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Abstract

Let G =(VG), E(G))be a graph. Let I' be a group. For uerl, let o(u)
denotes the order of w in I'. Let f: V(G) —» I be a function. For each edge
uv assign the label |o (f(w)) — o(f(v)) |- Let v;(i) denote the number of
vertices of G having label i under f. Alsoe(1) ,e(0) respectively denote the
number of edges labeled with 1 and not with 1.Now f is called a group difference
cordial labeling if |y (i) —v(j)| <1 for every i,jel, i#jand |e(1)—
ef(0)| < 1. A graph which admits a group difference cordial labeling is called
group difference cordial graph. In this paper we fix the group I'as the
group {1,—1, i,—i} which is the group of fourth roots of unity, that is cyclic with
generators i and — i.

We prove that Quadrilateral snake QS,, , Alternate quadrilateral snake A(QS,,) and
further characterized Double quadrilateral snake D(QS, ) and Alternate double
quadrilateral snake A(D(QS,)).

Keywords: cordial labeling, difference labeling, group difference cordial labeling

1 Introduction

Graphs considered here are finite, undirected and simple. A graph labeling is an

assignment of integers to the vertices or edges or both, subject to certain conditions. Labelled

graphs serve as useful models for a broad range of applications such as : astronomy, circuit

design, communication network addressing and models for constraint programming over finite

domains.

Cahit [2] introduced the concept of cordial labeling.
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Definition 1.1. [2] Let f: V(G) — {0,1} be any function. For each edge xy assign the label
|f(x) = f(y)]. f is called a cordial labeling if the number of vertices labeled 0 and the number of
vertices labeled 1 differ by at most 1. Also the number of edges labelled 0 and the number of
edges labeled 1 differ by at most 1.

In[5] , Ponraj et al. introduced a new labeling called difference cordial labeling .

Definition 1.2. [5] Let G be a (p,q) graph .Let f : V(G) = {1,2...p} be a bijection. For each
edge, assign the label |f(u) — f(v)]| . fis called a difference cordial labeling if f is 1 —1 and
les(0) —ef (1)| =1 where er(1) and e;(0) denote the number of edges with 1 and not
labeled with 1 respectively. A graph with a difference cordial labeling is called a difference

cordial graph.
Athisayanathan et al.[1] introduced the concept of group A cordial labeling.

Definition 1.3. [1] Let A be a group. We denote the order of an element
acA by o(a).Letf:V(G) - A be a function. For each edgeuvassign the label 1 if

(o(f(u)),o(f(v))) = 1or 0 otherwise. f is called a group A Cordial labeling if |v; (@) —

vy (b) | <1 and |ef (0) — ef(1)| < 1, where v¢(x) and es(n) respectively denote the
number of vertices labeled with an element x and number of edges labeled with n (n = 0,1) A

graph which admits a group A cordial labeling is called a group A cordial graph.

2. Preliminaries

Definition 2.1.  The Quadrilateral snake QS,, is obtained from a path u,,u, ...u, by joining
u;, u;+1t0 new vertices v;, w; respectively and then joining v;and w;.

Definition 2.2. An Alternate Quadrilateral snake A(QS,,) is obtained from a path u,, u, ... u,by
joining u;,u;., (Alternatively) to new vertices v;, w; respectively and then joining v;and w;.
Definition 2.3.  The Double Quadrilateral snake D(QS,,) consists of two Quadrilateral snakes

that have a common path.
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Definition 2.4. The Alternate Double Quadrilateral snake A(D(QS,,))consists of two alternative

Quadrilateral snakes that have a common path.

3. Group Difference cordial Graphs
Definition 3.1. Let G = (V(G),E(G)) be a graph. Let I" be a group. For uel", let o(u) denote
the order of uw in I . Let f: V(G) = I' be a function .For each edge uv assign the label
lo(f(w)) —o(fv))|. Let vs(i)denote the number of vertices of G having label i
under f. Also ef (1) ,er (0) respectively denote the number of edges labeled with 1 and not
with 1. Now f is called a group difference cordial labeling if |v;(i) — v(j)| <1 for every
i,jelr,i#j and |e;(1) —es(0)| < 1. A graph which admits a group difference cordial
labeling is called group difference cordial graph .

