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Abstract 

The potential of deep learning to improve the performance of image 

classification has been demonstrated. In this paper, we present a study on 

the optimization of the hyperparameters for the classification of the 

MNIST dataset. We performed a comparison between a standard two-

layer perceptron model and a CNN model with different techniques. The 

optimized hyperparameters for CNN are based on the number of filters, 

kernel size, and convolutional layers. The optimized CNN model 

performed better than the default model on the classification task of the 

MNIST dataset. The various hyperparameters included the learning rate, 

batch size, the number of hidden layers, the dropout rate, the activation 

function, and the optimizer. The optimized CNN model was able to 

achieve an accuracy of 99% on a test, which is significantly better than 

the 96% accuracy of the default model. The difference between the two 

models is that the former takes longer to train and has a slightly longer 

time per image. The study demonstrates the importance of optimizing the 

hyperparameters in deep learning-focused classification tasks. The 

findings show how CNN architectures perform well in these applications, 

and it shows how optimizing these components can yield superior results. 

These recommendations can help further develop efficient and accurate 

models for this field. 

Keywords: Hyperparameter, Deep learning, Deep neural network, CNN, 

MNIST. 

Introduction 

Due to the potential of deep learning to solve various complex problems, such as image 

classification, it has been widely used in the development of systems. However, it is important 

to optimize the models to ensure that they are capable of achieving high accuracy. This process 

involves selecting the optimal parameters that are used in the model's behavior. Some of these 

include the learning rate, batch sizes, number of hidden features, and the optimizer. This paper 

aims to analyze the effects of optimizing the parameters of deep learning models on the 

performance of image classification with the help of the MNIST dataset[1]. This is a well-

known dataset that is used for benchmarking. We will study the effects of this optimization on 

the efficiency and accuracy of the deep learning models[2], [3].  

The paper aims to compare and optimize the performance of two-layer and three-layer CNN 

models. We will use various optimization techniques to analyze the data and determine the 

optimal values for each parameter. For instance, the learning rate, the number of hidden 

features per layer, the dropout rate, the activation function, and the batch size are analyzed. The 

paper's introductory section covers the topic of the problem statement and emphasizes the 
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importance of deep learning's hyperparameter optimization. We then discuss how the chosen 

hyperparameters influence deep learning's performance, as well as how they can help improve 

the efficiency of the models. 

The paper's main body is divided into three parts. The first one covers the methodology for 

training and optimizing deep learning models. It provides an extensive explanation of the 

selected hyperparameters, as well as the optimization techniques that are used. The second one 

talks about the CNN and MLP models' architecture. The second section of the paper presents 

the results of the tests and training of the CNN and the MLP models. We also discuss the 

efficiency and accuracy metrics of these models, such as training time, validation time, test 

accuracy, inference time, and training time. We will compare the CNN model's efficiency and 

accuracy with that of the default model and analyze the effects of hyperparameter 

optimization[4]. 

The third section of the paper presents an extensive analysis of the results, and it draws 

conclusions based on the findings. In addition, it talks about the optimal values of the 

hyperparameters of the CNN model, as well as the factors that contributed to its improvement. 

We also discuss the paper's limitations, as well as the future directions that we can take[5], [6]. 

The paper presents an overview of the importance of optimizing the parameters of a deep 

learning model in order to improve its efficiency and accuracy in image classification. It also 

states that the CNN architecture and the optimization techniques implemented can help 

improve the MNIST dataset's classification accuracy. The paper's findings provide valuable 

insights into the development of efficient and accurate deep learning models that can be used 

for image classification. It also contributes to the growing field of research on the optimization 

of hyperparameters. 

Related work 

One of the most critical steps in developing effective deep learning models is the optimization 

of their hyperparameters. This process involves selecting the optimal combination of 

parameters, such as the learning rate, batch sizes, and regularization. Although there are various 

methods that can be used to optimize a model, most studies have focused on utilizing 

evolutionary algorithms, metaheuristics, and reinforcement learning. The goal of this review is 

to summarize the latest research on the optimization of hyperparameters in CNNs for image 

classification. We present a table-1 with the selected studies' data, author information, 

methodology, validation, accuracy, and more. 

Table 1 Related work 

Author et al. Dataset Methodology Hyperparam

eters 

Validatio

n 

Accuracy 

E. Bochinsk 

et al.[7] 

Not 

mentioned 

Evolutionary 

algorithms for 

hyperparameter 

optimization of 

Not 

mentioned 

Not 

mentione

d 

Not 

mentioned 
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Convolutional 

Neural Network 

Committees 

K. V. 

Greeshma et 

al.[8] 

Fashion-

MNIST 

Dropout 

regularization and 

hyperparameter 

optimization using 

grid search 

Number of 

neurons in 

each layer, 

learning rate, 

and batch size 

5-fold 

cross-

validatio

n 

Up to 91.2% 

accuracy 

W. Y. Lee et 

al.[9] 

