A Note on Square Free Detour Distance in Graphs

G. Priscilla Pacifica

Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India.
e-mail: priscillamelwyn@gmail.com

Article Info

Page Number: 134-138
Publication Issue:
Vol. 70 No. 1 (2021)

Article History

Article Received: 15 January 2021
Revised: 24 February 2021
Accepted: 18 April 2021

Abstract

In this paper, we investigate the results on square free detour number of a simple, connected graph $G=(\mathrm{V}, \mathrm{E})$ of order $\mathrm{n} \geq 2$. It is proved that for any two vertices u and v in a connected graph $G, 0 \leq d(u, v) \leq$ $\mathrm{d}_{\mathrm{m}}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}_{\mathrm{\square f}}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}(\mathrm{u}, \mathrm{v}) \leq \mathrm{n}-1$. The relationship between radious and diameter of various distance concepts is discussed. It is also shown that for each pair a, b of positive integers with $3 \leq \mathrm{a} \leq \mathrm{b}$, there exists a connected graph G with $\operatorname{rad}_{\square f}(G)=a$ and $\operatorname{diam}_{\square f}(G)=b$.

Keywords: distance; detour distance; triangle free detour distance; square free detour distance

1 Introduction

For any vertices u and v in a finite undirected connected simple graph $G=(V, E)$, the distance $d(u, v)$ is the length of the shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. For a vertex v in a connected graph G, the eccentricity $e(v)$ of v is the distance between v and a vertex farthest from v in G. The minimum eccentricity among the vertices of G is its radius and the maximum eccentricity is its diameter, which are denoted by $\operatorname{rad}(G)$ and diam(G) respectively. Two vertices u and v of G are antipodal if $d(u, v)=$ diam(G). This geodesic concept was studied and extended to detour distance by Chartrand et. al. [2-5]. For two vertices u and v in a connected graph G, the detour distance $D(u, v)$ from u to v is defined as the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called $a u-v$ detour. The detour eccentricity $e_{D}(v)$ of v is the detour distance between the vertex v and a vertex farthest from v in G. The minimum detour eccentricity among the vertices of G is the detour radius $\operatorname{rad}_{\mathrm{D}}(\mathrm{G})$ of G and the maximum detour eccentricity is its detour diameter $\operatorname{diam}_{D}(G)$ of G. This detour concept was further studied by Santhakumaran et. al. [11] For two vertices u and v in a connected graph G, a longest $u-v$ chordless path is called $a u-$ v detour monophonic. This detour monophonic distance was studied by Titus et. al. [10,11]. Further, the triangle free detour distance was introduced and studied by Keerthi Asir, Sethu Ramalingam and Athisayanathan [7-9]. The triangle free detour eccentricity $e_{\Delta f}(u)$ of a vertex u in G is the maximum triangle free detour distance from u to a vertex of G . The square free detour radius, $\mathrm{R}_{\Delta \mathrm{f}}$ of G is the minimum square free detour eccentricity among the vertices of G , while the triangle free detour diameter, $D_{\Delta f}$ of G is the maximum triangle free detour eccentricity among the vertices of G . In this paper, a similar concept of square free detour distance is introduced and investigated. For basic terminology refer to $[1,6]$.

2 Square free detour distance in a graph

Definition 2.1 Let G be a connected graph and u, v any two vertices in G. A $u-v$ path P is said to be $a u-v$ square free path if no three vertices of P induce a square, cycle C_{4} in G. The square free detour distance $D_{\square f}(u, v)$, is the length of a longest $u-v$ square free path in G. A $u-v$ square free path of length $D_{\square f}(u, v)$, is called the $u-v$ square free detour.

