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Abstract 

In this paper, we investigate the results on square free detour number of a 

simple, connected graph G = (V, E) of order n ≥ 2. It is proved that for any 

two vertices u and v in a connected graph G, 0 ≤ d(u, v)≤ 

dm(u, v) ≤ D□f(u, v) ≤  D(u, v) ≤ n – 1. The relationship between radious 

and diameter of various distance concepts is discussed. It is also shown that 

for each pair a, b of positive integers with 3 ≤ a ≤ b, there exists a connected 

graph G with rad□f(G)= a and diam□f(G) = b. 

Keywords: distance; detour distance; triangle free detour distance; square 

free detour distance.  

1 Introduction  

For any vertices u and v in a finite undirected connected simple graph  G = (V, E),  the distance 

d(u, v) is the length of the shortest u − v path in G. A u − v path of length d(u, v) is called a 

u − v geodesic. For a vertex v in a connected graph G, the eccentricity e(v) of v is the distance 

between v and a vertex farthest from v in G. The minimum eccentricity among the vertices of 

G is its radius and the maximum eccentricity is its diameter, which are denoted by 

rad(G) and diam(G) respectively. Two vertices u and v of G are antipodal if d(u, v) =

diam(G). This geodesic concept was studied and extended to detour distance by Chartrand et. 

al. [2-5]. For two vertices u and v in a connected graph G, the detour distance D(u, v) from 

u to v is defined as the length of a longest u − v path in G. A u − v path of length D(u, v) is 

called a u − v detour. The detour eccentricity eD(v) of v is the detour distance between the 

vertex v and a vertex farthest from v in G. The minimum detour eccentricity among the vertices 

of G is the detour radius radD(G) of G and the maximum detour eccentricity is its detour 

diameter diamD(G) of G. This detour concept was further studied by Santhakumaran et. al. [11] 

For two vertices u and v in a connected graph G, a longest u − v chordless path is called a u − 

v detour monophonic. This detour monophonic distance was studied by Titus et. al. [10,11]. 

Further, the triangle free detour distance was introduced and studied by Keerthi Asir, Sethu 

Ramalingam and Athisayanathan [7-9]. The triangle free detour eccentricity e∆f(u) of a vertex 

u in G is the maximum triangle free detour distance from u to a vertex of G. The square free 

detour radius, R∆f of G is the minimum square free detour eccentricity among the vertices of G, 

while the triangle free detour diameter, D∆f of G is the maximum triangle free detour 

eccentricity among the vertices of G. In this paper, a similar concept of square free detour 

distance is introduced and investigated.  For basic terminology refer to [1,6]. 
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2 Square free detour distance in a graph 

Definition 2.1 Let G be a connected graph and u, v any two vertices in G. A u − v path P is 

said to be a u − v square free path if no three vertices of P induce a square, cycle C4 in G. The 

square free detour distance D□f(u, v), is the length of a longest u − v square free path in G. A 

u − v square free path of length D□f(u, v), is called the u − v square free detour. 

Example 2.2 Consider the graph G given in Figure 2.1, the v3 − v7 path P: v3 , v1, v2, v4, v7 is 

a v3 − v7 

square free detour path while the v3 − v7  paths P′: v3 , v5, v6, v7, P′′: v3 , v1, v2, v5, v6, v7 and 

P′′′: v3 , v5, v1, v2, v4, v7 are not v3 − v7 square free detour paths. Here, D□f (v3, v7) = 4, 

d(v3, v7) = 3 and D(v3, v7) = 5. Thus the square free detour distance is different from the usual 

distance and detour distance in G. Also, P′ is a v3 − v7 geodetic, P′′ and P′′′ are the v3 −

v7 detours and P is a v3 − v7 square free detour. Clearly, v3 − v7 geodesic, v3 − v7 square free 

detour and v3 − v7 detour are distinct. 

 

Figure 2.1: G 

Remark 2.3 Though the usual distance d and the detour distance D are metrics on the vertex 

set of a connected graph, the square free detour distance D□f is also not a metric on the vertex 

set of a connected graph. For the graph G given in Figure 2.2,  D□f(v2, v4) < D□f(v2, v3) +

D□f(v3, v4).  However for any two vertices u and v in a square free connected graph G, 

D(u, v) = D□f(u, v). Therefore, the square free detour distance D□f is a metric only on the 

vertex set of a square free connected graph. 

 

Figure 2.2: G 

Titus et. al. [11] proved that 0 ≤ d(u, v)≤ dm(u, v)≤ D(u, v)≤ n − 1 for any two vertices u and 

v in G, which yields the following theorem. 

Theorem 2.4 For any two vertices u and v in a connected graph G, 0 ≤ d(u, v)≤ 

dm(u, v)≤D□f(u, v) ≤  D(u, v)≤ n – 1.  
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Proof. It is enough to show that dm(u, v)≤ D□f(u, v) and D□f(u, v) ≤  D(u, v). Let P be any 

longest u − v path in G. Suppose that P does not contain a chord in G, then dm(u, v)= D□f(u, v) 

= D(u, v). Suppose that P contains a chord. 

