Group Difference Cordial Labeling of some Snake Related Graphs

I. Beaulah Bell ${ }^{\mathbf{1}}$ (Reg No:19124012092036) and R. Kala ${ }^{\mathbf{2}}$
${ }^{1 \& 2}$ Department of Mathematics
Manonmaniam Sundaranar University
Abishekpatti, Tirunelveli-627012,Tamilnadu,India.
e-mail:beaulahbell16@gmail.com ${ }^{1}$,karthipyi91@yahoo.co.in ${ }^{2}$

Article Info

Page Number: 1972-1984

Publication Issue:

Vol 71 No. 3 (2022)

Article History

Article Received: 12 April 2022
Revised: 25 May 2022
Accepted: 20 July 2022
Publication: 09 September 2022

Abstract

Let $G=(V G), E(G))$ be a graph. Let Γ be a group. For $u \in \Gamma$, let $o(u)$ denotes the order of u in Γ. Let $f: V(G) \rightarrow \Gamma$ be a function. For each edge $u v$ assign the label $|o(f(u))-o(f(v))|$. Let $v_{f}(i)$ denote the number of vertices of G having label i under f. Also $e_{f}(1), e_{f}(0)$ respectively denote the number of edges labeled with 1 and not with 1.Now f is called a group difference cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for every $i, j \epsilon \Gamma, i \neq j$ and $\mid e_{f}(1)-$ $e_{f}(0) \mid \leq 1$. A graph which admits a group difference cordial labeling is called group difference cordial graph. In this paper we fix the group Γ as the group $\{1,-1, i,-i\}$ which is the group of fourth roots of unity, that is cyclic with generators i and $-i$.

We prove that Quadrilateral snake $Q S_{n}$, Alternate quadrilateral snake $A\left(Q S_{n}\right)$ and further characterized Double quadrilateral snake $D\left(Q S_{n}\right)$ and Alternate double quadrilateral snake $A\left(D\left(Q S_{n}\right)\right)$.

Keywords: cordial labeling, difference labeling, group difference cordial labeling

1 Introduction

Graphs considered here are finite, undirected and simple. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. Labelled graphs serve as useful models for a broad range of applications such as : astronomy, circuit design, communication network addressing and models for constraint programming over finite domains.

Cahit [2] introduced the concept of cordial labeling.

Definition 1.1. [2] Let $f: V(G) \rightarrow\{0,1\}$ be any function. For each edge $x y$ assign the label $|f(x)-f(y)| . f$ is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1 . Also the number of edges labelled 0 and the number of edges labeled 1 differ by at most 1 .

In[5] , Ponraj et al. introduced a new labeling called difference cordial labeling .

Definition 1.2. [5] Let G be a (p, q) graph .Let $f: V(G) \rightarrow\{1,2 \ldots p\}$ be a bijection. For each edge, assign the label $|f(u)-f(v)| . f$ is called a difference cordial labeling if f is $1-1$ and $\left|e_{f}(0)-e_{f}(1)\right|=1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

Athisayanathan et al.[1] introduced the concept of group A cordial labeling.

Definition 1.3. [1] Let A be a group. We denote the order of an element $a \epsilon A$ by $o(a) . \operatorname{Let} f: V(G) \rightarrow A$ be a function. For each edge $u v$ assign the label 1 if $(o(f(u)), o(f(v)))=1$ or 0 otherwise. f is called a group A Cordial labeling if $\mid v_{f}(a)-$ $v_{f}(b) \mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(x)$ and $e_{f}(n) \quad$ respectively denote the number of vertices labeled with an element x and number of edges labeled with $n(n=0,1)$ A graph which admits a group A cordial labeling is called a group A cordial graph.

2. Preliminaries

Definition 2.1. The Quadrilateral snake $Q S_{n}$ is obtained from a path $u_{1}, u_{2} \ldots u_{n}$ by joining u_{i}, u_{i+1} to new vertices v_{i}, w_{i} respectively and then joining v_{i} and w_{i}.