In this paper we take the group I as the group {1, —1, i, —i} which is the group of fourth
roots of unity, that is cyclic with generators i and — i.
Theorem 3.2 .The Quadrilateral snake QS,, is a group difference cordial graph if and only if
n # 2 (mod 4).
Proof: Let G = QS,, be a quadrilateral snake of 3n-2 vertices and 4n-4 edges, f be the group
difference cordial labeling of G. Let V(G) = {uy,u, ...u,} be the vertices in the path and
{fv;,w; / 1<i<n-— 1}be the vertices joined by u;,u;,, respectively.
Assume n £ 2 (mod 4), To prove G is a group difference cordial graph
Case (i):n =0 (mod 4),Let n =4k, k> 1 and definef: V(G) - {1,—1,i,—i} as

follows
fuzi—1) ={ 11 i]fc ﬁ-issl;ﬂk
fa) = { 5 idasisan
fai-1) ={ :3 Z: ilciisslzfsmc
fva) ={ 11 i; ﬁifskigkq,for all k=2
fwaizq) ={ 11 ?fc iilfs]f <2k
flwy) ={ :il i}ff iiilsskisZk—l,for all k=2
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Clearly V¢ (1) = Vp(—=1) = 3k, V(i) = Vp(—i) = 3k — 1 also e(1) = e;(0) = 8k — 2.
Therefore, £ is a group difference cordial labeling of G.
Case (i):n=1(mod4),Letn =4k + 1,k > 1.
_ (1 if 1sisk+1
fugiq) =4 if k+2<i<2k+1
_ (—1if 1sisk
flu) ={; if k+1si<2k
_ ¢ -1 if1sisk
faia) =1 _; if k+1<i<2k
_ ¢ lif1sisk
fa) ={ | if kr1siczi—1
_ (1 if1<isk
fwyi1) =1{; if k+1 <i<2k
_ ¢ -1if1<isk
flwy) ={ _; if k+1<i<2k—1
Clearly Vp(1) =3k + 1,V(—1) = V(i) = V;(—i) = 3k also ef(1) = 8k = e(0). Therefore,
f is a group difference cordial labeling of G.
Case (iii): n =3 (mod 4),Let n =4k + 3,k > 1.
_ (1 if 1sis<k+1
fuzio1) =4 if k+2<i<2k+2

_ —1if 1sisk+1
fluz) ={2; if k+2<i<2k+1

_ ¢ -1 if1sis<k+1
fai) =1{ if k+2<i <2k+1

_ ¢ 1if 1s<isk
fa) =1{; if k+1<i<2k+1

_ 1 ifl1sisk+1
fwaio1) ={ if k+2 <i <2k+1

flwy) ={ :11 3: iiilsskisuﬂ
Clearly Vp(1) = Vp(—1) = V¢(i) = 3k + 2, Vp(—i) = 3k + 1. Also ef(1) = 8k + 4 = e£(0)
Therefore, f is a group difference cordial labeling of G.
Conversly, Assume G is a group difference cordial graph and f is a group difference cordial
labeling of G.
Claimn £ 2 (mod 4).Suppose n = 2 (mod 4), Letn = 4k + 2,k > 1.
So V(1) = V(1) = V(i) = V¢(—i) = 3k + 1 for any group difference cordial labeling f
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To get an edge e = uv with label 1, we need eitherf (u) = 1, f(v) = —1 or vice versa. The
maximum number of vertices labeled with 1 and -1 alternatively in the path are 2k + 1.
Therefore 2k edges have labeling as 1.Also for the set of vertices{v; /1 <i<n-—-1},2k+1
vertices are labeled as 1 and -1 alternatively and for the set of vertices {w; /< i <n —1},2k
vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k + 1 vertices are labeled
as 1 and -1 and thus we get 4k + 1 edges labeled as 1.Also by the definition of QS,,the edges
connecting v; and w;, we get 2k edges labeling with 1 .Thus es(1) = 8k + 1 and ef(0) =
8k + 3, which is contradiction.