Example 2.2 Consider the graph G given in Figure 2.1, the $v_{3}-v_{7}$ path $P: v_{3}, v_{1}, v_{2}, v_{4}, v_{7}$ is a $\mathrm{v}_{3}-\mathrm{v}_{7}$
square free detour path while the $v_{3}-v_{7}$ paths $P^{\prime}: v_{3}, v_{5}, v_{6}, v_{7}, P^{\prime \prime}: v_{3}, v_{1}, v_{2}, v_{5}, v_{6}, v_{7}$ and $P^{\prime \prime \prime}: v_{3}, v_{5}, v_{1}, v_{2}, v_{4}, v_{7}$ are not $v_{3}-v_{7}$ square free detour paths. Here, $D_{\mathrm{af}}\left(v_{3}, v_{7}\right)=4$, $\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{7}\right)=3$ and $\mathrm{D}\left(\mathrm{v}_{3}, \mathrm{v}_{7}\right)=5$. Thus the square free detour distance is different from the usual distance and detour distance in G. Also, P^{\prime} is a $\mathrm{v}_{3}-\mathrm{v}_{7}$ geodetic, $\mathrm{P}^{\prime \prime}$ and $\mathrm{P}^{\prime \prime \prime}$ are the $\mathrm{v}_{3}-$ v_{7} detours and P is a $v_{3}-v_{7}$ square free detour. Clearly, $v_{3}-v_{7}$ geodesic, $v_{3}-v_{7}$ square free detour and $v_{3}-v_{7}$ detour are distinct.

Figure 2.1: G
Remark 2.3 Though the usual distance d and the detour distance D are metrics on the vertex set of a connected graph, the square free detour distance $D_{\text {af }}$ is also not a metric on the vertex set of a connected graph. For the graph G given in Figure 2.2, $D_{\square f}\left(v_{2}, v_{4}\right)<D_{\square f}\left(v_{2}, v_{3}\right)+$ $D_{\square f}\left(v_{3}, v_{4}\right)$. However for any two vertices u and v in a square free connected graph G, $D(u, v)=D_{\square f}(u, v)$. Therefore, the square free detour distance $D_{\square f}$ is a metric only on the vertex set of a square free connected graph.

Figure 2.2: G
Titus et. al. [11] proved that $0 \leq d(u, v) \leq d_{m}(u, v) \leq D(u, v) \leq n-1$ for any two vertices u and v in G , which yields the following theorem.

Theorem 2.4 For any two vertices u and v in a connected graph $G, 0 \leq d(u, v) \leq$ $\mathrm{d}_{\mathrm{m}}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}_{\mathrm{af}}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}(\mathrm{u}, \mathrm{v}) \leq \mathrm{n}-1$.

Proof. It is enough to show that $d_{m}(u, v) \leq D_{\square f}(u, v)$ and $D_{\square f}(u, v) \leq D(u, v)$. Let P be any longest $u-v$ path in G. Suppose that P does not contain a chord in G, then $d_{m}(u, v)=D_{\square f}(u, v)$ $=D(u, v)$. Suppose that P contains a chord.

Case 1. If P does not induce a square in G, then $d(u, v)=d_{m}(u, v)=D_{\square f}(u, v) . D(u, v)$.
Case 2. If P induces a square in G, then $d_{m}(u, v)=D_{\square f}(u, v)<D(u, v)$.
Remark 2.5 The bounds in the Theorem 2.3 are sharp. If $u=v$, then $d(u, v)=$ $d_{m}(u, v)=D_{\square f}(u, v)=0$. Also, that if G is a path whose end vertices are u and v, then $d(u, v)=$ $d_{m}(u, v)=D_{\square f}(u, v)=D(u, v)$. For the graph G given in Figure 2.1, $d(u, v)=$ $d_{m}(u, v)=D_{\text {口f }}(u, v)=D(u, v)$.

Theorem 2.6 For any two vertices u and v in a connected graph G, (u, v)= $d_{m}(u, v)=D_{\square f}(u, v)=D(u, v)$ if and only if G is a tree.

Proof. Let G be a connected graph and u, v any two vertices in G. Assume that G is a tree, then there is a unique square free path between u and v, so that $d(u, v)=d_{m}(u, v)=D_{\square f}(u, v)=$ $D(u, v)$.

