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Abstract  

In this study, we describe a computational derivative 

operational matrix technique for generating best 

approximation solution of second-order Lane-Emden type 

differential equations using modified Lucas wavelets basis. 

Modified Lucas wavelets basis expansion together with this 

computational derivative operational matrix technique, by 

selecting appropriate collocation points, converts the given 

second-order Lane-Emden type differential equations into a 

well-known equivalent set of algebraic equations.Some 

examples have been solved in order to evaluate the accuracy 

and stability of the suggested technique. Based on the results 

obtained for the stated problems, the suggested technique 

provides the best approximate solution to second-order Lane-

Emden type differential equations when compared to other 

current techniques. 

Keywords: Wavelet, Modified Lucas wavelets, Collocation 

points, second-order Lane-Emden differential equations, 

Derivative operational matrix. 

 

1. Introduction 

The analysis of star composition was a significant concern in the early stages of stellar 

astrophysics. There have been numerous attempts to deduce the spiral form of density, 

tension, and mass of stars; the major outcome of these attempts is the second- order   Lane-

Emden type differential equations (SOLETDEs); this type of differential equations also 

occurs frequently in the field of applied mathematics , astrophysics and mathematical 

physics. See references [1-8]. J. Lane and R. Emden, was the first astrophysicists, presented 

Lane-Emden type differential equations(LETDEs) in 1870 [9]. 

In recent years, the study of SOLETDEs has captured the attention of both mathematicians 

and physicists. The purpose of this research is to give a simple implementation of the 

proposed computational derivative operational matrix technique for getting optimal 

numerical solutions to SOLETDEs. The general second-order Lane-Emden type differential 
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equation (SOLETDE) is written as:  

,0,0),(),()()( '''  


xxgvxfxv
x

xv
  

(1) 

with, condition:  

 )0(,)0( '
vv ,     (2) 

here, Rvxf ),(  and continuousfunction, ]1,0[)( Cxg   is an analytical function and  ,are 

constants . Equation (1) is used to represent a variety of phenomena encountered in the study 

of star structures, astrophysics, cooling, the principal theory of thermionic currents, and the 

isothermal gas sphere, among other things [7-17].Wavelets and their techniques are now used 

to improve performance in all areas of science. The benefit of using this computational 

derivative operational matrix technique is that it directly converts SOLETDEs into the 

equivalent set of algebraic equations. 

There are several uses of LETDEs in the disciplines of science. As a result, many scholars 

dedicated their efforts to provide a better approximate solution for LETDEs, and many 

literatures on LETDEs have lately been published [18-22]. For solving the SOLETDEs, a 

new computational derivative operational matrix technique linked with modified Lucas 

wavelets (MLWs) is provided in this paper. Using a modified Lucas wavelets basis, we 

introduced MLWs and their first and second-order derivatives operational matrix. The 

proposed technique has the advantage of requiring less computational effort and yielding the 

best approximate solution of SOLETDEs. In the proposed technique, the derivatives term in a 

class of SOLETDEs is expressed as a MLWs basis, and the solution is expanded by a MLWs 

basis with unknown coefficients. 

The following is the structure of the current article: Section 2 contains basic definition of 

MLWs and the derivation of first and second order modified Lucas wavelets derivative 

operational matrices. Section 3 describes the solution procedure for SOLETDEs. In section 4, 

error estimation and convergence analysis is discussed .Section 5 presents numerical results. 

Finally, in the final section, the proposed work's conclusions are discussed. 

 

2. Wavelets 

The mother wavelet, also known as a wavelet, is a scaled (dilated) and sifted (translated) 

family of functions descended from a single function .When the scaled parameter y  and 

sifted parameter z  vary continuouslythen,we get the resulting family of continuous wavelets

)(, xzy  is as follows [23-28].   

.0;,;)(
2/1

, 






 



yRzy

y

zx
yxzy  (3) 

If, we take the parameters ( y , z ) values in discrete form as: ,, 000
jj

ynzzyy


 0,1 00  zy  

and Njn ,   then, we getdiscrete form of the family of continuous waveletsas  

  ),( 000

2/

, nzxyyx
jj

nj        (4) 

Where,  xnj, makes asa wavelet basis for )(2 RL . 

