( f −1(Vαi) ) 

⟹ f(x)   ∪i=1
n (Vαi)  

f(x) is M-compact  

Theorem(3.6)The image M- compact  space is M- compact. i.e., 

If f : (X, ) (Y, ') is M∗- continuous function and X is M-compact space then f(X) is M-

compact 

Proof : Let f : (X, ) (Y, ') be M∗- continuous and X M- compact space. 

To prove, f(X) M- compact in Y 

Let C = {V } ∈ open cover for f(X) 

f(X) ∪α  ∈ V ; V ∈ ' ∈  

Since  f is 𝐌∗- continuous ,we know that each of  𝐟−𝟏(V ) isM- open in X .since  X is M- 

compact there are exist finite sub cover 1, … , n    

 ∪i=1
n  f −1(Vαi)  ⟹ f(x) f( ∪i=1

n  f −1(Vαi) )     X   

  ∪i=1
n f( f −1(Vαi) ) 

⟹ f(x)   ∪i=1
n (Vαi)  

f(x) is M-compact  

Theorem(3.7)The image compact  space is M- compact. i.e., 

If f : (X, ) (Y, ') is M- continuous function and X is compact space then f(X) is M-

compact 
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Proof : Let f : (X, ) (Y, ') be M- continuous and X compact space. 

To prove, f(X) M- compact in Y 

Let C = {V } ∈ open cover for f(X) 

f(X) ∪α  ∈ V ; V ∈ ' ∈  

Since  f is M- continuous ,we know that each of  𝐟−𝟏(V ) is open in X .since  X is compact 

there are exist finite sub cover 1, … , n 

 ∪i=1
n  f −1(Vαi)  ⟹ f(x) f( ∪i=1

n  f −1(Vαi) )     X   

  ∪i=1
n f( f −1(Vαi) ) 

⟹ f(x)   ∪i=1
n (Vαi) 

  f(x) is M-compact  

Theorem(3.8)The image M- compact  space is compact. i.e., 

If f : (X, ) (Y, ') is M∗∗- continuous function and X is M-compact space then f(X) is 

compact 

Proof : Let f : (X, ) (Y, ') be M∗∗- continuous and X M- compact space. 

To prove, f(X) compact in Y 

Let C = {V } ∈ open cover for f(X) 

f(X) ∪α  ∈ V ; V ∈ ' ∈  

Since  f is 𝐌∗∗- continuous ,we know that each of  𝐟−𝟏(V ) is M- open in X .since  X is M- 

compact there are exist finite sub cover 1, … , n 

 ∪i=1
n  f −1(Vαi)  ⟹ f(x) f( ∪i=1

n  f −1(Vαi) )     X   

  ∪i=1
n f( f −1(Vαi) ) 

⟹ f(x)   ∪i=1
n (Vαi) 

  f(x) is compact  
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