Definition 2.2. An Alternate Quadrilateral snake $A\left(Q S_{n}\right)$ is obtained from a path $u_{1}, u_{2} \ldots u_{n}$ by joining u_{i}, u_{i+1} (Alternatively) to new vertices v_{i}, w_{i} respectively and then joining v_{i} and w_{i}.

Definition 2.3. The Double Quadrilateral snake $D\left(Q S_{n}\right)$ consists of two Quadrilateral snakes that have a common path.

Definition 2.4. The Alternate Double Quadrilateral snake $A\left(D\left(Q S_{n}\right)\right)$ consists of two alternative Quadrilateral snakes that have a common path.

3. Group Difference cordial Graphs

Definition 3.1. Let $G=(V(G), E(G))$ be a graph. Let Γ be a group. For $u \epsilon \Gamma$, let $o(u)$ denote the order of u in Γ. Let $f: V(G) \rightarrow \Gamma$ be a function.For each edge $u v$ assign the label $\mid o(f(u))-o(f v)) \mid$. Let $v_{f}(i)$ denote the number of vertices of G having label i under f. Also $e_{f}(1), e_{f}(0)$ respectively denote the number of edges labeled with 1 and not with 1 . Now f is called a group difference cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for every $i, j \in \Gamma, i \neq j$ and $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$. A graph which admits a group difference cordial labeling is called group difference cordial graph .

In this paper we take the group Γ as the group $\{1,-1, i,-i\}$ which is the group of fourth roots of unity, that is cyclic with generators i and $-i$.
Theorem 3.2. The Quadrilateral snake $Q S_{n}$ is a group difference cordial graph if and only if $n \not \equiv 2(\bmod 4)$.

Proof: Let $G=Q S_{n}$ be a quadrilateral snake of $3 n-2$ vertices and $4 n-4$ edges, f be the group difference cordial labeling of G. Let $V(G)=\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ be the vertices in the path and $\left\{v_{i}, w_{i} / 1 \leq i \leq n-1\right\}$ be the vertices joined by u_{i}, u_{i+1} respectively.

Assume $n \not \equiv 2(\bmod 4)$, To prove G is a group difference cordial graph
Case $(i): n \equiv 0(\bmod 4)$, Let $n=4 k, k \geq 1 \quad$ and define $f: V(G) \rightarrow\{1,-1, i,-i\}$ as follows

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(u_{2 i}\right)=\left\{\begin{array}{l}
-1 \text { if } 1 \leq i \leq k \\
-i \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
& f\left(v_{2 i-1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(v_{2 i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k-1, \text { for all } k \geq 2\end{cases} \\
& f\left(w_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(w_{2 i}\right)=\left\{\begin{array}{l}
-1 \text { if } 1 \leq i \leq k \\
-i \text { if } k+1 \leq i \leq 2 k-1, \text { for all } k \geq 2
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=3 k, V_{f}(i)=V_{f}(-i)=3 k-1$ also $e_{f}(1)=e_{f}(0)=8 k-2$.
Therefore, f is a group difference cordial labeling of G .
Case (ii): $n \equiv 1(\bmod 4)$, Let $n=4 k+1, k \geq 1$.

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
& f\left(u_{2 i}\right)=\left\{\begin{array}{lll}
-1 & \text { if } & 1 \leq i \leq k \\
-i & \text { if } & k+1 \leq i \leq 2 k
\end{array}\right. \\
& \qquad f\left(v_{2 i-1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(v_{2 i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k-1\end{cases} \\
& f\left(w_{2 i-1}\right)=\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
& f\left(w_{2 i}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k-1\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=3 k+1, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=3 k$ also $e_{f}(1)=8 k=e_{f}(0)$. Therefore, f is a group difference cordial labeling of G.

