Group Difference Cordial Labeling of some Snake Related Graphs

I. Beaulah Bell ¹(Reg No:19124012092036) and R. Kala²

^{1&2}Department of Mathematics
 Manonmaniam Sundaranar University
 Abishekpatti, Tirunelveli-627012,Tamilnadu,India.
 e-mail:beaulahbell16@gmail.com¹,karthipyi91@yahoo.co.in²

Abstract

Page Number: 1972 - 1984	Let $G = (VG)$, $E(G)$ be a graph. Let Γ be a group. For $u \in \Gamma$, let $o(u)$
Publication Issue:	denotes the order of u in Γ . Let $f: V(G) \to \Gamma$ be a function. For each edge
Vol 71 No. 3 (2022)	uv assign the label $ o(f(u)) - o(f(v)) $. Let $v_f(i)$ denote the number of
	vertices of G having label i under f. Also $e_f(1)$, $e_f(0)$ respectively denote the
	number of edges labeled with 1 and not with $1.$ Now f is called a group difference
	cordial labeling if $ v_f(i) - v_f(j) \le 1$ for every $i, j \in \Gamma$, $i \ne j$ and $ e_f(1) - v_f(j) \le 1$
	$ e_f(0) \leq 1$. A graph which admits a group difference cordial labeling is called
	group difference cordial graph. In this paper we fix the group Γ as the
	group $\{1, -1, i, -i\}$ which is the group of fourth roots of unity, that is cyclic with
	generators i and $-i$.
Article History	We prove that Quadrilateral snake QS_n , Alternate quadrilateral snake $A(QS_n)$ and
Article Received: 12 April 2022	further characterized Double quadrilateral snake $D(QS_n)$ and Alternate double
Revised : 25 May 2022	quadrilateral snake $A(D(QS_n))$.
Accepted: 20 July 2022	
Publication : 09 September 2022	Keywords: cordial labeling, difference labeling, group difference cordial labeling

1 Introduction

Article Info

Graphs considered here are finite, undirected and simple. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. Labelled graphs serve as useful models for a broad range of applications such as : astronomy, circuit design, communication network addressing and models for constraint programming over finite domains.

Cahit [2] introduced the concept of cordial labeling.

Definition 1.1. [2] Let $f : V(G) \to \{0,1\}$ be any function. For each edge *xy* assign the label |f(x) - f(y)|. *f* is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1. Also the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1.

In[5], Ponraj et al. introduced a new labeling called difference cordial labeling.

Definition 1.2. [5] Let G be a (p,q) graph .Let $f : V(G) \to \{1,2...p\}$ be a bijection. For each edge, assign the label |f(u) - f(v)|. *f* is called a difference cordial labeling if *f* is 1 - 1 and $|e_f(0) - e_f(1)| = 1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

Athisayanathan et al.[1] introduced the concept of group A cordial labeling.

Definition 1.3. [1] Let *A* be a group. We denote the order of an element $a \in A$ by o(a).Let $f: V(G) \to A$ be a function. For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. *f* is called a group *A* Cordial labeling if $|v_f(a) - v_f(b)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labeled with an element *x* and number of edges labeled with n (n = 0,1) A graph which admits a group *A* cordial labeling is called a group *A* cordial graph.

2. Preliminaries

Definition 2.1. The Quadrilateral snake QS_n is obtained from a path $u_1, u_2 \dots u_n$ by joining u_i, u_{i+1} to new vertices v_i, w_i respectively and then joining v_i and w_i .

Definition 2.2. An Alternate Quadrilateral snake $A(QS_n)$ is obtained from a path $u_1, u_2 \dots u_n$ by joining u_i, u_{i+1} (Alternatively) to new vertices v_i, w_i respectively and then joining v_i and w_i .

Definition 2.3. The Double Quadrilateral snake $D(QS_n)$ consists of two Quadrilateral snakes that have a common path.

Definition 2.4. The Alternate Double Quadrilateral snake $A(D(QS_n))$ consists of two alternative Quadrilateral snakes that have a common path.

