A Note on Square Free Detour Distance in Graphs

G. Priscilla Pacifica

Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India.

e-mail: priscillamelwyn@gmail.com

Article Info	Abstract
Page Number: 134-138	In this paper, we investigate the results on square free detour number of a
Publication Issue:	simple, connected graph $G = (V, E)$ of order $n \ge 2$. It is proved that for any
Vol. 70 No. 1 (2021)	two vertices u and v in a connected graph G, $0 \le d(u,v) \le$
	$d_m(u, v) \le D_{\Box f}(u, v) \le D(u, v) \le n - 1$. The relationship between radious and diameter of various distance concepts is discussed. It is also shown that
Antiolo History	1
Article History	for each pair a, b of positive integers with $3 \le a \le b$, there exists a connected
Article Received: 15 January 2021	graph G with $rad_{\Box f}(G) = a$ and $diam_{\Box f}(G) = b$.
Revised: 24 February 2021	Keywords: distance; detour distance; triangle free detour distance; square
Accepted: 18 April 2021	free detour distance.

1 Introduction

For any vertices u and v in a finite undirected connected simple graph G = (V, E), the distance d(u, v) is the length of the shortest u - v path in G. A u - v path of length d(u, v) is called a u - v geodesic. For a vertex v in a connected graph G, the eccentricity e(v) of v is the distance between v and a vertex farthest from v in G. The minimum eccentricity among the vertices of G is its radius and the maximum eccentricity is its diameter, which are denoted by rad(G) and diam(G) respectively. Two vertices u and v of G are antipodal if d(u, v) =diam(G). This geodesic concept was studied and extended to detour distance by Chartrand et. al. [2-5]. For two vertices u and v in a connected graph G, the detour distance D(u, v) from u to v is defined as the length of a longest u - v path in G. A u - v path of length D(u, v) is called a u - v detour. The detour eccentricity $e_D(v)$ of v is the detour distance between the vertex v and a vertex farthest from v in G. The minimum detour eccentricity among the vertices of G is the detour radius $rad_{D}(G)$ of G and the maximum detour eccentricity is its detour diameter diam_D(G) of G. This detour concept was further studied by Santhakumaran et. al. [11] For two vertices u and v in a connected graph G, a longest u - v chordless path is called a u - vv detour monophonic. This detour monophonic distance was studied by Titus et. al. [10,11]. Further, the triangle free detour distance was introduced and studied by Keerthi Asir, Sethu Ramalingam and Athisayanathan [7-9]. The triangle free detour eccentricity $e_{\Delta f}(u)$ of a vertex u in G is the maximum triangle free detour distance from u to a vertex of G. The square free detour radius, $R_{\Delta f}$ of G is the minimum square free detour eccentricity among the vertices of G, while the triangle free detour diameter, $D_{\Lambda f}$ of G is the maximum triangle free detour eccentricity among the vertices of G. In this paper, a similar concept of square free detour distance is introduced and investigated. For basic terminology refer to [1,6].

2 Square free detour distance in a graph

Definition 2.1 Let G be a connected graph and u, v any two vertices in G. A u - v path P is said to be a u - v square free path if no three vertices of P induce a square, cycle C₄ in G. The square free detour distance $D_{\Box f}(u, v)$, is the length of a longest u - v square free path in G. A u - v square free path of length $D_{\Box f}(u, v)$, is called the u - v square free detour.

Example 2.2 Consider the graph G given in Figure 2.1, the $v_3 - v_7$ path P: v_3 , v_1 , v_2 , v_4 , v_7 is a $v_3 - v_7$

square free detour path while the $v_3 - v_7$ paths P': v_3 , v_5 , v_6 , v_7 , P'': v_3 , v_1 , v_2 , v_5 , v_6 , v_7 and P''': v_3 , v_5 , v_1 , v_2 , v_4 , v_7 are not $v_3 - v_7$ square free detour paths. Here, $D_{\Box f}(v_3, v_7) = 4$, $d(v_3, v_7) = 3$ and $D(v_3, v_7) = 5$. Thus the square free detour distance is different from the usual distance and detour distance in G. Also, P' is a $v_3 - v_7$ geodetic, P'' and P''' are the $v_3 - v_7$ detours and P is a $v_3 - v_7$ square free detour. Clearly, $v_3 - v_7$ geodesic, $v_3 - v_7$ square free detour and $v_3 - v_7$ detour are distinct.

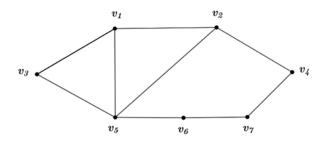


Figure 2.1: G

Remark 2.3 Though the usual distance d and the detour distance D are metrics on the vertex set of a connected graph, the square free detour distance $D_{\Box f}$ is also not a metric on the vertex set of a connected graph. For the graph G given in Figure 2.2, $D_{\Box f}(v_2, v_4) < D_{\Box f}(v_2, v_3) + D_{\Box f}(v_3, v_4)$. However for any two vertices u and v in a square free connected graph G, $D(u, v) = D_{\Box f}(u, v)$. Therefore, the square free detour distance $D_{\Box f}$ is a metric only on the vertex set of a square free connected graph.

