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1. Introduction

The analysis of star composition was a significant concern in the early stages of stellar
astrophysics. There have been numerous attempts to deduce the spiral form of density,
tension, and mass of stars; the major outcome of these attempts is the second- order Lane-
Emden type differential equations (SOLETDEs); this type of differential equations also
occurs frequently in the field of applied mathematics , astrophysics and mathematical
physics. See references [1-8]. J. Lane and R. Emden, was the first astrophysicists, presented
Lane-Emden type differential equations(LETDES) in 1870 [9].

In recent years, the study of SOLETDES has captured the attention of both mathematicians
and physicists. The purpose of this research is to give a simple implementation of the
proposed computational derivative operational matrix technique for getting optimal
numerical solutions to SOLETDEs. The general second-order Lane-Emden type differential
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equation (SOLETDE) is written as:

v"(x)+%v'(x) +f(x, v)=g(x), x>0, 7>0, (1)

with, condition:
v0)=8, v(0)=3, (2)
here, f(x, vyeR and continuousfunction, g(x) eCc[01] is an analytical function and ~,Jare

constants . Equation (1) is used to represent a variety of phenomena encountered in the study
of star structures, astrophysics, cooling, the principal theory of thermionic currents, and the
isothermal gas sphere, among other things [7-17].Wavelets and their techniques are now used
to improve performance in all areas of science. The benefit of using this computational
derivative operational matrix technique is that it directly converts SOLETDEs into the
equivalent set of algebraic equations.

There are several uses of LETDESs in the disciplines of science. As a result, many scholars
dedicated their efforts to provide a better approximate solution for LETDEs, and many
literatures on LETDESs have lately been published [18-22]. For solving the SOLETDEs, a
new computational derivative operational matrix technique linked with modified Lucas
wavelets (MLWSs) is provided in this paper. Using a modified Lucas wavelets basis, we
introduced MLWs and their first and second-order derivatives operational matrix. The
proposed technique has the advantage of requiring less computational effort and yielding the
best approximate solution of SOLETDEsS. In the proposed technique, the derivatives term in a
class of SOLETDEsS is expressed as a MLWs basis, and the solution is expanded by a MLWs
basis with unknown coefficients.

The following is the structure of the current article: Section 2 contains basic definition of
MLWs and the derivation of first and second order modified Lucas wavelets derivative
operational matrices. Section 3 describes the solution procedure for SOLETDES. In section 4,
error estimation and convergence analysis is discussed .Section 5 presents numerical results.
Finally, in the final section, the proposed work's conclusions are discussed.

2. Wavelets
The mother wavelet, also known as a wavelet, is a scaled (dilated) and sifted (translated)
family of functions descended from a single functiony .When the scaled parameter y and
sifted parameter z vary continuouslythen,we get the resulting family of continuous wavelets
w,,(x) is as follows [23-28].

wy,z<x>:|y|-“2w(x;2]; y.2eR; y#0.(3)

If, we take the parameters (y z) values in discrete form as: y= Yo', 2=n2Ys, Yo >1,20 >0
and n, jeN then, we getdiscrete form of the family of continuous waveletsas

Wi () =|yol" 2w (ydx —nzy), (4)
Where, v ; ,(x) makes asa wavelet basis for L?(R) .

2.1. Modified Lucas Wavelets
Modified Lucas wavelets (MLWS)wy,  (x)=¥(a.7.k x) have four arguments:
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n=n-11n=12..29"k=0,12 ..,K-1 qez*, k isthe order and x is the normalized time for
modified Lucas polynomials (MLPs)they are defined on the interval [0, 1] as:

(9-1) 77 1 n
29 x —pn+1), if <x<——
0, othervvlse
where
1
—_—, both k =0
N
_‘E', both k = odd
ﬁ, both k =even
Jr
0, otherwise

and [, (2%"'x-n+1) are orthonormal MLPs of degree &, taking into account the weight

1
V16X —16 x2

function w, (x)=w(2% ' x -5 +1) = on the interval [0,1]. The following recursive

formula yields these MLPs:
k k
[k(Zq‘lx—n+l):%l:(i(4x—2)+\/16x—16x2) +(i(4x—2)—\/16x—16x2) } (7

The MLWsw, , (x) presented in equation (5) are orthonormal taking into account the

) ) 1 )
weight function w, (x)=w(2% x-7+1)=—=—— in 2[0,2),
g Wrz() n 16X—16X2 [ )
ie.,
L _ [ (7.k)=(' k)
(f)\Pq,k(X)‘Pq',k'(X)Wr;(x)dx— {0, (7.K) % (7', ') (8)