3. Group Difference cordial Graphs

Definition 3.1. Let G = (V(G), E(G)) be a graph. Let Γ be a group. For $u \in \Gamma$, let o(u) denote the order of u in Γ . Let $f: V(G) \to \Gamma$ be a function .For each edge uv assign the label |o(f(u)) - o(fv))|. Let $v_f(i)$ denote the number of vertices of G having label iunder f. Also $e_f(1)$, $e_f(0)$ respectively denote the number of edges labeled with 1 and not with 1. Now f is called a group difference cordial labeling $if |v_f(i) - v_f(j)| \le 1$ for every $i, j \in \Gamma, i \ne j$ and $|e_f(1) - e_f(0)| \le 1$. A graph which admits a group difference cordial labeling is called group difference cordial graph .

In this paper we take the group Γ as the group $\{1, -1, i, -i\}$ which is the group of fourth roots of unity, that is cyclic with generators *i* and *-i*.

Theorem 3.2. The Quadrilateral snake QS_n is a group difference cordial graph if and only if $n \neq 2 \pmod{4}$.

Proof: Let $G = QS_n$ be a quadrilateral snake of 3n-2 vertices and 4n-4 edges, f be the group difference cordial labeling of G. Let $V(G) = \{u_1, u_2 \dots u_n\}$ be the vertices in the path and $\{v_i, w_i \ / \ 1 \le i \le n-1\}$ be the vertices joined by u_i, u_{i+1} respectively.

Assume $n \not\equiv 2 \pmod{4}$, To prove G is a group difference cordial graph

Case (i): $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$ and define $f : V(G) \rightarrow \{1, -1, i, -i\}$ as follows

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(v_{2i-1}) = \{ \begin{array}{c} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{array}$$

$$f(v_{2i}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k-1, \text{for all } k \ge 2 \end{cases}$$

$$f(w_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(w_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k-1, \text{for all } k \ge 2 \end{cases}$$

Clearly
$$V_f(1) = V_f(-1) = 3k$$
, $V_f(i) = V_f(-i) = 3k - 1$ also $e_f(1) = e_f(0) = 8k - 2$.

Therefore, f is a group difference cordial labeling of G.

Case (ii): $n \equiv 1 \pmod{4}$, Let $n = 4k + 1, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$
$$f(u_{2i-1}) = \begin{cases} -1 & \text{if } 1 \le i \le k \end{cases}$$

$$f(v_{2i-1}) = \{ \begin{array}{c} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{array}$$

$$f(v_{2i}) = \{ \begin{array}{l} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k-1 \end{array} \\ f(w_{2i-1}) = \{ \begin{array}{l} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{array} \\ f(w_{2i}) = \{ \begin{array}{l} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k-1 \end{array} \right\}$$

Clearly $V_f(1) = 3k + 1$, $V_f(-1) = V_f(i) = V_f(-i) = 3k$ also $e_f(1) = 8k = e_f(0)$. Therefore,

f is a group difference cordial labeling of G.

Case (iii): $n \equiv 3 \pmod{4}$, Let $n = 4k + 3, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+2 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_{2i}) = \begin{cases} 1 & if & 1 \le i \le k \\ i & if & k+1 \le i \le 2k+1 \end{cases}$$

$$f(w_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(w_{2i}) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = V_f(-1) = V_f(i) = 3k + 2$, $V_f(-i) = 3k + 1$. Also $e_f(1) = 8k + 4 = e_f(0)$

Therefore, f is a group difference cordial labeling of G.

Conversly, Assume G is a group difference cordial graph and f is a group difference cordial labeling of G.

Claim $n \not\equiv 2 \pmod{4}$. Suppose $n \equiv 2 \pmod{4}$, Let $n = 4k + 2, k \ge 1$. So $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 3k + 1$ for any group difference cordial labeling f

To get an edge e = uv with label 1, we need either f(u) = 1, f(v) = -1 or vice versa. The maximum number of vertices labeled with 1 and -1 alternatively in the path are 2k + 1. Therefore 2k edges have labeling as 1. Also for the set of vertices $\{v_i \ /1 \le i \le n - 1\}$, 2k + 1 vertices are labeled as 1 and -1 alternatively and for the set of vertices $\{w_i \ /\le i \le n - 1\}$, 2k vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled as 1 and -1 and thus we get 4k + 1 edges labeled as 1. Also by the definition of QS_n the edges connecting v_i and w_i , we get 2k edges labeling with 1. Thus $e_f(1) = 8k + 1$ and $e_f(0) = 8k + 3$, which is contradiction.