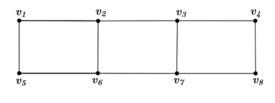


Figure 2.2: G

Titus et. al. [11] proved that $0 \le d(u, v) \le d_m(u, v) \le D(u, v) \le n - 1$ for any two vertices u and v in G, which yields the following theorem.

Theorem 2.4 For any two vertices u and v in a connected graph G, $0 \le d(u,v) \le d_m(u,v) \le D_{\Box f}(u,v) \le D(u,v) \le n-1$.

Proof. It is enough to show that $d_m(u, v) \le D_{\Box f}(u, v)$ and $D_{\Box f}(u, v) \le D(u, v)$. Let P be any longest u - v path in G. Suppose that P does not contain a chord in G, then $d_m(u, v) = D_{\Box f}(u, v) = D(u, v)$. Suppose that P contains a chord.

Case 1. If P does not induce a square in G, then $d(u, v) = d_m(u, v) = D_{\Box f}(u, v)$. D(u, v).

Case 2. If P induces a square in G, then $d_m(u, v) = D_{\Box f}(u, v) < D(u, v)$.

Remark 2.5 The bounds in the Theorem 2.3 are sharp. If u = v, then $d(u, v) = d_m(u, v) = D_{\Box f}(u, v) = 0$. Also, that if G is a path whose end vertices are u and v, then $d(u, v) = d_m(u, v) = D_{\Box f}(u, v) = D(u, v)$. For the graph G given in Figure 2.1, $d(u, v) = d_m(u, v) = D_{\Box f}(u, v) = D(u, v)$.

Theorem 2.6 For any two vertices u and v in a connected graph G, $(u, v) = d_m(u, v) = D_{\Box f}(u, v) = D(u, v)$ if and only if G is a tree.

Proof. Let G be a connected graph and u, v any two vertices in G. Assume that G is a tree, then there is a unique square free path between u and v, so that $d(u,v) = d_m(u,v) = D_{\Box f}(u,v) = D(u,v)$.

Conversely, consider that that $d(u, v) = d_m(u, v) = D_{\Box f}(u, v) = D(u, v)$ for any two vertices u and v in G. To prove that G is a tree, it is enough to prove that G is acyclic. Suppose that G is cyclic. Then there exists at least two vertices x and y in G such that the path P between x and y contains a cycle in G.

Case 1. Let P contain a cycle of length 4. Then $d(x, y) = d_m(x, y) = D_{\Box f}(x, y) = D(x, y)$, which leads to a contradiction.

Case 2. Let P contain a cycle of length greater than 4. Then $d(x, y) = d_m(x, y) = D_{\Box f}(x, y) = D(x, y)$, which is a contradiction.

Definition 2.7 The square free detour eccentricity of a vertex v in a connected graph G is defined by $e_{\Box f}(v) = \max \{D_{\Box f}(u, v) \mid u \in V\}$. The square free detour radius of G is defined by $rad_{\Box f}(G) = \min \{e_{\Box f}(v) \mid v \in V\}$ and the square free detour diameter of G is defined by $diam_{\Box f}(G) = \max \{e_{\Box f}(v) \mid v \in V\}$.

The following theorem is a consequence of Theorem 2.4. and Definition 2.7.

Theorem 2.8 Let G be a connected graph. Then

- (i) $\operatorname{rad}(G) \le \operatorname{rad}_{m}(G) \le \operatorname{rad}_{\Box f}(G) \le \operatorname{rad}_{D}(G)$.
- (ii) $\operatorname{diam}(G) \leq \operatorname{diam}_{m}(G) \leq \operatorname{diam}_{\Box f}(G) \leq \operatorname{diam}_{D}(G)$

Now we have a realization theorem for the square free detour radius and the square free detour diameter of some connected graph.

Theorem 2.9 For each pair a, b of positive integers with $3 \le a \le b$, there exists a connected graph G with $rad_{\Box f}(G) = a$ and $diam_{\Box f}(G) = b$.

Proof.

Case 1. a = b. Let $G = C_{a+1} : u_1, u_2, \ldots, u_{a+1}, u_1$ be a cycle of order a + 1. It is easy to verify that every vertex x in G with $e_{\Box f}(x) = a$. Thus $rad_{\Box f}(G) = a$ and $diam_{\Box f}(G) = b$ as a = b.