By inserting,q=1, n=1 and K=8into equation (5) and using the relationships indicated in

equations (6) and (7), we obtain the eight MLWSs shown below, and these resulting eight
MLWs are visually depicted in figure-1.

q“',k(-\‘)
2 Wi0(x)
Wy ()

1
W2 (x)
- Wy a3(x)
Wy (%)
-1 —  Wisx)
Wy s(x)
-2 ¥ - (x)
Fig.1. EightMLWs for; =1, g=1andK =8
2.2. Function approximation
Vol. 71 No. 3 (2022) 823

http://philstat.org.ph



Mathematical Statistician and Engineering Applications

ISSN: 2326-9865

A square integrable function g(x)on|o, 1]can be expressed as linear combination of MLWs
series as

90023 3 &, ok (), ©)
n=1k=0

where gn,k:<g(x)’\Pn,k(X)> areMLWscoefficients and the (., )symbolizes the inner product in

L, [0, 1]. Now, we will truncate the above series provided in equation (9) as follows:

2 _
902 S ¢ Wy (0= P, (10)
n=1 k=0
where ¢ and w(x) are vectorof order 291K x1, written as
¢= [51,0’ ""§1,K—1' 42,01 ---152, K-1r “"ggq—l,O’""gzq—l,K—l]r (11)

_ P10(X) - Wik a(X) W2,0(X) - ¥k a(X), .o '
o= [ Poa-10(X) o Woa-1k1(X) }

The approximation of vector ¥(x) differentiationcan be obtainedby
dv

(x) _
v e¥(x). (13)

2.3. Derivative operational matrix of modified Lucas wavelets
In the subsection 2.3, we determine thederivative operational matrix (DOM) of MLWs. To
explain the working procedure, we first derive derivatives of MLWs.

So,
d
dw10() _ ¢
dx
dwii() _ 4v2
dx i
dwi2(9 _ £(16—32x)
dx T ,
d¥is(¥) _ V2 (_ 36+192x —192 xz),
dx Jz
d
Y1,4(X) _ 2 (— 64 + 640x —1536 x2+1024x3) ,
dx \/;
d
Pis(X) _ V2 (L0 —1600x + 6720 x? —10240 x® + 5120 x*),
dx NS
d
Wis() 2 (144 — 3360 x + 21504 x? — 55296 x3+ 61440 x*— 24576 x5°),
dx NES

dwi7(X) /2 [—196+6272x — 56448 x? + 215040 x° — 394240 x*
dx V7 | +344064 x5 -114688 x° '

By using above procedure, the DOM of MLWs of first and second orderfor K =8and q =1are
given by respectively
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0 O 0 0 0 0 00

22 0 0 0 0 0 0 0

O -8 0 0 0O 0 0O

62 0 12 0 0 0 0 0

6= o 16 o0 -16 0 0 0 0|

1042 0 -20 0 20 0 0 0

0 -24 0 24 0 -24 0 0

142 0 28 0 -28 0 28 0
0 0 0 0 0 0 0 0]
0 0 0 0 0 0 00
1682 0 0 0 0 0 00
, | o ~9% 0 0 0 0 00
O~ 1282 0 -102 0 0 0 00
0 480 0 -320 0 0 00
—432/2 0 768 0 -480 0 0 0
| 0 -1344 0 1120 0 —672 0 0]

By using above procedure, the nth DOM of MLWs is defined as

Mzgn ¥(x) (14)
dx”
3. Method of solution
In this section, we will apply the computational DOM of MLWs technique with collocation
points to solve the SOLETDE given in equations (1) and (2). By using MLWsapproximation,

let

V() = T W(x) (15)
Using eq. (14), we can write
vix)=¢cTew(x)andy (x) =" @2 ¥(x) (16)

Using equations (15) and (16), equation (1) becomes
TP+ ZTOW() + T(x T H(9)=9(x) (17)

Furthermore, the initial and boundary conditions from equation (2), produces
WO =N, TOYO0)=3J (18)
To obtain the unknown coefficients¢, , , we observe that there should be (%K) -9, (%is

the number of specified boundary conditions) extra conditions.These conditions can be
derived by solving equation (18) at the appropriate collocation points

i
@K -R
Equation (17) and (18) produce 29K systems of algebraic equations.We got unknown
coefficients ¢, | after solving this system.