Theorem 3.3. The double quadrilateral snake D (QS,,) is a group difference cordial graph if
and only if n # 0 (mod 4).
Proof: Let G = D(QS,,) be a double quadrilateral snake obtained by a path u,, u, ... u, by joining
u; and u; ., to new vertices v;, x; and w;, y; respectively and adding edges v;, w; and x;, y;
where 1 <i<n—1. Thus V(G) has 5n — 4 vertices and E(G) has 7n — 7 edges, f be the
group difference cordial labeling of G. Assume n # 0 (mod 4), To prove G is a group difference
cordial graph

Case (i)in=1(mod 4),Let n=4k+1,k>1 and definef: V(G) - {1,—1,i,—i} as

follows
fluzia) = {§ Fiiosi eonsn
fluz) ={ :11 i; iiifskiﬂk
f(aica) = fxi-1) ={ :il Zz iilf; <2k
f@2) = fG) ={ { i irevea
fFWaic) = Faim1) = { § i e

fwa) = F ) = { 7§ kirscean
Clearly Vp(1) = 5k + 1,Vs(—1) = V(i) = V¢ (—i) = 5k also e;(1) = ef(0) = 14k.
Therefore, f is a group difference cordial labeling of G.
Case (ii): n = 2 (mod 4), Letn = 4k + 2,k > 1.
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_ (1 if 1sisk+1
fugiq) =4 if k+2<i<2k+1
_ (—1if 1sisk+1
fluz) ={; if k+2s<i<2k+1
_ ¢ -1 if1sisk+1
fvais) ={ if k+2 <i <2k+1

_ ¢ 1if1s<isk
fva) =1 if k+1<i<2k

_ 1 iflsisk+1
fwais) = if k+2 <i <2k+1

fwy) ={ :11 ?]: iiifskismc
f(xi-1) = {:11 i; llciss’;szml
fOo) ={; Zﬂ sk
fai-1) =1 11 ll]]: iilfslf <2k+1
fa) ={ :il 3: IlciilsskiSZk
Clearly Vp(1) = 5k + 2 = Vp(=1),V;(i) = V¢(—i) = 5k + 1 also e(1) = 14k + 4 and

er(0) = 14k + 3. Therefore, f is a group difference cordial labeling of G.
Case (iii): n =3 (mod 4),Let n =4k + 3,k > 1.

fuzi—q) = {;'1 ii}]: lile if!zlm
fa) = T} i} isasicas
fWaim1) = fxgi-1) ={ :il 3: ii;ssl:-;k+1
fai) = fxz) ={ 11 ?]‘; iiilsskiszk+1

_ _ 1 if1sisk+1
fwyi1) = f(Vaim1) = 1{ if k+2 <i <2k+1

_ _ (¢ —1if1sisk
fwy) = f(r2) =1{ _; if k+1<i<2k+1
Conversly, Assume G is a group difference cordial graph and f is a group difference cordial

labeling of G.
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Claim n # 0 (mod 4).Suppose n = 0(mod 4),Letn = 4k, k > 1.

So Ve(1) = Ve (1) = Vp(i) = V(—i) = 5k — 1 for any group difference cordial labeling f

To get an edge e = uv with label 1,we need eitherf(u) = 1, f(v) = —1 or vice versa. The

maximum number of vertices labeled with 1 and -1 alternatively in the path are 2k.

Thus we get 2k — 1 edges of labeling 1.Also for the set of vertices{x;,y; /1 <i<n-—1},2k—1

vertices are labeled as 1 and -1 alternatively and for the set of vertices {v;,w; /< i <n —1},2k

vertices are labeled as 1 and -1 alternatively. Therefore, totally we get 4k — 2 vertices for

{x;,¥; /1 < i <n—1},4k vertices for {v;,w; /< i <n — 1}are labeled as 1 and -1 and thus we

get 8k — 3 edges labeled as 1.Also by the definition of D(QS,,) the edges connecting v; and w;;
x;andy; we get 2k and 2k —1 edges labeling with 1 respectively. Thuse,(1) = 14k —

5 and ef(0) = 14k — 2 which is a contradiction .