Theorem 3.3. The double quadrilateral snake $D(QS_n)$ is a group difference cordial graph if and only if $n \neq 0 \pmod{4}$.

Proof: Let $G = D(QS_n)$ be a double quadrilateral snake obtained by a path $u_1, u_2 \dots u_n$ by joining u_i and u_{i+1} to new vertices v_i, x_i and w_i, y_i respectively and adding edges v_i, w_i and x_i, y_i where $1 \le i \le n-1$. Thus V(G) has 5n-4 vertices and E(G) has 7n-7 edges, f be the group difference cordial labeling of G. Assume $n \ne 0 \pmod{4}$, To prove G is a group difference cordial graph

Case (*i*): $n \equiv 1 \pmod{4}$, *Let* n = 4k + 1, $k \ge 1$ and *define* $f : V(G) \to \{1, -1, i, -i\}$ as follows

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(v_{2i-1}) = f(x_{2i-1}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(v_{2i}) = f(x_{2i}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(w_{2i-1}) = f(y_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(w_{2i}) = f(y_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(w_{2i}) = f(y_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$\text{Hearly } V_f(1) = 5k + 1, V_f(-1) = V_f(i) = V_f(-i) = 5k \text{ also } e_f(1) = e_f(0) = 0 \end{cases}$$

Clearly $V_f(1) = 5k + 1$, $V_f(-1) = V_f(i) = V_f(-i) = 5k$ also $e_f(1) = e_f(0) = 14k$. Therefore, f is a group difference cordial labeling of G. *Case* (ii): $n \equiv 2 \pmod{4}$, Let n = 4k + 2, $k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if \ 1 \le i \le k+1 \\ i & if \ k+2 \le i \le 2k+1 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & if \ 1 \le i \le k+1 \\ -i & if \ k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_{2i-1}) = \begin{cases} -1 & if \ 1 \le i \le k+1 \\ -i & if \ k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_{2i}) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k \end{cases}$$

$$f(w_{2i-1}) = \begin{cases} -1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(w_{2i}) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(x_{2i-1}) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(x_{2i}) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(x_{2i}) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(y_{2i-1}) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(y_{2i-1}) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k+1 \end{cases}$$

$$f(y_{2i}) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = 5k + 2 = V_f(-1)$, $V_f(i) = V_f(-i) = 5k + 1$ also $e_f(1) = 14k + 4$ and $e_f(0) = 14k + 3$. Therefore, f is a group difference cordial labeling of G.

Case (iii): $n \equiv 3 \pmod{4}$, Let $n = 4k + 3, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+2 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_{2i-1}) = f(x_{2i-1}) = \begin{cases} -1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_{2i}) = f(x_{2i}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k+1 \end{cases}$$

$$f(w_{2i-1}) = f(y_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(w_{2i}) = f(y_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(w_{2i}) = f(y_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = V_f(-1) = V_f(i) = 5k + 3$, $V_f(-i) = 5k + 2$. Also $e_f(1) = 14k + 7 = e_f(0)$. Conversly, Assume G is a group difference cordial graph and f is a group difference cordial labeling of G.

Claim $n \neq 0 \pmod{4}$. Suppose $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$. So $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 5k - 1$ for any group difference cordial labeling fTo get an edge e = uv with label 1, we need either f(u) = 1, f(v) = -1 or vice versa. The maximum number of vertices labeled with 1 and -1 alternatively in the path are 2k. Thus we get 2k - 1 edges of labeling 1. Also for the set of vertices $\{x_i, y_i / 1 \le i \le n - 1\}, 2k - 1$ vertices are labeled as 1 and -1 alternatively and for the set of vertices $\{v_i, w_i / \le i \le n - 1\}, 2k$ vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k - 2 vertices for $\{x_i, y_i / 1 \le i \le n - 1\}, 4k$ vertices for $\{v_i, w_i / \le i \le n - 1\}$ are labeled as 1 and -1 and thus we get 8k - 3 edges labeled as 1. Also by the definition of $D(QS_n)$ the edges connecting v_i and w_i ; x_i and y_i we get 2k and 2k - 1 edges labeling with 1 respectively. Thus $e_f(1) = 14k - 5$ and $e_f(0) = 14k - 2$ which is a contradiction.