Case (iii): $n \equiv 3(\bmod 4)$,Let $n=4 k+3, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+2
\end{array}\right. \\
f\left(u_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(v_{2 i-1}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(v_{2 i}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{2 i-1}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k+1
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=V_{f}(i)=3 k+2, V_{f}(-i)=3 k+1$. Also $e_{f}(1)=8 k+4=e_{f}(0)$
Therefore, f is a group difference cordial labeling of G.
Conversly, Assume G is a group difference cordial graph and f is a group difference cordial labeling of G .
Claim $n \not \equiv 2(\bmod 4)$.Suppose $n \equiv 2(\bmod 4)$, Let $n=4 k+2, k \geq 1$.
So $V_{f}(1)=V_{f}(-1)=V_{f}(i)=V_{f}(-i)=3 k+1$ for any group difference cordial labeling f

To get an edge $e=u v$ with label 1 , we need $\operatorname{either} f(u)=1, f(v)=-1$ or vice versa. The maximum number of vertices labeled with 1 and -1 alternatively in the path are $2 k+1$.

Therefore $2 k$ edges have labeling as 1 .Also for the set of vertices $\left\{v_{i} / 1 \leq i \leq n-1\right\}, 2 k+1$ vertices are labeled as 1 and -1 alternatively and for the set of vertices $\left\{w_{i} / \leq i \leq n-1\right\}, 2 k$ vertices are labeled as 1 and -1 alternatively. Therefore, totally we get $4 k+1$ vertices are labeled as 1 and -1 and thus we get $4 k+1$ edges labeled as 1 .Also by the definition of $Q S_{n}$ the edges connecting v_{i} and w_{i}, we get $2 k$ edges labeling with 1 .Thus $e_{f}(1)=8 k+1$ and $e_{f}(0)=$ $8 k+3$, which is contradiction.

Theorem 3.3. The double quadrilateral snake $D\left(Q S_{n}\right)$ is a group difference cordial graph if and only if $n \not \equiv 0(\bmod 4)$.

Proof: Let $G=D\left(Q S_{n}\right)$ be a double quadrilateral snake obtained by a path $u_{1}, u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i}, x_{i} and w_{i}, y_{i} respectively and adding edges v_{i}, w_{i} and x_{i}, y_{i} where $1 \leq i \leq n-1$. Thus $V(G)$ has $5 n-4$ vertices and $E(G)$ has $7 n-7$ edges, f be the group difference cordial labeling of G . Assume $n \not \equiv 0(\bmod 4)$, To prove G is a group difference cordial graph
Case $(i): n \equiv 1(\bmod 4)$, Let $n=4 k+1, k \geq 1$ and define $f: V(G) \rightarrow\{1,-1, i,-i\}$ as follows

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
& f\left(u_{2 i}\right)= \begin{cases}-1 \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& \qquad f\left(v_{2 i-1}\right)=f\left(x_{2 i-1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(v_{2 i}\right)=f\left(x_{2 i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(w_{2 i-1}\right)=f\left(y_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(w_{2 i}\right)=f\left(y_{2 i}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=5 k+1, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=5 k$ also $e_{f}(1)=e_{f}(0)=14 k$.
Therefore, f is a group difference cordial labeling of G .
Case (ii): $n \equiv 2(\bmod 4)$, Let $n=4 k+2, k \geq 1$.

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
& f\left(u_{2 i}\right)=\left\{\begin{array}{lll}
-1 & \text { if } & 1 \leq i \leq k+1 \\
-i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
& f\left(v_{2 i-1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
& f\left(v_{2 i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(w_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
& f\left(w_{2 i}\right)=\left\{\begin{array}{l}
-1 \text { if } 1 \leq i \leq k \\
-i \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
& f\left(x_{2 i-1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k+1\end{cases} \\
& f\left(x_{2 i}\right)=\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k \\
i & \text { if } & k+1 \leq i \leq 2 k
\end{array}\right. \\
& f\left(y_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k+1\end{cases} \\
& f\left(y_{2 i}\right)=\left\{\begin{array}{l}
-1 \text { if } 1 \leq i \leq k \\
-i \text { if } k+1 \leq i \leq 2 k
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=5 k+2=V_{f}(-1), V_{f}(i)=V_{f}(-i)=5 k+1$ also $e_{f}(1)=14 k+4$ and $e_{f}(0)=14 k+3$. Therefore, f is a group difference cordial labeling of G.
Case (iii): $n \equiv 3(\bmod 4)$,Let $n=4 k+3, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+2
\end{array}\right. \\
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } \\
k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(v_{2 i-1}\right) & =f\left(x_{2 i-1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(v_{2 i}\right) & =f\left(x_{2 i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{2 i-1}\right) & =f\left(y_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{2 i}\right) & =f\left(y_{2 i}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k+1\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=V_{f}(i)=5 k+3, V_{f}(-i)=5 k+2$. Also $e_{f}(1)=14 k+7=e_{f}(0)$.
Conversly, Assume G is a group difference cordial graph and f is a group difference cordial labeling of G.

