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1. Introduction:
Let “S ” be the class of functions f () be the form of analytic functions of class “ A”,

that are univalent in U and normalized by f({)=¢+> a ™
k=2
1)
which are analytic function in the unit disc U ={¢ : { € C,|¢| <1}
We know that every function f €S hasaninverse f(f(£))=¢(¢ eU) and

f(f‘l(a)))za),(|a)|<ro(f);ro(f)zij.

If g=f" isthe inverse function of f €S, then g has a Maclaurin series expansion in
some disc about the origin,

which is given by g(w) = f (@) = w—a,0° + (28} —a,)®° - (5a; —5a,a, +a,)®" +...

(2)

A function f e A is said to be bi-univalent in U if both f and f “are univalentin U .
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Let X denote the class of bi-univalent function in U given by (1). The class of analytic
bi-univalent function was first introduced and studied by Lewin [7], where it was proved that

la,| <1.51. Brannan and Clunie [12] improved Lewin’s result to [a,| < v/2 and later

Netanyahu[9] proved that |a2| < %. Brannan and Taha [11] and Taha [13] also investigated

certain subclasses of bi-univalent functions and found non-sharp estimates on the first two
Taylor-Maclaurin coefficients [a,| and [a;|. In recent years Srivastava et al. [14], Frasin and

Aouf [10], Xu et al. [15], Hayami and Owa [16] investigated the various subclasses of bi-
univalent functions to estimate the first two coefficients. Not much is known about the

bounds on general coefficient |an| for n > 3. In this paper we use the Faber [8] polynomial

expansions for a new subclass of analytic bi-univalent functions to estimate the coefficient
bounds|a,.

Let the function f (<) given by (1) and h(¢) given by h(¢) = g”+ibkcj"
k=2
©)
then the Hadamard product of f () and h(¢) are expressed by (f *h)($) = §+Zakbk§k

k=2
(4)
For f €A, Ruscheweyh [1] established the following differential operator:
A+k— 1)

RO =—or 1) =Y s 5
Now consider the Polylogarlthm function 1(n, &) given by (See Patel [23])

I(n,o 3 6

(n,6) = 2[1 kDT (6)

k=1

Note that 1(-11) = a i)z for k = 1,2,3, ....is Koebe function. For more details about

polylogarithms in theory of univalent functions see Ponnusamy and Sabapathy [3], K.Al Shagsi
and M.Daraus [24] , Danyal Soybas, Santosh B. Joshi and Haridas Pawar [4], S. Bulut [17] and

Ponnusamy [5]. Now we introduce a function 17 (n, &) is given by

I(n,5)*l*(n,5):L s>-1nec.

@-)"
(7)
On obtaining, the linear operator R} f(¢)=17(n,8)* f (<)
8
From equation (8), we define Rj< f({)=¢ + i[1+ (k =1)o71" %akgk

(9)
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Ry% =Dj, Ry =R*, R}Y =D; which give the Al-Oboudi [2], Ruscheweyh [1] and
Salagean [6] operators respectively. Also note that RS = f(¢) and R =Ry =¢f'(¢).
It is obvious that the operator R} included convolution of two well known operators.

Now we define a general class of analytic bi-univalent associated with polylogorithmic
functions as follows.
1.1 Definition

ForO<u<y<land0<a<1,afunction f({) €X given by (1) is said to be in the class R;;g

if the following conditions are satisfied:

Rrj,ﬂ ' ”
Re{(l— ¥+ 1) % +(y - ,u)(RE”%) + j/,ué’(Rgé) ] > o and

Rn,ﬂ, ] "
Re[ﬂr—74-u)—£fi+-O/-A0(R2§)'+7ﬂa(R§§) J>>a

where £, weU and g=f" is defined by (10).
Using the Faber polynomial expansion of functions f e A of the form (1), the

coefficients of its inverse map g = f “may be expressed as, [20]:

g(w) = ()
(10)

© 1 B
=+ ZEKkEl(aZ’ a3,...)a)k
k=2

(11)

(R, G G

(kDD @k )k a;‘a,

where K. =
(-2k+3)I(k - 4)!

(-k)! s 2 (-K)! 6 " A ki
e sy B R oy B 2k D

12
Such ihaz V; with 7 <j <k is a homogeneous polynomial in the variables a,,a;,..., &,[21]. In
particular, the first
three terms of K", are K,> =—-2a,,
K3 =3(2a; -a,),
K;' =-4(5a -5a,a, +a,).

(13)
In general, for any peN=123,... an expansion of K is as,[20],
- | |
KP =p, +p(p 1) D2 4 p: D3 p: k

. P +..+———Dg
2 (p-3)13! (p—k)Ik!
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(14)

|
where D} =D} (a,,a;,...) and by [22], D' (a,,a;,..8,) =Y, m

k=i 1i 11
ity !

al..a) . While
a, =1, and the sum is taken over all non-negative integers i,i,,..., i, satisfying
i, +i,+..+i,=m

i, + 20, +...+Ki, =k .