Xi i=123..., where (291K)-9%=0.
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g

1. Input
K1771 q, kl Xi

g

2. Derive the term v(x) by using MLWs (eq. 15)

g

3. Derive the first and second derivatives terms v (x) and v (x) (eq. 16)

g

4.Using steps 2 and 3, generate approximate form of model equation (eq. 17)

g

5. Construct boundary conditions X, 3 to generate the approximate form
of model equation (eq. 18)

g

6. Using necessary conditions of approximated function v(x) to generate system of
algebraic equations (Eqg. 16-17)

g

7.Solve the generated system from step 6 to receive thewavelet unknown coefficients
by usingsuitable collocation point x;

g

8. Substitute * £ - in equation (15) to receive required approximate solution

4

Fig.2. Flow chart of the imposition of proposed technique

Algorithm
Input: k,n,m,M,a>0,2>0,z,i=123,...2tM)-C.
Step 1. Define the MLWSs ¥(x)through eq. 12.
Step 2. Introduced unknown MLWs coefficient vector ‘ ¢ > by using eq. 11.
Step 3. In this stepApproximate v(x) in terms of MLWs series from eq. 15.
Step 4. Approximate: v'(x)and v"(x) using nth derivative operational matrix from eq. (16).
826
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Step 5.Substituting the approximated form of v(x) in eq. (1) according to given problem by
using step 3, 4.
Step 6. Composeboundary conditions from eq. (18) according to given Problem.
|

Q1K) -%
Step 8. In step 7 “ R’ represents total number of specified boundary conditions.
Step 9.Take set of (291K) - % algebraic equations from eq. (17) for given problem using step
7.
Step 10.Take rest set of 9 algebraic equations by using eq. 18for given problem.
Step 11. Solve this combined system which is received in step 9 and 10 and find ¢ .
Step 12. Increases: K or g to get moreaccurateapproximatesolutionv(x) .
Output: The approximated MLWs solution:

V() =¢T W) -

Step 7. Introduce x; = i=123..., where (291K)-9%=0.

4. Error estimation
Let us suppose E4(x) is error function between exact solutionv(x) and approximate solution
v(x) of LETDEs given in eq. (1) and (2), then there corresponding error at ™ level can be
explain as

Eq (X) = max|v(x) —V(x)|
20-1k
=max|v(x) — _;0 g Wi ().

Hence, if we have exact solution of discussed problem then we can estimate the error for the
discussed problem.

4.1. Convergence analysis
Theorem 4.1.1 If v(x) is square integrablecontinuous function as well as bounded function

on[o,1), such thatv(x)<I, then MLWs series of v(x)converges uniformly.
Proof:According to the given hypothesis v(x)is bounded function on the interval [0,1) then
MLWs coefficients of v(x) is defined as

1
gq,k = (J;V(X)\yn,k (X) dx

& (19)
2 @b - g4
= IY(X)Z 2 ax LY x—n+Ddx,
now, putting 24 x -5 +1=/ in equation (19).
Then,
n
2 -1 R
k= [}/(Tt")zTakLk(f)z*q”df
= (20)
I 0-1+n, ~
— —q+1
=271 ok (I)V( ST ) Lk (Dde,

by mean-value theorem (generalized) for integrals,
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—1+n 1o
=2 v ( ij’7> OLY (21)
forany s < (0,1)
=2 e v, (22)
where § =i[k(z)d£, (23)
then,

‘f;q,k‘zhk”\/ﬁ

Since v(x)is bounded, so series ¥ ¢, 1S absolutely convergent.
nk=0 """

v (24)

Therefore, MLWs series of v(x)converges uniformly.

5. lllustrative Examples
In this part, we compare the effectiveness of the proposed techniques to that of certain
previously known techniques or methods. In this section, we apply DOM techniques based on
MLWs basis for some SOLETDEs.

Example 5.1For f(x, v)=v, g(x)=x3+x2+12x+6 and =2, equation (1) gives one of the
LETDE: v"(x)+§V'(x)+v(x)=6+12x+x2+x3, x>0, (25)

with conditions

v(0)=0, Vv (0)=0. (26)
This problem has exact solution v(x) = x2 + x3
We solve equation (25) and (26) by the proposed technique for fix value ofq=1, K =4, We

obtain the appropriate system of algebraic equations, and after solving the system by
Mathematica 7.0, we obtain the values for the unknown coefficients as follows:

$10=0.6092810112487715, &, =0.6070740352621954, &, =-0.1958303339555469,
{13 =-0.01958303339555469

and the solution v(x) of equation (25) and (26) is approximated by

V(X) = ¢ W(2) = ¢10Wa0 (¥) + 13 Waa (X) + &1 Wiz (X) + $15 W13 (X)
=0.6092810112487715 ¥y () + 0.6070740352621954 w1, (X)
- 0.1958303339555469 3, (X) - 0.01958303339555469 ;3 (X)