Vol. 71 No. 3 (2022)

Claim $n \not \equiv 0(\bmod 4)$.Suppose $n \equiv 0(\bmod 4)$, Let $n=4 k, k \geq 1$.
So $V_{f}(1)=V_{f}(-1)=V_{f}(i)=V_{f}(-i)=5 k-1$ for any group difference cordial labeling f To get an edge $e=u v$ with label 1,we need either $f(u)=1, f(v)=-1$ or vice versa. The maximum number of vertices labeled with 1 and -1 alternatively in the path are $2 k$.

Thus we get $2 k-1$ edges of labeling 1.Also for the set of vertices $\left\{x_{i}, y_{i} / 1 \leq i \leq n-1\right\}, 2 k-1$ vertices are labeled as 1 and -1 alternatively and for the set of vertices $\left\{v_{i}, w_{i} / \leq i \leq n-1\right\}, 2 k$ vertices are labeled as 1 and -1 alternatively. Therefore, totally we get $4 k-2$ vertices for $\left\{x_{i}, y_{i} / 1 \leq i \leq n-1\right\}, 4 k$ vertices for $\left\{v_{i}, w_{i} / \leq i \leq n-1\right\}$ are labeled as 1 and -1 and thus we get $8 k-3$ edges labeled as 1 .Also by the definition of $D\left(Q S_{n}\right)$ the edges connecting v_{i} and w_{i}; x_{i} and y_{i} we get $2 k$ and $2 k-1$ edges labeling with 1 respectively. Thuse $e_{f}(1)=14 k-$ 5 and $e_{f}(0)=14 k-2$ which is a contradiction.

Theorem 3.4. The alternate quadrilateral snake $A\left(Q S_{n}\right)$ is a group difference cordial graph for all " n " if it starts with an edge and if $n \not \equiv 2(\bmod 4)$ if it starts with cycle.

Proof: Let $G=A\left(Q S_{n}\right)$ be the alternate quadrilateral snake obtained by a path $u_{1}, u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} (alternatively) with new vertices v_{j} and $w_{j}, 1 \leq i \leq n$ and $1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$. (quadrilateral starts from u_{1}) $1 \leq j \leq \frac{n}{2}-1$ (quadrilateral starts from u_{2}). Note that $V(G)=2 n$ and $E(G)=\frac{5 n}{2}-1$ if n is even starts from $u_{1} ; V(G)=2 n-2$ and $E(G)=\frac{5 n}{2}-4$ if n is even starts from $u_{2} ; V(G)=2 n-1$ and $E(G)=\frac{5 n-5}{2}$ if n is odd

To prove G is a group difference cordial graph Case (I): Alternate quadrilateral snake $A\left(Q S_{n}\right)$ starts from u_{2}

Sub case $(i) n \equiv 0(\bmod 4)$, Let $n=4 k, k \geq 1 \quad$ and define $f: V(G) \rightarrow\{1,-1, i,-i\}$ as follows $f\left(u_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\ i & \text { if } k+1 \leq i \leq 2 k\end{cases}$

$$
\begin{aligned}
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
f\left(v_{i}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k-1, \text { for all } k \geq 2\end{cases} \\
f\left(w_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k-1 \text { for all } k \geq 2\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=2 k, V_{f}(i)=V_{f}(-i)=2 k-1$ also $e_{f}(1)=e_{f}(0)=5 k-2$.
Therefore, f is a group difference cordial labeling of G .