Theorem 3.4. The alternate quadrilateral snake A(QS,,) is a group difference cordial graph for

all "n" if it starts with an edge and if n # 2(mod 4) if it starts with cycle.

Proof: Let G = A(QS,,) be the alternate quadrilateral snake obtained by a path uy,u, ...u, by

joining  u; and u;,, (alternatively) with new vertices vjandwj,1 <i<nand1<j < [%J.
(quadrilateral starts from u;) 1 <j < 2 — 1 (quadrilateral starts from u,).Note that V(G) = 2n

and E(G) = 5711 — 1 if nis even starts from u, ; V(G) = 2n—2 and E(G) = 57" — 4 if nis even

5n-5

starts from u,; V(G) = 2n—1 and E(G) = >

if nis odd

To prove G is a group difference cordial graph
Case (I): Alternate quadrilateral snake A(QS,,) starts from u,
Sub case (i)n =0 (mod 4),Let n =4k, k >1 and definef: V(G) - {1,—1,i,—i} as

_ 1 if1sisk
follows f(uzi-1) ={ | if k1 2i<2k

_ (-1 if 1s<isk
fuz) ={ —i if k+1<i<2k
_ (1 if1sisk
fw) = {; if k+1<i<2k—1,for all k=2

¢ -1 if 1sisk
fw) ={_ if k+1<i<2k—1 for all k=2
Clearly Vp(1) = Vp(—=1) = 2k, V; (i) = Ve (—i) = 2k — 1 also e;(1) = ef(0) = 5k — 2.

Therefore, f is a group difference cordial labeling of G.
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Subcase (ii):n =1 (mod 4), Letn = 4k + 1,k > 1.

_ (1 if 1sisk+1
fugiq) =4 if k+2<i<2k+1

_-1if 1sisk
fuz) = {; if k+1si<2k
_ 1if1sisk
fw) ={; if k+1<i<2k
~1 if 1sisk

fw) ={ —i if k+1<i<2k

Clearly V¢(1) = 2k + 1,V,(—=1) = Vp(i) = V(—i) = 2k also ef(1) = 5k = ef(0). Therefore,

f is a group difference cordial labeling of G.

Subcase (iii): n = 2 (mod 4),Let n =4k + 2,k > 1.

_ (1 if 1sisk+1
fuziz) ={; if k+2si<2k+1

_ —1if 1sisk+1
fuy) = {_i if k+2<i<2k+1

_ (1 if1sisk
fi) ={; if k+1<i<2k

_ ¢ —1if1sisk
fw) ={ if k+1<i<2k

Clearly V;(1) = Vp(—=1) = 2k + 1, V;(i) = V;(—i) = 2k. Also ef(1) = 5k + 1,e7(0) = 5k.

Therefore, f is a group difference cordial labeling of G.

Subcase (iv): n =3 (mod 4),Let n =4k + 3,k > 1.

_ 1 if 1<isk+1
fuzi—) ={; if k+2<i<2k+2

_ (1 if 1sisk+1
fuz) = {; if k+2<is2k+1

_ 1 if1sisk+1
fw)=1{; if k+2<i<2k+1

_ ¢ —1if1=isk
fw) ={ if k+1<i<2k+1

Clearly V;(1) = 2k + 2,V(—1) = V;(i) = V;(—i) = 2k + 1. Also e;(1) = 5k + 2,e,(0) =

5k + 3.Therefore, f is a group difference cordial labeling of G.