Theorem 3.4. The alternate quadrilateral snake $A(QS_n)$ is a group difference cordial graph for all "*n*" if it starts with an edge and if $n \neq 2 \pmod{4}$ if it starts with cycle.

Proof: Let $G = A(QS_n)$ be the alternate quadrilateral snake obtained by a path $u_1, u_2 \dots u_n$ by joining u_i and u_{i+1} (alternatively) with new vertices v_j and $w_j, 1 \le i \le n$ and $1 \le j \le \lfloor \frac{n}{2} \rfloor$. (quadrilateral starts from u_1) $1 \le j \le \frac{n}{2} - 1$ (quadrilateral starts from u_2).Note that V(G) = 2nand $E(G) = \frac{5n}{2} - 1$ if n is even starts from u_1 ; V(G) = 2n - 2 and $E(G) = \frac{5n}{2} - 4$ if n is even starts from u_2 ; V(G) = 2n - 1 and $E(G) = \frac{5n-5}{2}$ if n is odd

To prove G is a group difference cordial graph

Case (*I*): Alternate quadrilateral snake $A(QS_n)$ starts from u_2

Sub case (i) $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$ and define $f : V(G) \rightarrow \{1, -1, i, -i\}$ as

follows $f(u_{2i-1}) = \{ \begin{array}{ll} 1 & if \ 1 \leq i \leq k \\ i & if \ k+1 \leq i \leq 2k \end{array} \}$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(v_i) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k-1, \text{for all } k \ge 2 \end{cases}$$

$$f(w_i) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k-1, \text{for all } k \ge 2 \end{cases}$$

Clearly $V_f(1) = V_f(-1) = 2k$, $V_f(i) = V_f(-i) = 2k - 1$ also $e_f(1) = e_f(0) = 5k - 2$. Therefore, f is a group difference cordial labeling of G.

Subcase (ii): $n \equiv 1 \pmod{4}$, Let $n = 4k + 1, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if \ 1 \le i \le k+1 \\ i & if \ k+2 \le i \le 2k+1 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{cases}$$
$$f(v_i) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k \end{cases}$$
$$f(w_i) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = 2k + 1$, $V_f(-1) = V_f(i) = V_f(-i) = 2k$ also $e_f(1) = 5k = e_f(0)$. Therefore,

f is a group difference cordial labeling of G.

Subcase (iii): $n \equiv 2 \pmod{4}$, Let $n = 4k + 2, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$
$$f(v_i) = \begin{cases} 1 & if & 1 \le i \le k \\ i & if & k+1 \le i \le 2k \end{cases}$$
$$f(w_i) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = V_f(-1) = 2k + 1, V_f(i) = V_f(-i) = 2k$. Also $e_f(1) = 5k + 1, e_f(0) = 5k$.

Therefore, f is a group difference cordial labeling of G.

Subcase (iv): $n \equiv 3 \pmod{4}$, Let $n = 4k + 3, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+2 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$
$$f(v_i) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 \end{cases}$$
$$f(w_i) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = 2k + 2$, $V_f(-1) = V_f(i) = V_f(-i) = 2k + 1$. Also $e_f(1) = 5k + 2$, $e_f(0) = 5k + 3$. Therefore, f is a group difference cordial labeling of G.

Case (11): Alternate quadrilateral snake $A(QS_n)$ starts from u_1 Sub case (i) $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$ and define $f : V(G) \rightarrow \{1, -1, i, -i\}$ as

follows $f(u_{2i-1}) = \{ \begin{array}{ll} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k \end{array} \}$

$$f(u_{2i}) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{cases}$$
$$f(v_i) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2 \end{cases}$$
$$f(w_i) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 2k$ also $e_f(1) = 5k - 1$, $e_f(0) = 5k$.

Therefore, f is a group difference cordial labeling of G.

Subcase (ii): $n \equiv 1 \pmod{4}$, Let $n = 4k + 1, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k \end{cases}$$
$$f(v_i) = \begin{cases} & -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k \end{cases}$$
$$f(w_i) = \begin{cases} & 1 & if & 1 \le i \le k \\ i & if & k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = 2k + 1$, $V_f(-1) = V_f(i) = V_f(-i) = 2k$ also $e_f(1) = 5k = e_f(0)$. Therefore,

f is a group difference cordial labeling of G.