Subcase (ii): $n \equiv 1(\bmod 4)$, Let $n=4 k+1, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(u_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } & k+1 \leq i \leq 2 k
\end{array}\right. \\
f\left(v_{i}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
f\left(w_{i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=2 k+1, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=2 k$ also $e_{f}(1)=5 k=e_{f}(0)$. Therefore, f is a group difference cordial labeling of G.
Subcase (iii): $n \equiv 2(\bmod 4)$, Let $n=4 k+2, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(u_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(v_{i}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
f\left(w_{i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=2 k+1, V_{f}(i)=V_{f}(-i)=2 k$. Also $e_{f}(1)=5 k+1, e_{f}(0)=5 k$.
Therefore, f is a group difference cordial labeling of G.
Subcase (iv): $n \equiv 3(\bmod 4)$,Let $n=4 k+3, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+2
\end{array}\right. \\
f\left(u_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(v_{i}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k+1
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=2 k+2, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=2 k+1$. Also $e_{f}(1)=5 k+2, e_{f}(0)=$ $5 k+3$.Therefore, f is a group difference cordial labeling of G.
Case (II): Alternate quadrilateral snake $A\left(Q S_{n}\right)$ starts from u_{1}
Sub case $(i) n \equiv 0(\bmod 4)$, Let $n=4 k, k \geq 1$ and define $f: V(G) \rightarrow\{1,-1, i,-i\}$ as
follows $f\left(u_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\ i & \text { if } k+1 \leq i \leq 2 k\end{cases}$

$$
\begin{aligned}
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
f\left(v_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2\end{cases} \\
f\left(w_{i}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=V_{f}(i)=V_{f}(-i)=2 k$ also $e_{f}(1)=5 k-1, e_{f}(0)=5 k$.
Therefore, f is a group difference cordial labeling of G.
Subcase (ii): $n \equiv 1(\bmod 4)$, Let $n=4 k+1, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
f\left(v_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
f\left(w_{i}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=2 k+1, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=2 k$ also $e_{f}(1)=5 k=e_{f}(0)$. Therefore, f is a group difference cordial labeling of G.
Subcase (iii): $n \equiv 3(\bmod 4)$,Let $n=4 k+3, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+2
\end{array}\right. \\
f\left(u_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } & 1 \leq i \leq k \\
-i & \text { if } & k+1 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(v_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{i}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=2 k+2, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=2 k+1$. Also $e_{f}(1)=5 k+2, e_{f}(0)=$ $5 k+3$.Therefore, f is a group difference cordial labeling of G .
Remark:
$A\left(Q S_{n}\right)$ is not a group difference cordial graph for $n \not \equiv 2(\bmod 4)$. Because to satisfy the vertex condition for group difference cordial labeling it is essential to assign $V_{f}(1)=V_{f}(-1)=$ $V_{f}(i)=V_{f}(-i)=2 k+1$ for $8 k+4$ vertices.The vertices with labeling 1 and -1 gives rise to
the edges of labeling 1 as $5 k+1$ and the vertices with other labeling gives rise to the edges of labeling 0 as $5 k+3$, that is $e_{f}(1)=5 k+1, e_{f}(0)=5 k+3$ Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \geq 2$.

Theorem 3.5. The alternate double quadrilateral snake $A\left(D\left(Q S_{n}\right)\right)$ is a group difference cordial graph for all " n "

Proof: Let $G=A\left(D\left(Q S_{n}\right)\right)$ be the alternate quadrilateral snake obtained by a path $u_{1}, u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} (alternatively) to get four new vertices v_{j}, w_{j} and x_{j}, y_{j}, by the edges $u_{i} v_{j}, u_{i+1} w_{j}, v_{j}, w_{j}, u_{i} x_{j}, u_{i+1} y_{j}$ and $x_{j}, y_{j} \quad$ where $1 \leq i \leq n$ and $1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$.
(quadrilateral starts from $\left.u_{1}\right) 1 \leq j \leq \frac{n}{2}-1$ (quadrilateral starts from u_{2}). Note that $V(G)=3 n$ and $E(G)=4 n-1$ if n is even and starts from $u_{1} ; V(G)=3 n-4$ and $E(G)=4 n-7$ if n is even starts from $u_{2} ; V(G)=3 n-2$ and $E(G)=4 n-4$ if n is odd