Case 2. $3 \le a < b \le 2a$. Let $C_{a+1} : u_1, u_2, \ldots, u_{a+1}, u_1$ be a cycle of order a + 1 and $P_{b-a+1} : v_1, v_2, \ldots, v_{b-a+1}$ be a path of order b - a + 1. We construct the graph G of order b + 1 by identifying the vertex u_1 of C_{a+1} and v_1 of P_{b-a+1} as shown in Figure. 2.3.

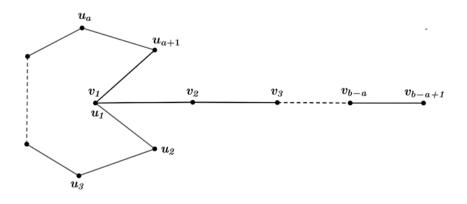


Figure 2.3: G

It is easy to verify that

 $e_{\Box f}(u_i) = e_{\Box f}(v_i) = a \text{ for } i=1$ $e_{\Box f}(u_i) = b - i + 2 \text{ for } 2 \le i \le \left\lceil \frac{a+1}{2} \right\rceil$ $e_{\Box f}(u_i) = b - a + i - 1 \text{ for } \left\lceil \frac{a+1}{2} \right\rceil \le i \le a+1$ $e_{\Box f}(v_i) = a + i - 1 \text{ for } 2 \le i \le b - a + 1$

Particularly, $e_{\Box f}(u_2) = e_{\Box f}(u_{a+1}) = e_{\Box f}(v_{b-a+1}) = b$. It is easy to verify that there is no vertex x in G with $e_{\Box f}(x) < a$ and there is no vertex y in G with $e_{\Box f}(y) > b$. Thus $rad_{\Box f}(G) = a$ and $diam_{\Box f}(G) = b$ as $a < b \le 2a$.

Case 3. b > 2a.

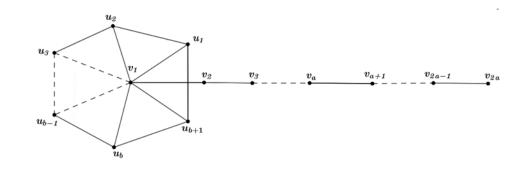


Figure 2.4: G

Let G be a graph of order b + 2a + 1 obtained by identifying the central vertex of the wheel $W_{b+2} = K_1 + C_{b+1}$ and an end vertex of the path P_{2a} as shown in Figure 2.4., where $K_1 = v_1, C_{b+1}$: $u_1, u_2, \ldots, u_{b+1}, u_1$ and $P_{2a}: v_1, v_2, \ldots, v_{2a}$.

We can easily verify that there is no vertex x in G with $e_{\Box f}(x) < a$ and there is no vertex y in G with $e_{\Box f}(y) > b$. Thus $rad_{\Box f}(G) = a$ and $diam_{\Box f}(G) = b$ as b > 2a.

References

- 1. F. Buckley and F. Harary, "Distance in Graphs", Addison-Wesley, Redwood City, CA, 1990.
- G. Chartrand, H. Escuadro and P. Zhang, "Detour distance in graphs," J. Combin. Math. Combin. Comput, vol. 53, 2003, pp: 75-94.
- 3. G. Chartrand, F. Harary and P. Zhang, "On the geodetic number of a graph," Networks: An International Journal, vol. 39.1, 2002, pp. 1-6.
- 4. G. Chartrand and P. Zhang, "Introduction to Graph Theory," Tata McGraw-Hill, New Delhi 2006.
- 5. G. Chartrand, P. Zhang and T.W. Haynes, "Distance in graphs-taking the long view", AKCE international journal of graphs and combinatorics, vol. 1, no. 1, 2004, pp.1-13.
- 6. G. Chartrand and P. Zhang, "Introduction to Graph Theory," Tata McGraw-Hill, New Delhi 2006.
- I. Keerthi Asir and S. Athisayanathan, "Triangle free detour distance in graphs," J. Combin. Math. Combin. Comput., vol. 105, 2018, pp. 267–288.
 - 7. S. S. Ramalingam, I. K. Asir and S. Athisayanathan. "Upper Vertex Triangle Free Detour Number of a Graph," Mapana Journal of Sciences, vol. 16.3, 2017, pp. 27-40.
 - 8. S.S. Ramalingam, I. K. Asir and S. Athisayanathan, "Vertex Triangle Free Detour Number of a Graph," Mapana Journal of Sciences, vol. 15.3, 2016, pp. 9-24.
 - 9. P. Titus, K. Ganesamoorthy, and P. Balakrishnan, "The detour monophonic number of a graph," J. Combin. Math. Combin. Comput, 83, 2013, pp.179-188.
 - 10. P. Titus and A.P. Santhakumaran, "Monophonic distance in graphs," Graph Theory: Advanced Algorithms and Applications, 2018, pp. 115-133.