Case (II): Alternate quadrilateral snake A(QS,,) starts from u,
Sub case (i) n = 0 (mod 4),Let n = 4k, k > 1and define f : V(G) -» {1,—1,i,—i}as

1979
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_ 1 ifisisk
follows f(uzi—1) ={ ; if k+1<i<2k

_ ¢ -1if1sisk
fluz) ={ _; if k+1<i<2k
_ -1 ifisisk
fw)={_ if k+1<i<2
_ ¢ 1if1sisk
fw) ={ i if k+1<i<2k
Clearly Ve (1) = Vy(=1) = Vy(i) = Vp (i) = 2k also e;(1) = 5k — 1, e(0) = 5k.

Therefore, f is a group difference cordial labeling of G.
Subcase (ii):n=1(mod 4),Letn =4k + 1,k > 1.

_ (1 if 1sis<k+1
fQai1) ={; if k42 <i<2k+1
_ (-1if 1sisk
fluz) ={; if k+1si<2k
_ ¢ —1if1s<isk
fw) ={_ if k+1<i<2k
_ ¢ 1lif1sisk
fw) =, if k+1<i<2k
Clearly Vr(1) = 2k + 1,Vp(=1) = V¢ (i) = Vy(—i) = 2k also ef(1) = 5k = ef(0). Therefore,
f is a group difference cordial labeling of G.
Subcase (iii): n = 3 (mod 4),Let n =4k + 3,k > 1.

_ 1 if 1sisk+1
fuzi—) ={; if k+2<i<2k+2
_ (—1if 1sisk
fuz) = {; if k+1<is2k+1

_ ¢ -1 if1sisk+1
fw)=1{_ if k+2 <i <2k+1

_( 1if1sisk+1
fw) ={ i if k+2<i<2k+1

Clearly V¢(1) = 2k + 2,V;(—1) = V;(i) = Vp(—i) = 2k + 1. Also es(1) = 5k + 2,¢(0) =
5k + 3.Therefore, f is a group difference cordial labeling of G.
Remark:

A(QS,) is not a group difference cordial graph for n % 2(mod 4).Because to satisfy the
vertex condition for group difference cordial labeling it is essential to assign V¢ (1) = Ve(—1) =

Ve(i) = Ve(—i) = 2k + 1 for 8k + 4 vertices.The vertices with labeling 1 and -1 gives rise to
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the edges of labeling 1 as 5k+land the vertices with other labeling gives rise to the edges of

labeling 0 as Sk+3,that is es(1) = 5k +1,e,(0) =5k +3 Therefore,lef(O) — ef(l) > 2.

Theorem 3.5. The alternate double quadrilateral snake A(D(QS,,)) is a group difference cordial
graph for all "n"

Proof: Let G = A(D(QS,,)) be the alternate quadrilateral snake obtained by a path u;, u, ... u, by

joining u; and u;, (alternatively) to get four new vertices v; ,w;and x; , y; , by the edges
U Vj, Uipq W, V5, W), Ui Xj, Uiy Y and xj,y; wherel <i<nand1<j< [%J.
(quadrilateral starts fromu;) 1 <j < % — 1 (quadrilateral starts from u,).Note that V(G) = 3n

and E(G) = 4n — 1 ifniseven and starts fromu, ; V(G) = 3n—4 and E(G) =4n—7 ifnis

even starts from u,; V(G) = 3n—2 and E(G) = 4n — 4 ifnis odd

To prove G is a group difference cordial graph

Case (I): Alternate double quadrilateral snake A(D(QS,)) starts from u,

Sub case (i)n =0 (mod 4),Let n=4k,k >1 and definef: V(G) - {1,—1,i,—i} as
1 if1sisk

follows f(uzi—1) ={ ; jfks1<i<2k
fuad = { 5 i iiatisan
Fw) = fOa) ={ 3 Fiiis
fw) =f) ={ 11 llj; iiilsskiﬂk
Clearly V¢ (1) = Vp(—1) = Vp(i) = Vp(—i) = 3k also ef(1) = 8k — 1, ef(0) = 8k.

Therefore, f is a group difference cordial labeling of G.
Subcase (ii):n=1(mod 4), Letn =4k + 1,k > 1.