To prove G is a group difference cordial graph
Case (I): Alternate double quadrilateral snake $A\left(D\left(Q S_{n}\right)\right)$ starts from u_{1}
Sub case $(i) n \equiv 0(\bmod 4)$, Let $n=4 k, k \geq 1 \quad$ and define $f: V(G) \rightarrow\{1,-1, i,-i\}$ as follows $f\left(u_{2 i-1}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\ i & \text { if } k+1 \leq i \leq 2 k\end{cases}$

$$
\begin{aligned}
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
f\left(v_{i}\right) & =f\left(x_{i}\right)=\left\{\begin{array}{cc}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
f\left(w_{i}\right) & =f\left(y_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=V_{f}(i)=V_{f}(-i)=3 k$ also $e_{f}(1)=8 k-1, e_{f}(0)=8 k$.
Therefore, f is a group difference cordial labeling of G.
Subcase (ii): $n \equiv 1(\bmod 4)$, Let $n=4 k+1, k \geq 1$.

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
& f\left(u_{2 i}\right)=\left\{\begin{array}{lll}
-1 & \text { if } & 1 \leq i \leq k \\
-i & \text { if } & k+1 \leq i \leq 2 k
\end{array}\right. \\
& f\left(v_{i}\right)=f\left(x_{i}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(w_{i}\right)=f\left(y_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases}
\end{aligned}
$$

Clearly $V_{f}(1)=3 k+1, V_{f}(-1)=V_{f}(i)=V_{f}(-i)=3 k$ also $e_{f}(1)=8 k=e_{f}(0)$. Therefore, f is a group difference cordial labeling of G.

Subcase (iii): $n \equiv 2(\bmod 4)$,Let $n=4 k+2, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(u_{2 i}\right) & =\left\{\begin{array}{lll}
-1 & \text { if } & 1 \leq i \leq k+1 \\
-i & \text { if } & k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(v_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{i}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1
\end{array}\right. \\
f\left(x_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k+1\end{cases} \\
f\left(y_{i}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k+1
\end{array}\right.
\end{aligned}
$$

Clearly $\quad V_{f}(1)=V_{f}(-1)=3 k+2, V_{f}(i)=V_{f}(-i)=3 k+1$. Also $e_{f}(1)=8 k+4, e_{f}(0)=$ $8 k+3$.Therefore, f is a group difference cordial labeling of G .

Subcase (iv): $n \equiv 3(\bmod 4)$,Let $n=4 k+3, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+2
\end{array}\right. \\
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } \\
k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(v_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(w_{i}\right) & = \begin{cases}1 & \text { if } 1 \leq i \leq k+1 \\
i & \text { if } k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(x_{i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k+1\end{cases} \\
f\left(y_{i}\right) & =\left\{\begin{array}{lll}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k+1
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=V_{f}(i)=3 k+2, V_{f}(-i)=3 k+1$. Also $e_{f}(1)=8 k+4=e_{f}(0)$.
Therefore, f is a group difference cordial labeling of G.
Case (II): Alternate double quadrilateral snake $A\left(D\left(Q S_{n}\right)\right)$ starts from u_{2}
Sub case $(i) n \equiv 0(\bmod 4)$, Let $n=4 k, k \geq 1$ and define $f: V(G) \rightarrow\{1,-1, i,-i\}$ as follows, Fix the labeling of the vertex $f\left(u_{1}\right)=-i$

$$
f\left(u_{2 i+1}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \text { for all } k \geq 2 \\ -i & \text { if } k+1 \leq i \leq 2 k f \text { or all } k \geq 2\end{cases}
$$

$$
f\left(v_{i}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k \\ -i & \text { if } k+1 \leq i \leq 2-1 \text { for all } k \geq 2\end{cases}
$$