 

2.1. Modified Lucas Wavelets 

Modified Lucas wavelets (MLWs) ),,ˆ,()(, xkqxk    have four arguments:
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,,1...,,2,1,0,2,...,2,1,1ˆ 1
ZqKkq    k  is the order and x  is the normalized time for 

modified Lucas polynomials (MLPs)they are defined on the interval  1,0  as: 













 




otherwise

xifxL
x qq

q
kk

q

k

,0

,
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2
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    (5) 

where    

,
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,
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,
2
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1
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


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

otherwise

evenkboth

oddkboth
i

kboth

k







        (6) 

and )12(~ 1  xL
q

k  are orthonormal MLPs of degree k ,taking into account the weight 

function  
xx

xwxw
q

2

1

1616

1
)12(


    on the interval  1,0 . The following recursive 

formula yields these MLPs: 

   




























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xxxixxxixL

kk

k

q
k

21616242161624
2

1
)12(~ 1  .  (7) 

 The MLWs )(, xk  presented in equation (5) are orthonormal taking into account the 

weight function  
xx

xwxw
q

2

1

1616

1
)12(


    in  ,1,02

L  

i.e., 

 
   
   

.
',',,0

',',,1
)()(

1

0
',',








 

kk

kk
dxxwxx kk




 (8) 

By inserting, 1q , 1  and 8K into equation (5) and using the relationships indicated in 

equations (6) and (7), we obtain the eight MLWs shown below, and these resulting eight 

MLWs are visually depicted in figure-1. 

 

 

Fig.1. EightMLWs for 1  , 1q and 8K  

 

2.2. Function approximation 
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A square integrable function )(xg on  1,0 can be expressed as linear combination of MLWs 

series as  

)()( ,
1 0

, xxg k
k

k  










 ,     (9)     

where )(),( ,, xxg kk   areMLWscoefficients and the .., symbolizes the inner product in 

 1,02L . Now, we will truncate the above series provided in equation (9) as follows: 

)()(
2

)( ,
1

1

0
,

1

xxxg
T

k

K

k
k

q

 









 



,   (10)     

where  and )(x  are vectorof order 12
1  Kq , written as 

  1,2 10,2 11,20,21,10,1 ...,,...,,...,,,...,,  KqqKK

T
(11)

    

 

       

    
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xxxx
x

Kqq

KK

T

1,2 10,2 1

1,20,21,10,1

...,,,

...,,...,,,...,,
)( (12)

     

The approximation of vector )(x differentiationcan be obtainedby 

)(
)(

x
dx

xd



. (13) 

 

2.3. Derivative operational matrix of modified Lucas wavelets 

In the subsection 2.3, we determine thederivative operational matrix (DOM) of MLWs. To 

explain the working procedure, we first derive derivatives of MLWs. 

So, 
 

 

 

 

 
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114688344064
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By using above procedure, the DOM of MLWs of first and second orderfor 8K and 1q are 

given by respectively 
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By using above procedure, the th DOM of MLWs is defined as
 

)(
)(

x
dx

xd


 




     (14)    

    3. Method of solution 

In this section, we will apply the computational DOM of MLWs technique with collocation 

points to solve the SOLETDE given in equations (1) and (2). By using MLWsapproximation, 

let  

)()( xxv
T
       (15) 

Using eq. (14), we can write 

)()(' xxv
T

 and )()( 2'' xxv
T

    (16) 

Using equations (15) and (16), equation (1) becomes

)())(,()()(2 xgxxfx
x

x
TTT

 



  

(17) 

Furthermore, the initial and boundary conditions from equation (2), produces 

 )0(,)0( 
TT     (18) 

To obtain the unknown coefficients k,
, we observe that there should be  )2(

1 Kq , ( is 

the number of specified boundary conditions) extra conditions.These conditions can be 

derived by solving equation (18) at the appropriate collocation points 

...3,2,1,
)2(

1






i

K

i
x

qi , where 0)2(
1  Kq . 