Case 1. If P does not induce a square in G, then d(u, v)= dm(u, v)=D□f(u, v).  D(u, v).  

Case 2. If P induces a square in G, then dm(u, v)=D□f(u, v) <  D(u, v).  

Remark 2.5 The bounds in the Theorem 2.3 are sharp. If u = v, then d(u, v)= 

dm(u, v)=D□f(u, v) = 0. Also, that if G is a path whose end vertices are u and v, then  d(u, v)= 

dm(u, v)=D□f(u, v) = D(u, v).  For the graph G given in Figure 2.1,  d(u, v)= 

dm(u, v)=D□f(u, v) = D(u, v).   

Theorem 2.6 For any two vertices u and v in a connected graph G,  (u, v)= 

dm(u, v)=D□f(u, v) = D(u, v)  if and only if G is a tree. 

Proof. Let G be a connected graph and u, v any two vertices in G. Assume that G is a tree, then 

there is a unique square free path between u and v, so that d(u, v)= dm(u, v)=D□f(u, v) =

D(u, v).   

Conversely, consider that that d(u, v)= dm(u, v)=D□f(u, v) = D(u, v)  for any two vertices u 

and v in G. To prove that G is a tree, it is enough to prove that G is acyclic. Suppose that G is 

cyclic. Then there exists atleast two vertices x and y in G such that the path P between x and y 

contains a cycle in G. 

Case 1. Let P contain a cycle of length 4.  Then  d(x, y)= dm(x, y)=D□f(x, y) = D(x, y), which 

leads to a contradiction. 

Case 2. Let P contain a cycle of length greater than 4. Then d(x, y)= dm(x, y)=D□f(x, y) =

D(x, y), which is a contradiction. 

Definition 2.7 The square free detour eccentricity of a vertex v in a connected graph G is 

defined by e□f(v) = max {D□f(u, v) |  u ∈ V }. The square free detour radius of G is defined by 

rad□f(G)= min {e□f(v) | v ∈ V } and the square free detour diameter of G is defined by  

diam□f(G)= max {e□f(v)  |  v ∈ V } . 

The following theorem is a consequence of Theorem 2.4. and Definition 2.7. 

Theorem 2.8 Let G be a connected graph. Then 

(i) rad(G) ≤ radm(G) ≤ rad□f(G) ≤ radD(G).   

(ii) diam(G) ≤ diamm(G) ≤ diam□f(G) ≤ diamD(G) 

Now we have a realization theorem for the square free detour radius and the square free detour 

diameter of some connected graph. 

Theorem 2.9 For each pair a, b of positive integers with 3 ≤ a ≤ b, there exists a connected 

graph G with rad□f(G)= a and diam□f(G) = b. 
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Proof.  

Case 1. a = b. Let G = Ca+1 : u1, u2, . . . , ua+1, u1 be a cycle of order a + 1 . It is easy to verify 

that every vertex x in G with e□f(x)  = a. Thus rad□f(G) = a and diam□f(G) = b as a = b. 

Case 2. 3 ≤ a < b ≤ 2a. Let Ca+1 : u1, u2, . . . , ua+1, u1 be a cycle of order a + 1 and Pb−a+1 : v1, 

v2, . . . , vb−a+1 be a path of order b − a + 1. We construct the graph G of order b + 1 by identifying 

the vertex u1 of Ca+1 and v1 of Pb−a+1 as shown in Figure. 2.3. 

 

Figure 2.3: G 

It is easy to verify that 

e□f(ui) = e□f(vi) = a for i=1 

                    e□f(ui) = b − i + 2 for 2 ≤ i ≤ ⌈
a+1

𝟐
⌉ 

                e□f(ui) = b − a + i − 1 for ⌈
a+1

𝟐
⌉ ≤ i ≤ a + 1 

                     e□f(vi) = a + i − 1 for 2 ≤ i ≤ b − a + 1 

Particularly, e□f(u2)   = e□f (ua+1) = e□f (vb−a+1) = b. It is easy to verify that there is no vertex 

x in G with e□f(x)  < a and there is no vertex y in G with e□f(y) > b. Thus rad□f(G) = a and 

diam□f(G) = b as a < b ≤ 2a. 

Case 3. b > 2a.  
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Figure 2.4: G 

 Let G be a graph of order b + 2a + 1 obtained by identifying the central vertex of the wheel 

Wb+2 = K1 + Cb+1 and an end vertex of the path P2a as shown in Figure 2.4., where K1 = v1, Cb+1 

: u1, u2, . . . , ub+1, u1 and P2a : v1, v2, . . . , v2a. 

We can easily verify that there is no vertex x in G with e□f(x)  < a and there is no vertex y in 

G with e□f(y) > b. Thus rad□f(G) = a and diam□f(G) = b as b > 2a. 
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