Conversely, consider that that $d(u, v)=d_{m}(u, v)=D_{\text {ロf }}(u, v)=D(u, v)$ for any two vertices u and v in G. To prove that G is a tree, it is enough to prove that G is acyclic. Suppose that G is cyclic. Then there exists atleast two vertices x and y in G such that the path P between x and y contains a cycle in G.

Case 1. Let P contain a cycle of length 4. Then $d(x, y)=d_{m}(x, y)=D_{\square f}(x, y)=D(x, y)$, which leads to a contradiction.

Case 2. Let P contain a cycle of length greater than 4. Then $d(x, y)=d_{m}(x, y)=D_{\square f}(x, y)=$ $\mathrm{D}(\mathrm{x}, \mathrm{y})$, which is a contradiction.

Definition 2.7 The square free detour eccentricity of a vertex v in a connected graph G is defined by $e_{\mathrm{af}}(\mathrm{v})=\max \left\{\mathrm{D}_{\mathrm{\square f}}(\mathrm{u}, \mathrm{v}) \mid \mathrm{u} \in \mathrm{V}\right\}$. The square free detour radius of G is defined by $\operatorname{rad}_{\square f}(G)=\min \left\{e_{\square f}(v) \mid v \in V\right\}$ and the square free detour diameter of G is defined by $\operatorname{diam}_{\square f}(G)=\max \left\{e_{\square f}(v) \mid v \in V\right\}$.

The following theorem is a consequence of Theorem 2.4. and Definition 2.7.
Theorem 2.8 Let G be a connected graph. Then

$$
\begin{equation*}
\operatorname{rad}(\mathrm{G}) \leq \operatorname{rad}_{\mathrm{m}}(\mathrm{G}) \leq \operatorname{rad}_{\square f}(\mathrm{G}) \leq \operatorname{rad}_{\mathrm{D}}(\mathrm{G}) . \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{diam}(\mathrm{G}) \leq \operatorname{diam}_{\mathrm{m}}(\mathrm{G}) \leq \operatorname{diam}_{\square f}(\mathrm{G}) \leq \operatorname{diam}_{\mathrm{D}}(\mathrm{G}) \tag{ii}
\end{equation*}
$$

Now we have a realization theorem for the square free detour radius and the square free detour diameter of some connected graph.

Theorem 2.9 For each pair a, b of positive integers with $3 \leq a \leq b$, there exists a connected graph G with $\operatorname{rad}_{\square f}(G)=a$ and $\operatorname{diam}_{\square f}(G)=b$.

Proof.

Case 1. $\mathrm{a}=\mathrm{b}$. Let $\mathrm{G}=\mathrm{C}_{\mathrm{a}+1}: \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{a+1}, \mathrm{u}_{1}$ be a cycle of order $\mathrm{a}+1$. It is easy to verify that every vertex x in G with $e_{\square f}(x)=a$. Thus $\operatorname{rad}_{\square f}(G)=a$ and $\operatorname{diam}_{\square f}(G)=b$ as $a=b$.

Case 2. $3 \leq \mathrm{a}<\mathrm{b} \leq 2 \mathrm{a}$. Let $\mathrm{C}_{\mathrm{a}+1}: \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{a}+1}, \mathrm{u}_{1}$ be a cycle of order $\mathrm{a}+1$ and $\mathrm{P}_{\mathrm{b}-\mathrm{a}+1}: \mathrm{v}_{1}$, $\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{b}-\mathrm{a}+1}$ be a path of order $\mathrm{b}-\mathrm{a}+1$. We construct the graph G of order $\mathrm{b}+1$ by identifying the vertex u_{1} of C_{a+1} and v_{1} of $\mathrm{P}_{\mathrm{b}-\mathrm{a}+1}$ as shown in Figure. 2.3.