Subcase (iii): $n \equiv 3 \pmod{4}$, Let n = 4k + 3, $k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+2 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k+1 \end{cases}$$
$$f(v_i) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$
$$f(w_i) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = 2k + 2$, $V_f(-1) = V_f(i) = V_f(-i) = 2k + 1$. Also $e_f(1) = 5k + 2$, $e_f(0) = 5k + 3$. Therefore, f is a group difference cordial labeling of G.

Remark:

 $A(QS_n)$ is not a group difference cordial graph for $n \not\equiv 2 \pmod{4}$. Because to satisfy the vertex condition for group difference cordial labeling it is essential to assign $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 2k + 1$ for 8k + 4 vertices. The vertices with labeling 1 and -1 gives rise to

the edges of labeling 1 as 5k+1 and the vertices with other labeling gives rise to the edges of labeling 0 as 5k+3, that is $e_f(1) = 5k + 1$, $e_f(0) = 5k + 3$ Therefore, $|e_f(0) - e_f(1)| \ge 2$. *Theorem* 3.5. The alternate double quadrilateral snake $A(D(QS_n))$ is a group difference cordial graph for all "n"

Proof: Let $G = A(D(QS_n))$ be the alternate quadrilateral snake obtained by a path $u_1, u_2 \dots u_n$ by joining u_i and u_{i+1} (alternatively) to get four new vertices v_i , w_i and x_i , y_i , by the edges

 $u_i v_j, u_{i+1} w_j, v_j, w_j, u_i x_j, u_{i+1} y_j and x_j, y_j$ where $1 \le i \le n$ and $1 \le j \le \lfloor \frac{n}{2} \rfloor$.

(quadrilateral starts from u_1) $1 \le j \le \frac{n}{2} - 1$ (quadrilateral starts from u_2).Note that V(G) = 3nand E(G) = 4n - 1 if n is even and starts from u_1 ; V(G) = 3n - 4 and E(G) = 4n - 7 if n is even starts from u_2 ; V(G) = 3n - 2 and E(G) = 4n - 4 if n is odd

To prove G is a group difference cordial graph

Case (*I*): Alternate double quadrilateral snake $A(D(QS_n))$ starts from u_1

Sub case (i) $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$ and define $f: V(G) \to \{1, -1, i, -i\}$ as follows $f(u_{2i-1}) = \{ \begin{array}{c} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k \end{array} \}$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(v_i) = f(x_i) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

$$f(w_i) = f(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 3k$ also $e_f(1) = 8k - 1$, $e_f(0) = 8k$. Therefore, f is a group difference condict tabeling of C.

Therefore, f is a group difference cordial labeling of G.

Subcase (ii): $n \equiv 1 \pmod{4}$, Let $n = 4k + 1, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if \ 1 \le i \le k+1 \\ i & if \ k+2 \le i \le 2k+1 \end{cases}$$
$$f(u_{2i}) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{cases}$$
$$f(v_i) = f(x_i) = \begin{cases} -1 & if \ 1 \le i \le k \\ -i & if \ k+1 \le i \le 2k \end{cases}$$
$$f(w_i) = f(y_i) = \begin{cases} 1 & if \ 1 \le i \le k \\ i & if \ k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = 3k + 1$, $V_f(-1) = V_f(i) = V_f(-i) = 3k$ also $e_f(1) = 8k = e_f(0)$. Therefore, f is a group difference cordial labeling of G.

Subcase (iii): $n \equiv 2 \pmod{4}$, Let $n = 4k + 2, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_i) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(w_i) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(x_i) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k+1 \end{cases}$$

$$f(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k+1 \end{cases}$$

$$f(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = V_f(-1) = 3k + 2$, $V_f(i) = V_f(-i) = 3k + 1$. Also $e_f(1) = 8k + 4$, $e_f(0) = 8k + 3$. Therefore, f is a group difference cordial labeling of G.

Subcase (iv): $n \equiv 3 \pmod{4}$, Let $n = 4k + 3, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+2 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_i) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(w_i) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(w_i) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k+1 \end{cases}$$

$$f(x_i) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k+1 \end{cases}$$

$$f(y_i) = \begin{cases} 1 & if & 1 \le i \le k \\ i & if & k+1 \le i \le 2k+1 \end{cases}$$

Clearly $V_f(1) = V_f(-1) = V_f(i) = 3k + 2$, $V_f(-i) = 3k + 1$. Also $e_f(1) = 8k + 4 = e_f(0)$.