Equation (17) and (18) produce Kq
2

1 systems of algebraic equations.We got unknown 

coefficients  k,
after solving this system. 
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Fig.2. Flow chart of the imposition of proposed technique 

 

Algorithm 

Input: CMizzMmnk k
i   )2(...,3,2,1,,0,0,,,, 1 . 

Step 1. Define the MLWs )(x through eq. 12. 

Step 2. Introduced unknown MLWs coefficient vector ‘ ’ by using eq. 11. 

Step 3. In this stepApproximate )(xv  in terms of MLWs series from eq. 15. 

Step 4. Approximate: )(' xv and )('' xv using nth derivative operational matrix from eq. (16). 

4.Using steps 2 and 3, generate approximate form of model equation (eq. 17)  
 

7.Solve the generated system from step 6 to receive thewavelet unknown coefficients                    

by usingsuitable collocation point xi  

 

 

    
8. Substitute ‘  ’ in equation (15) to receive required approximate solution  

      End 

5. Construct boundary conditions , to generate the approximate form 

 of model equation (eq. 18)  

3. Derive the first and second derivatives terms )(' xv  and )('' xv (eq. 16) 

         Start 

1. Input  

xkqK i,,,,  

1. mnMk ,,,  

2. Derive the term )(xv by using MLWs (eq. 15) 

6. Using necessary conditions of approximated function  )(xv  to generate system of  

algebraic equations (Eq. 16-17) 
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Step 5.Substituting the approximated form of )(xv in eq. (1) according to given problem by 

using step 3, 4.  

Step 6. Composeboundary conditions from eq. (18) according to given Problem. 

Step 7. Introduce ...3,2,1,
)2(

1






i

K

i
x

qi , where 0)2(
1  Kq . 

Step 8. In step 7 ‘ ’ represents total number of specified boundary conditions. 

Step 9.Take set of  )2(
1 Kq algebraic equations from eq. (17) for given problem using step 

7. 

Step 10.Take rest set of  algebraic equations by using eq. 18for given problem. 

Step 11. Solve this combined system which is received in step 9 and 10 and find . 

Step 12. Increases: K or q  to get moreaccurateapproximatesolution )(xv . 

Output: The approximated MLWs solution:  

)()( xxv
T
 . 

4. Error estimation 

Let us suppose )(xEq  is error function between exact solution )(xv  and approximate solution 

)(ˆ xv  of LETDEs given in eq. (1) and (2), then there corresponding error at q
th  level can be 

explain as  

)(ˆ)(max)( xvxvxEq   

 




K

i
jii

q

xxv
2

0
,

1

)()(max  . 

Hence, if we have exact solution of discussed problem then we can estimate the error for the   

discussed problem. 

4.1. Convergence analysis 

Theorem 4.1.1 If )(xv  is square integrablecontinuous function as well as bounded function 

on )1,0[ , such that   lxv  , then MLWs series of  xv converges uniformly.  

Proof:According to the given hypothesis  xv is bounded function on the interval )1,0[  then 

MLWs coefficients of  xv  is defined as 

 
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now, putting  12 1 xq  in equation (19). 

Then, 
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     (20) 

by mean-value theorem (generalized) for integrals, 
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



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 ,                  (21) 

for any ),( 10  







 )
2

1
(2

1

1

qk
q v


 ,       (22) 

where ,)(~
1

0

 dLk         (23) 

then, 

.)
2

1
(2

1

1
, 








q

q
kk v


         (24) 

Since  xv is bounded, so series 


0,
,

k
k


  is absolutely convergent.  

Therefore, MLWs series of  xv converges uniformly. 

 

5. Illustrative Examples 

In this part, we compare the effectiveness of the proposed techniques to that of certain 

previously known techniques or methods. In this section, we apply DOM techniques based on 

MLWs basis for some SOLETDEs.  