=~ X2 + x3
To check the efficiency of the proposed technique we compared the results obtained from the
proposed technique to the exact solution and other current methods through absolute erroris
given in table-1, and in figure-3, the graph between numerical solution and exact solution of
equation (25) are compared and in figure-4,absolute error graph of example 5.1 is discussed.
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Table 1: Comparison of absolute errors for example 5.1

Fig.3. Graph between DOMMLWT (approximate) and Exact solution for example 5.1

Vol. 71 No. 3 (2022)
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X Exac | Error | Error Error Error Error
t in in in in in
[29] [30] [30] [22] (DOMMLWT
k=2, M=2 | k=2M=3 | k=1 M =4 )
q=1 K=4
0.00 |0 0 0 0 1.11E-16 | 4.44E-16
1.00 | 2 1.25E- |0 0 2.22E-16 | 4.44E-16
06
2.00 | 12 6.93E- | 3.38E-14 0 3.55E-15 |0
07
3.00 | 36 7.58E- |2.37E-14 3.33E-16 | O 0
08
4.00 | 80 3.07E- | 4.35E-14 5.63E-16 | O 0
07
5.00 | 150 | 3.21E- | 2.08E-14 4.33E-16 | 0 0
07
6.00 | 252 | 9.74E- | 6.22E-14 3.68E-16 | 0 0
08
7.00 | 392 | 2.05E- | 4.76E-14 4.34E-16 | 5.68E-14 | O
07
8.00 | 576 | 7.36E- | 7.78E-14 2.12E-16 | O 0
07
9.00 | 810 |4.61E- | 2.28E-14 5.38E-16 | O 0
06
10.0 | 1100 | 1.24E- | 5.48E-14 2.12E-16 | 2.27E-13 |0
0 05
1000 /-
— Exact ,” ]
800 B
— DOMMLWT ’/
5 o0 /,

X




Mathematical Statistician and Engineering Applications
ISSN: 2326-9865

6.x 10716 |

5.% 10-16 |

4.%x10716

! ! ! ! ! ! ! 1 ! ! | 1 ! !
02 0.4 0.6 0,8\/ v 10

Fig- 4. Absolute error graph of example 5.1

Example 5.2 For f(x, v)=xv, g(x)=x>—x*+44x2-30xand y=8, equation (1) gives one of the
LETDE

v”(x)+§v'(x)+xv(x):x5—x4+44x2—30x, x>0 (27)

With conditions

v(0)=0, v (0)=0 (28)
This equation has exact solution V(X)=x*- 3
We solve equation (27) and (28) by the proposed technique for fix value of q=1 K=5 We
obtain the appropriate system of algebraic equations, and after solving the system by
Mathematica 7.0, we obtain the values for the unknown coefficients as follows:

£, =-0.03461823927549676, ¢, = - 0.019583033395554696 , ¢, = - 0.019583033395554707
¢, =-0.01958303339555469, ¢, = 0.0048957583488886715

and the solution v(x) of equation (27) and (28) is approximated by

v(x)=¢T P (X)
=¢ 10 P10 (x) + g1 ‘Pll(X) + 4/12 Wiz (X) + $13 Ya3(X)+ $14 W14 (x)
=-0.0346182392754976 ¥, (x) - 0.019583033395554696 1, (X)
-0.019583033395554707 ¥, (x) - 0.01958303339555469 ;5 (X)
+0.0048957583488886715 ¥4 (X)

~ 74— ;3

In table-2, the efficiency of the proposed technique is compared to the exact solution and
other current methods through absolute error. The numerical and exact solution of equation
(27) is compared in figure 5, and the absolute error graph of example 5.2 is explained in
figure 6.