Therefore, f is a group difference cordial labeling of G.

Case (*II*): Alternate double quadrilateral snake $A(D(QS_n))$ starts from u_2 *Sub case* (*i*) $n \equiv 0 \pmod{4}$, *Let* $n = 4k, k \ge 1$ and *define* $f : V(G) \rightarrow \{1, -1, i, -i\}$ as follows ,Fix the labeling of the vertex $f(u_1) = -i$

 $f(u_{2i+1}) = \{ \begin{array}{cc} -1 & if \ 1 \le i \le k \ for \ all \ k \ge 2 \\ -i & if \ k+1 \le i \le 2k \ for \ all \ k \ge 2 \end{array} \}$

 $f(u_{2i}) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k \end{cases}$ $f(v_i) = \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2-1 \text{ for all } k \ge 2 \end{cases}$ $f(w_i) = \begin{cases} 1 & \text{if } 1 \le i \le k \\ i & \text{if } k+1 \le i \le 2k-1 \text{ for all } k \ge 2 \end{cases}$ $f(x_i) = \begin{cases} -1 & \text{if } 1 \le i \le k-1 \text{ for all } k \ge 2 \\ -i & \text{if } k \le i \le 2k-1 \end{cases}$ $f(y_i) = \begin{cases} 1 & \text{if } 1 \le i \le k-1 \text{ for all } k \ge 2 \\ i & \text{if } k \le i \le 2k-1 \end{cases}$

Clearly $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 3k - 1$ also $e_f(1) = 8k - 4$, $e_f(0) = 8k - 3$.

Therefore, f is a group difference cordial labeling of G.

Subcase (ii): $n \equiv 1 \pmod{4}$, Let n = 4k + 1, $k \ge 1$ is same as subcase(ii) in case(I)

Subcase (iii): $n \equiv 2 \pmod{4}$, Let $n = 4k + 2, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+2 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & if & 1 \le i \le k+1 \\ -i & if & k+2 \le i \le 2k+1 \end{cases}$$

$$f(v_i) = f(x_i) = \begin{cases} 1 & if & 1 \le i \le k \\ i & if & k+1 \le i \le 2k \end{cases}$$

$$f(w_i) = f(y_i) = \begin{cases} -1 & if & 1 \le i \le k \\ -i & if & k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = V_f(-1) = 3k + 1$, $V_f(i) = V_f(-i) = 3k$. Also $e_f(1) = 8k + 1$, $e_f(0) = 8k$.

Therefore, f is a group difference cordial labeling of G.

Subcase (iv): $n \equiv 3 \pmod{4}$, Let n = 4k + 3, $k \ge 1$ is same as subcase(iv) in case(i).

Conclusion

In this we have found group difference cordial labeling of different types of graphs such as Quadrilateral snake QS_n , Double quadrilateral snake $D(QS_n)$, Alternate quadrilateral snake $A(QS_n)$, Alternate double quadrilateral snake $A(D(QS_n))$. Investigating group difference cordial labeling in other classes of graphs for future work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

- [1] Athisayanathan S, Ponraj R and Karthik Chidambaram M K ,Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences Vol. 10, No.1(2017) pp. 1-11
- [2] Chait I , Cordial graphs : a weaker version of graceful and harmonious Ars Combin.23(1987)201-207
- [3] Gallin J A, A Dynamic survey of Graph Labeling, The Electronic Journal of combinatorics Dec7(2015)No.D56
- [4] Harary F, Graph Theory, Addison Wesley, Reading Mass, 1972
- [5] Ponraj R,Sathish Narayanan S and Kala R, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical,5(2013),185-196.
- [6] Beaulah Bell I and Kala R, Group Difference Cordial labeling of some Ladder related Graphs, Turkish Journal of Computer and Mathematics Education, Vol. 11, No.02(2020) pp. 1184-1192
- [7] Beaulah Bell I and Kala R, Group difference cordial labeling of some cycle related graphs, International Conference on Discrete Mathematics (ICDM2021-MSU) ISBN 978-93-91077-53-2 pp.75-80