Clearly $V_{f}(1)=V_{f}(-1)=V_{f}(i)=V_{f}(-i)=3 k-1$ also $e_{f}(1)=8 k-4, e_{f}(0)=8 k-3$.
Therefore, f is a group difference cordial labeling of G.
Subcase (ii): $n \equiv 1(\bmod 4)$, Let $n=4 k+1, k \geq 1$ is same as subcase(ii) in case(I)
Subcase (iii): $n \equiv 2(\bmod 4)$,Let $n=4 k+2, k \geq 1$.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =\left\{\begin{array}{lll}
1 & \text { if } & 1 \leq i \leq k+1 \\
i & \text { if } & k+2 \leq i \leq 2 k+2
\end{array}\right. \\
f\left(u_{2 i}\right) & = \begin{cases}-1 & \text { if } 1 \leq i \leq k+1 \\
-i & \text { if } \\
k+2 \leq i \leq 2 k+1\end{cases} \\
f\left(v_{i}\right) & =f\left(x_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right. \\
f\left(w_{i}\right) & =f\left(y_{i}\right)=\left\{\begin{array}{cc}
-1 & \text { if } 1 \leq i \leq k \\
-i & \text { if } k+1 \leq i \leq 2 k
\end{array}\right.
\end{aligned}
$$

Clearly $V_{f}(1)=V_{f}(-1)=3 k+1, V_{f}(i)=V_{f}(-i)=3 k$. Also $e_{f}(1)=8 k+1, e_{f}(0)=8 k$.
Therefore, f is a group difference cordial labeling of G .
Subcase (iv): $n \equiv 3(\bmod 4)$, Let $n=4 k+3, k \geq 1$ is same as subcase(iv) in case(i).

Conclusion

In this we have found group difference cordial labeling of different types of graphs such as Quadrilateral snake $Q S_{n}$, Double quadrilateral snake $D\left(Q S_{n}\right)$, Alternate quadrilateral snake $A\left(Q S_{n}\right)$, Alternate double quadrilateral snake $A\left(D\left(Q S_{n}\right)\right)$. Investigating group difference cordial labeling in other classes of graphs for future work.

Conflict of interest

The authors declare that they have no conflict of interest.

$$
\begin{aligned}
& f\left(u_{2 i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq k \\
i & \text { if } k+1 \leq i \leq 2 k\end{cases} \\
& f\left(w_{i}\right)=\left\{\begin{array}{l}
1 \text { if } 1 \leq i \leq k \\
i \text { if } k+1 \leq i \leq 2 k-1 \text { for all } k \geq 2
\end{array}\right. \\
& f\left(x_{i}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq k-1 \text { for all } k \geq 2 \\
-i & \text { if } k \leq i \leq 2 k-1\end{cases} \\
& f\left(y_{i}\right)=\left\{\begin{array}{l}
1 \text { if } 1 \leq i \leq k-1 \text { for all } k \geq 2 \\
i \text { if } k \leq i \leq 2 k-1
\end{array}\right.
\end{aligned}
$$

References

[1] Athisayanathan S, Ponraj R and Karthik Chidambaram M K ,Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences Vol. 10, No.1(2017) pp. 111
[2] Chait I , Cordial graphs : a weaker version of graceful and harmonious Ars Combin.23(1987)201-207
[3] Gallin J A, A Dynamic survey of Graph Labeling, The Electronic Journal of combinatorics Dec7(2015)No.D56
[4] Harary F, Graph Theory, Addison Wesley, Reading Mass,1972
[5] Ponraj R,Sathish Narayanan S and Kala R, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical,5(2013) ,185-196.
[6] Beaulah Bell I and Kala R, Group Difference Cordial labeling of some Ladder related Graphs,Turkish Journal of Computer and Mathematics Education,Vol. 11,No.02(2020) pp. 1184-1192
[7] Beaulah Bell I and Kala R, Group difference cordial labeling of some cycle related graphs, International Conference on Discrete Mathematics (ICDM2021-MSU) ISBN 978-93-91077-53-2 pp.75-80