Vol. 71 No. 3 (2022) 830
http://philstat.org.ph



Mathematical Statistician and Engineering Applications

ISSN: 2326-9865

Table 2: Comparison of absolute errors for example 5.2

X Exact | Error Error Error Error
in [29] in[31] | in [22] in
k=LM=5 | (DOMMLWT)
g=1 K=5
0.00 |0 0 0 3.38E-15 | 1.83E-15
100 |0 8.28E- | 1.36E- | 3.37E-15 | 1.83E-15
07 11
200 |8 1.73E- | 1.27E- | 3.55E-15 | 1.77E-15
07 12
3.00 |54 2.07E- | 246E- |0 7.10E-15
07 12
400 |192 |3.68E- |2.09E- | 2.84E-14 | 2.84E-14
08 11
500 | 500 |1.91E- |2.05E- |5.68E-14 | 1.13E-13
07 11
6.00 | 1080 |4.74E- |6.37E- | 2.27E-13 | 2.27E-13
07 12
7.00 | 2058 |4.14E- |3.28E- |0 4.54E-13
07 12
8.00 | 3584 [9.36E- |1.32E- |0 9.09E-13
06 11
9.00 | 5832 [4.40E- |3.02E- |0 9.09E-13
05 12
10.00 | 9000 | 3.39E- | 1.64E- | 1.81E-12 | 1.81E-12
04 11
. . . . . : "._
8000 /-
— Exact .f'l
I/
6000 |- -— DOMMLWT ’,/ .
= ,f'
= 4000 Vi .
/I
2(')0('): // .
0 _—r-------r‘-“"""?""/ ! ! . N

Fig.5. Graph between DOMMLWT (approximate) and Exact solution for example 5.2
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2.x10°5 |
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19x 1075 .f\'\/ \ /
I |
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Fig- 6. Absolute error graph of example 5.2

Example 5.3For f(x, v)=-2(2x>+3M(x), g(xy=0and =2, equation (1) gives one of the
LETDE

v”(x)+§v'(x)—2(2 x2+3)\/(x):0, x>0 (29)

With conditions
v(0)=1 v (0)=0 (30)

This equation has exact solution V(x) =eX2

We solve equation (29) and (30) by the proposed technique for fix value of q=1, K=8 We
obtain the appropriate system of algebraic equations, and after solving the system by
Mathematica 7.0, we obtain the values for the unknown coefficients as follows:

¢y = 1.3824907669120983,  ¢,,= 0.5025346420887822, ¢,,= -0.1801683029901088,

{1a= -0.03521701042149476, £, = 0.007764252783041935, ¢, = 0.0012613680644173858,

{16 = -0.00020787732501664164, ¢, = -0.000038940077058158394

and the solution v(x) of equation (29) and (30) is approximated by

v(x)=¢T W(X)
=10 W10(X) + &1 W11 (X) + &1 W12 (X) + &3 W13 (X) + &1y P14 (X)
+ 5 Wis(X) + g P16 (X) + &7 P17 (X)

=1.3824907669120983, W1, (x) + 0.5025346420887822 w1, (X)
-0.1801683029901088 Wy, (X) - 0.03521701042149476 W15(X)

+0.007764252783041935y1,4(X) + 0.0012613680644173858%¥15(X)
-0.00020787732501664164 ;4 (x) - 0.000038940077058158394 ;7 (X)

~ eX2
In table-3, the efficiency of the proposed technique is compared to the exact solution through
absolute error explanation for different values of ¢ , K . The numerical and exact solution of

equation (29) is compared in figure 7, and the absolute error graph of example 5.3 is
explained in figure 8.
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X Exact Error Error
in in
(DOMMLWT) | (DOMMLWT)
q=1 K=6 g=1 K=8
0.0 | 1.00000 | 6.66E-16 0
0.1 | 1.01005 | 0.00291951 0.000012912
0.2 | 1.04081 | 0.00758725 8.21E-07
0.3 |1.09417 | 0.0108483 0.000138906
0.4 |1.17351 |0.0123222 0.000317503
0.5 | 1.28403 | 0.0130404 0.000499579
0.6 | 1.43333|0.0142988 0.000709027
0.7 |1.63232 | 0.0168141 0.000964158
0.8 | 1.89648 | 0.020324 0.00125742
0.9 |2.24791 | 0.0238558 0.00161279
1 e 0.0270171 0.00212312
=1 — Exact
ol - DOMMLWT -
10 s ‘ - ]
0.0 0.2 0.4 0.6 0.8 1.0

X

ISSN: 2326-9865

Fig- 7. Graph between DOMMLWT and Exact solution for q=1, K =8 of example 5.3

o.0020 [
o.0015
o.0010

o.0005 [

o8 1.0

Fig- 8. Absolute error graph for q=1 K=8 of example 5.3
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Conclusions

In this article, a computational DOM technique based on MLWsis derived to find the numeric
solution of SOLETDEs. Using this technique, the SOLETDEsand there system has been
reduced to solve system of algebraic equations without converting into integral equations.
The approximate solution obtained from the proposed DOMMLWT is compared to the
solutions obtained from other existing methods using absolute error explanation, which
shows that the proposed technique is faster, more efficient, and computationally acceptable
than other established methods for solving SOLETDEs. If we increase the value of q ,K as

well as no. of collocation points then we get more accuracy in results.
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