 

Example 5.1For 612)(,),( 23  xxxxgvvxf and ,2 equation (1) gives one of the 

LETDE:                0,126)()(
2

)( 32'''  xxxxxvxv
x

xv ,    (25) 

with conditions  

0)0(,0)0( '  vv .                      (26) 

This problem has exact solution xxxv 32)(    

We solve equation (25) and (26) by the proposed technique for fix value of ,4,1  Kq We 

obtain the appropriate system of algebraic equations, and after solving the system by 

Mathematica 7.0, we obtain the values for the unknown coefficients as follows: 

 

3395554690.01958303- 

,395554690.19583033- ,526219540.60707403 ,124877150.60928101 

13

121110









 

and the solution )(xv  of equation (25) and (26) is approximated by 

)()()()()()( 1313121211111010 xxxxzxv
T

   

xx

xx

xx

32

1312

1110

)(3395554690.01958303-)(395554690.19583033-

)(526219540.60707403)(124877150.60928101







 

To check the efficiency of the proposed technique we compared the results obtained from the 

proposed technique to the exact solution and other current methods through absolute erroris 

given in table-1, and in figure-3, the graph between numerical solution and exact solution of 

equation (25) are compared and in figure-4,absolute error graph of example 5.1 is discussed. 
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Table 1: Comparison of absolute errors for example 5.1 

x  Exac

t 

Error 

in 

[29] 

Error 

  in  

[30]  

2,2  Mk

 

Error 

in  

[30]  
3,2  Mk

 

Error 

in 

 [22] 

4,1  Mk  

Error 

in 

(DOMMLWT

) 

4,1  Kq  

0.00 0 0 0 0 1.11E-16 4.44E-16 

1.00 2 1.25E-

06 

0 0 2.22E-16 4.44E-16 

2.00 12 6.93E-

07 

3.38E-14 0 3.55E-15 0 

3.00 36 7.58E-

08 

2.37E-14 3.33E-16 0 0 

4.00 80 3.07E-

07 

4.35E-14 5.63E-16 0 0 

5.00 150 3.21E-

07 

2.08E-14 4.33E-16 0 0 

6.00 252 9.74E-

08 

6.22E-14 3.68E-16 0 0 

7.00 392 2.05E-

07 

4.76E-14 4.34E-16 5.68E-14 0 

8.00 576 7.36E-

07 

7.78E-14 2.12E-16 0 0 

9.00 810 4.61E-

06 

2.28E-14 5.38E-16 0 0 

10.0

0 

1100 1.24E-

05 

5.48E-14 2.12E-16 2.27E-13 0 

 

 
Fig.3. Graph between DOMMLWT (approximate) and Exact solution for example 5.1 
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Fig- 4. Absolute error graph of example 5.1 

 

Example 5.2 For xxxxxgxvvxf 3044)(,),( 245  and ,8 equation (1) gives one of the 

LETDE 

0,3044)()(
8

)( 245'''  xxxxxxxvxv
x

xv     (27) 

With conditions  

0)0(,0)0( '  vv         (28) 

This equation has exact solution xxxv 34)(   

We solve equation (27) and (28) by the proposed technique for fix value of ,5,1  Kq We 

obtain the appropriate system of algebraic equations, and after solving the system by 

Mathematica 7.0, we obtain the values for the unknown coefficients as follows: 

583488886710.00489575 ,3395554690.01958303- 

,33955547070.01958303- ,33955546960.01958303- ,9275496760.03461823- 

1413

121110








 

and the solution )(xv  of equation (27) and (28) is approximated by 

)()()()()(

)()(

14141313121211111010 xxxxx

xxv
T









 

zz

x

xx

xx

34

14

1312

1110

)(583488886710.00489575

)(3395554690.01958303-)(33955547070.01958303-

)(33955546960.01958303-)(392754976-0.0346182









 

In table-2, the efficiency of the proposed technique is compared to the exact solution and 

other current methods through absolute error. The numerical and exact solution of equation 

(27) is compared in figure 5, and the absolute error graph of example 5.2 is explained in 

figure 6. 
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Table 2: Comparison of absolute errors for example 5.2 

x Exact Error  

in [29] 

Error  

  in[31] 

Error  

in  [22] 

5,1  Mk  

Error  

   in 

(DOMMLWT)