Figure 2.3: G
It is easy to verify that

$$
\mathrm{e}_{\mathrm{\square f}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{e}_{\mathrm{\square f}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{a} \text { for } \mathrm{i}=1
$$

$$
\begin{aligned}
& e_{\square f}\left(u_{i}\right)=b-i+2 \text { for } 2 \leq i \leq\left\lceil\frac{a+1}{2}\right\rceil \\
& e_{\square f}\left(u_{i}\right)=b-a+i-1 \text { for }\left\lceil\frac{a+1}{2}\right\rceil \leq i \leq a+1 \\
& e_{\square f}\left(v_{i}\right)=a+i-1 \text { for } 2 \leq i \leq b-a+1
\end{aligned}
$$

Particularly, $e_{a f}\left(u_{2}\right)=e_{a f}\left(u_{a+1}\right)=e_{a f}\left(v_{b-a+1}\right)=b$. It is easy to verify that there is no vertex x in G with $e_{\square f}(x)<a$ and there is no vertex y in G with $e_{\square f}(y)>b$. Thus $\operatorname{rad}_{\square f}(G)=a$ and $\operatorname{diam}_{\square f}(\mathrm{G})=\mathrm{b}$ as $\mathrm{a}<\mathrm{b} \leq 2 \mathrm{a}$.

Case 3. $\mathrm{b}>2 \mathrm{a}$.

Figure 2.4: G
Let G be a graph of order $b+2 a+1$ obtained by identifying the central vertex of the wheel $W_{b+2}=K_{1}+C_{b+1}$ and an end vertex of the path $P_{2 a}$ as shown in Figure 2.4., where $K_{1}=v_{1}, C_{b+1}$ $: \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{b}+1}, \mathrm{u}_{1}$ and $\mathrm{P}_{2 \mathrm{a}}: \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{a}}$.

We can easily verify that there is no vertex x in G with $e_{a f}(x)<a$ and there is no vertex y in G with $e_{\square f}(y)>b$. Thus $\operatorname{rad}_{\square f}(G)=a$ and $\operatorname{diam}_{\square f}(G)=b$ as $b>2 a$.

References

1. F. Buckley and F. Harary, "Distance in Graphs", Addison-Wesley, Redwood City, CA, 1990.
2. G. Chartrand, H. Escuadro and P. Zhang, "Detour distance in graphs," J. Combin. Math. Combin. Comput, vol. 53, 2003, pp: 75-94.
3. G. Chartrand, F. Harary and P. Zhang, "On the geodetic number of a graph," Networks: An International Journal, vol. 39.1, 2002, pp. 1-6.
4. G. Chartrand and P. Zhang, "Introduction to Graph Theory," Tata McGraw-Hill, New Delhi 2006.
5. G. Chartrand, P. Zhang and T.W. Haynes, "Distance in graphs-taking the long view", AKCE international journal of graphs and combinatorics, vol. 1, no. 1, 2004, pp.1-13.
6. G. Chartrand and P. Zhang, "Introduction to Graph Theory," Tata McGraw-Hill, New Delhi 2006.
I. Keerthi Asir and S. Athisayanathan, "Triangle free detour distance in graphs," J. Combin. Math. Combin. Comput., vol. 105, 2018, pp. 267-288.
7. S. S. Ramalingam, I. K. Asir and S. Athisayanathan. "Upper Vertex Triangle Free Detour Number of a Graph," Mapana Journal of Sciences, vol. 16.3, 2017, pp. 27-40.
8. S.S. Ramalingam, I. K. Asir and S. Athisayanathan, "Vertex Triangle Free Detour Number of a Graph," Mapana Journal of Sciences, vol. 15.3, 2016, pp. 9-24.
9. P. Titus, K. Ganesamoorthy, and P. Balakrishnan, "The detour monophonic number of a graph," J. Combin. Math. Combin. Comput, 83, 2013, pp.179-188.
10. P. Titus and A.P. Santhakumaran, "Monophonic distance in graphs," Graph Theory: Advanced Algorithms and Applications, 2018, pp. 115-133.