_ 1 if 1sisk+1
fuzize) = {; if k+2<i<2k+1
_ —1if 1sis<k
fluz) ={; if k+1si<2k
—1 if 1<i<k
f) =Fx)={_ i; k+1<i<2k

3 <i<k
fw) =f) ={ 11 Il',;: 11<+l1si52k
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Clearly V¢(1) = 3k + 1,V;(—=1) = Vp(i) = Vy(—i) = 3k also es(1) = 8k = ef(0). Therefore,
f is a group difference cordial labeling of G.
Subcase (iii): n = 2 (mod 4),Let n =4k + 2,k > 1.

1 if 1sisk+1
fQai1) ={; if k4z<i<2k+1

_ (—1if 1sisk+1
flu) =1{; if k+2s<i<2k+1

_ ¢ -1 if1sisk+1
fw)={_ if k+2 <i <2k+1

_ ¢ 1if1sisk+1
fw) = if k+2<i<2k+1

_ ¢ -1 if1<isk
fOq)={_; if k+1<i<2k+1
_ ¢ 1if1sisk
fOo=1{; if k+1<i<2k+1

8k + 3.Therefore, f is a group difference cordial labeling of G.
Subcase (iv): n =3 (mod 4),Let n =4k + 3,k > 1.

1 if 1sisk+1
fQai1) ={i if k2 <i<2k+2

_ (=1 if 1sisk+1
fuz) = {; if k+2<is2k+1

_ ¢ -1 if1sis<k+1
fwi)={_; if k+2<i<2k+1

_ ¢ 1if1sisk+1
fw) =, if k+2<i<2k+1

_ ¢ -1 if1gisk

f(xl) - { —i if k+1<i<2k+1

_ ¢ 1if1sisk

fOd =1{; if k+1<is2k+1
Therefore, f is a group difference cordial labeling of G.
Case (I): Alternate double quadrilateral snake A(D(QS,,)) starts from u,
Sub case (i)n = 0 (mod 4),Let n = 4k, k > 1and define f : V(G) -» {1,—1,i,—i}as
follows ,Fix the labeling of the vertex f(u,) = —i

¢ -1 if1<i<k forall k=2
fuzipr) ={

—i if k+1<is<2kfor all k=2
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_ . 1if1sisk
fQuai) ={ | if kr1cicon

-1 if1sisk
f)={_ if k+1<i <2—-1 for all k=2

_ 1if 1sisk
fw) ={; if k+1sis2k—1for all k=2

_ ¢ -1 if1<si<k-1for all k=2
fe)={_; if k<i<2k-1

__ ¢ lif1<isk—-1forall k=2
f)=1{; if k<i<2k—1

Clearly Vs (1) = Vp(—=1) = V¢ (i) = Vp(—i) = 3k — 1 also ef(1) = 8k — 4, e;(0) = 8k — 3.
Therefore, f is a group difference cordial labeling of G.
Subcase (ii): n = 1 (mod 4), Letn = 4k + 1,k > 1 is same as subcase(ii) in case(l)

Subcase (iii): n = 2 (mod 4),Let n =4k + 2,k > 1.

_ (1 if 1sis<k+1
f(uzioe) ={; if k+2si<2k+2

_ (—1if 1sisk+1
fuz) = {; if k+2<i<2k+1

_ _ 1 if1sisk
f;)=f(x;)={; lifk+llsi52k

—1 if 1<i<k

fw) =1f)={ _; if k+1<i<2k
Clearly V(1) = V;(—=1) = 3k + 1,V;(i) = V;(—i) = 3k. Also e;(1) = 8k + 1,e,(0) = 8k.
Therefore, f is a group difference cordial labeling of G.

Subcase (iv): n = 3 (mod 4), Letn = 4k + 3,k > 1 is same as subcase(iv) in case(i).

Conclusion

In this we have found group difference cordial labeling of different types of graphs such as
Quadrilateral snake @S, ,Double quadrilateral snake D(QS, ), Alternate quadrilateral snake
A(QS,,) ,Alternate double quadrilateral snake A(D(QS,,)). Investigating group difference cordial

labeling in other classes of graphs for future work.
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