5,1  Kq  

0.00 0 0 0 3.38E-15 1.83E-15 

1.00 0 8.28E-

07 

1.36E-

11 

3.37E-15 1.83E-15 

2.00 8 1.73E-

07 

1.27E-

12 

3.55E-15 1.77E-15 

3.00 54 2.07E-

07 

2.46E-

12 

0 7.10E-15 

4.00 192 3.68E-

08 

2.09E-

11 

2.84E-14 2.84E-14 

5.00 500 1.91E-

07 

2.05E-

11 

5.68E-14 1.13E-13 

6.00 1080 4.74E-

07 

6.37E-

12 

2.27E-13 2.27E-13 

7.00 2058 4.14E-

07 

3.28E-

12 

0 4.54E-13 

8.00 3584 9.36E-

06 

1.32E-

11 

0 9.09E-13 

9.00 5832 4.40E-

05 

3.02E-

12 

0 9.09E-13 

10.00 9000 3.39E-

04 

1.64E-

11 

1.81E-12 1.81E-12 

 

 
Fig.5. Graph between DOMMLWT (approximate) and Exact solution for example 5.2 
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Fig- 6. Absolute error graph of example 5.2 

 

Example 5.3For     0)(,322),( 2  xgxvxvxf and ,2 equation (1) gives one of the 

LETDE 

  0,0)(322)(
2

)( 2'''  xxvxxv
x

xv     (29) 

With conditions  

0)0(,1)0( '  vv                       (30) 

This equation has exact solution exxv
2

)(   

We solve equation (29) and (30) by the proposed technique for fix value of ,8,1  Kq We 

obtain the appropriate system of algebraic equations, and after solving the system by 

Mathematica 7.0, we obtain the values for the unknown coefficients as follows: 

39400770581580.00003894 -  64,73250166410.00020787-   

8,80644173850.00126136   ,27830419350.00776425  ,0421494760.03521701-  

,299010880.18016830-  ,208878220.50253464  ,691209831.38249076  

1716

151413

121110













 

and the solution )(xv  of equation (29) and (30) is approximated by 

)()()(

)()()()()(

)()(

171716161515

14141313121211111010

xxx

xxxxx

xxv
T













 

 

ex

xx

xx

xx

xx

2

)(39400770581580.00003894 - )(6473250166410.00020787- 

)(880644173850.00126136 )(27830419350.00776425

)(0421494760.03521701-)(299010880.18016830-

)(208878220.50253464 )(,691209831.38249076 

1716

1514

1312

1110











 

In table-3, the efficiency of the proposed technique is compared to the exact solution through 

absolute error explanation for different values of  q  , K . The numerical and exact solution of 

equation (29) is compared in figure 7, and the absolute error graph of example 5.3 is 

explained in figure 8. 
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0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

x

vx DOMMLWT

Exact

x Exact Error 

in 

(DOMMLWT)

6,1  Kq  

 

Error 

in 

(DOMMLWT)

8,1  Kq  

 

 

0.0 1.00000 6.66E-16 0 

0.1 1.01005 0.00291951 0.000012912 

0.2 1.04081 0.00758725 8.21E-07 

0.3 1.09417 0.0108483 0.000138906 

0.4 1.17351 0.0123222 0.000317503 

0.5 1.28403 0.0130404 0.000499579 

0.6 1.43333 0.0142988 0.000709027 

0.7 1.63232 0.0168141 0.000964158 

0.8 1.89648 0.020324 0.00125742 

0.9 2.24791 0.0238558 0.00161279 

1 e  0.0270171 0.00212312 

 

 

 

 

 

 

 

 

 

 

 

 

Fig- 7. Graph between DOMMLWT and Exact solution for 8,1  Kq  of example 5.3 
 

 

 

 
 

Fig- 8. Absolute error graph for 8,1  Kq  of example 5.3 
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Conclusions 

In this article, a computational DOM technique based on MLWsis derived to find the numeric 

solution of SOLETDEs. Using this technique, the SOLETDEsand there system has been 

reduced to solve system of algebraic equations without converting into integral equations. 

The approximate solution obtained from the proposed DOMMLWT is compared to the 

solutions obtained from other existing methods using absolute error explanation, which 

shows that the proposed technique is faster, more efficient, and computationally acceptable 

than other established methods for solving SOLETDEs. If we increase the value of  q  , K  as 

well as no. of collocation points then we get more accuracy in results. 
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