It is clear that D, (8,2, a,)=a;.

Consequently, for functions f e Rgé of the form (1), we can write:

A=y + 1) g(g) s - wR Q) + R 1)

=1+ [+ Ak(k 1)+ (7 -W(k - 1)([1+(k 1)5]" (f.:kk 11)):) =

(15)
2 Coefficient Estimates
2.1 Theorem
For 0<u<y<1,6>0,A>-1and 0<a <1, let the function f e Rg;g be given by (1).

If a;=0(2<j<k-1),then

MA+k-1
lay| <1+ pk(k -1)+ (7 -W)(k -1)] L+ (k-1)5] (A+k-1p (k> 4).
Ak =1)!
Proof: For the function f e R§;§ of the form (1), we have the expansion (15) and for the

inversemap g=f ™

Rl:l,/l r ”
considering (10) we obtain (L—y + x) %(a)) +(y - ,u)(jogg(a))) + yyg“(R;‘;gg(a)))

-1+Z L1+ (k1) + (- k- 1){[1+(k 1s]" (j,:k" 1mAkw L)
where A ==K.* (a,,a;,..). On the other hand, since f e R}{ and g = f ™ e R} by

definition, there exist two positive real part functions
p()=1+>, ¢ eAand g(o) =1+, do“cA
where Re(p(g))>0and Re(q(®)) >0in U so that

52: RO e R 1)) = - pi)=

I+ (1-a)), Ki(C,Cprmnn €S

A-r+up)

(17)
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bzg( o)

-y + )22 R () + R g(@)) =a + (- a)g(w)=

1+(1-a)) . Ki(d,d,,..d,)o" (18)
Note that, by the Caratheodory lemma |c,|<2 and |d,| < 2. Comparing the corresponding

coefficients of (15) and (17), for any k£ > 2, yields

(1_a)Klk—1 (CHET (19)
and similarly, from (16) and (18) we find

(- a)Ki,(d;,dy, diy)  (20)
If a;, =0(2<j<k-1), we have A, =a, and also

[1+k(k -1) + (7 -k -1)([1+ (k-1)5] H%Jak =(1-a)e,
(21)

-[1+ pk(k -1) + (7 - (K -1)([1+ (k-1)5] ”%:k—li;):j& =(l-a)d,
(22)

Taking absolute value of the above equalities, we obtain

|ak| _ (1_05)|Ck—1|
[1+7k(k -1) + (7 - (K -1)IM,
_ (1_a)|dk—1|
[+ pk(k -1) + (7 -k -1)IM,
|ak| 21-«a)

[1+ pk(k -1) + (7 -k -1)IM, |
where M, =([1+(k-1)5] ”MJ
Ak =1)!
Hence Completes the theorem. Suitable choice of parameters for the above result we obtain
the following corollaries.
2.2 Corollary
[18] For A>1and 0<e« <1, let the function f € B (a, ) be given by (1). If
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21l-a)
a, =0(2<k <n-1), then |a < ,(n>4).
( ) then fa, < 0 (124)
2.3 Corollary
[19] For §>0and 0<« <1, let the function f Ny be given by (1). If
2(1l-«a)

a, =0(2<k<n-1), then [a,|< (n>4).

nfi+(n-1)s]’
2.4 Theorem
For 0<u<y<1,6>0,A>-1and 0<a <1, let the function f e R;‘;g be given by (1). Then

one has the

following
41-a) o<1 \Qr2mry—ma+d)(+Df
a)|< A+6yu+2y —2u)(L+28)" (A +31+2)" L+ 6y +2y —21)(1+28)" (A +34+2)
2(1-a) L lar2pry-pe+oya+df
A+2pu+y —)A+0)"(A+D) " (@A+6yu+2y —2u)1+28)" (1> +31+2)
| | 4(1- )
T W+ 6+ 2y —2u) A+ 28)" (12 +31+2)]
‘aa_azz‘ 4(1 a)

A+6yu+2y—2)A+25)" (A2 +31+2)
By the suitable choice of parameters in the above theorem we get the following corollaries.
Corollary 2.5:

[18] For A>1and 0<« <1, let the function f € By (o, 4,9) be given by (1). If

2
2(1_a);0£a 1+24 -4
1+24 2(1+22.)
2(1- a) 1+ 21— /12
1+4 2(1+2&)

a, =0(2<k <n-1), then one has the following [a,| <
a<l

MS@,

+ 22

‘as _23_22‘ < M
1+24

Corollary 2.6 [19] For 6 >0and 0<« <1, let the function f e N;” be given by (1). Then
one has the following
2
2(l-a) O<a< 1+26-26
3(1+20) 3(1+ 26)
2
1l-a) ;1+25—5 <q
1+6  3(1+29)

EHES

<1
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21— )

2l < 2 s

31+25)

3 Conclusions

In this article we estimate the Faber polynomial for new subclasses by using two linear
operators. Furthermore,this work motivated the researchers to extend the results of this article
into some new subclass of g-calculus to estimate the Faber polynomial.
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