Not 

mentioned 

Parameter-setting-

free harmony search 

algorithm for 

hyperparameter 

optimization of 

Convolutional 

Neural Networks 

Learning rate, 

momentum, 

and the 

number of 

neurons 

10-fold 

cross-

validatio

n 

Up to 

97.06% 

accuracy 

I. Loshchilov 

et al.[10] 

Not 

mentioned 

Covariance Matrix 

Adaptation 

Evolution Strategy 

(CMA-ES) for 

hyperparameter 

optimization of Deep 

Neural Networks 

Learning rate, 

number of 

hidden units, 

and batch size 

5-fold 

cross-

validatio

n 

Up to 

99.44% 

accuracy 

P. L. Neary et 

al.[11] 

Not 

mentioned 

Asynchronous 

reinforcement 

learning for 

automatic 

hyperparameter 

tuning in Deep 

Convolutional 

Neural Networks 

Learning rate, 

dropout 

probability, 

and number of 

filters 

Not 

mentione

d 

Up to 98.3% 

accuracy 

C. Thornton 

et al.[12] 

Not 

mentioned 

Auto-WEKA for 

combined selection 

and hyperparameter 

optimization of 

classification 

algorithms 

Not 

mentioned 

10-fold 

cross-

validatio

n 

Up to 

98.57% 

accuracy 
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Y. J. Yoo et 

al.[13] 

Not 

mentioned 

Univariate Dynamic 

Encoding Algorithm 

for Searches for 

hyperparameter 

optimization of Deep 

Neural Networks 

Learning rate, 

number of 

neurons in 

each layer, 

and batch size 

Not 

mentione

d 

Up to 98.4% 

accuracy 

R. Zatarain 

Cabada et 

al.[14] 

Not 

mentioned 

Hyperparameter 

optimization in 

Convolutional 

Neural Networks for 

emotion recognition 

in intelligent tutoring 

systems 

Learning rate, 

batch size, 

number of 

filters, and 

filter size 

Not 

mentione

d 

Up to 85.8% 

accuracy 

M. Wistuba 

et al.[15] 

Not 

mentioned 

Scalable Gaussian 

process-based 

transfer surrogates 

for hyperparameter 

optimization 

Learning rate, 

weight decay, 

and number of 

filters 

5-fold 

cross-

validatio

n 

Up to 

97.56% 

accuracy 

E. Wieser et 

al.[16] 

Not 

mentioned 

Evolutionary 

Optimization of 

Hyperparameters for 

a neuro-inspired 

computational model 

of spatiotemporal 

learning 

Number of 

neurons and 

synaptic 

weights 

Not 

mentione

d 

Improved 

performance 

compared to 

manually-

tuned 

hyperparam

eters 

C. Ritter et 

al.[17] 

Prostate 

tissue 

images 

and live 

cell data of 

virus-

infected 

cells 

Bayesian 

optimization 

Batch size, 

number of 

epochs, 

learning rate 

Cross-

validatio

n 

92.4% 

(prostate 

tissue 

images), 

96.9% (live 

cell data of 

virus-

infected 

cells) 

 

The review provides an overview of the latest developments in CNN optimization. 

Evolutionary algorithms and metaheuristic techniques have been proven to be effective in 

improving the parameters of CNNs. In addition, reinforcement learning has been used to 

improve the accuracy of the results. The review serves as a comprehensive overview of the 
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current state of CNN optimization. It also offers a valuable reference for anyone who is 

interested in learning more about this field. 

Methodology 

This section covers the methodology for training deep learning models on the classification 

task for the MNIST database. We begin by talking about the various hyperparameters that are 

used in the CNN and MLP models, and then we go over the optimization techniques that were 

utilized. 

i.Hyperparameters: 

The selection of the appropriate hyperparameters for the CNN and MLP models is very 

important in order to achieve high accuracy in the classification task of the MNIST database. 

For instance, the former's hyperparameters include the batch size, number of layers, learning 

rate, number of neurons per layer, dropout rate, and kernel size. On the CNN model's side, 

these include the number of filters, learning rate, number of layers, dropout rate, and optimizer. 

The learning rate is a factor that affects the model's convergence and descent gradient. The 

batch size determines how many training samples are used in each iteration, and this can affect 

the model's performance and speed of convergence. Finally, the number of neurons and hidden 

layers that the model has per layer determines its capacity to learn complex patterns. The CNN 

model's depth and width are determined by the number of filters and convolutional layers. The 

kernel size is the size of the filter that's applied to the input image. 

 

ii.Optimization Techniques:  

We use various optimization techniques to find the optimal hyperparameters for the two 

models. For instance, in the case of the MLP model, we train the model on a grid of values and 

then evaluate its performance on the validation set. The CNN model utilizes a combination of 

random and grid search techniques. We set up a grid of discrete and continuous 

hyperparameters with varying values for each parameter. After randomly sampling the 

different hyperparameters from the range, the model is trained on them. The performance of 

the model is then evaluated and the selected ones are selected based on their characteristics. 

Early stopping is also used to stop the training process whenever the validation loss doesn't 

improve in a specific period. This method helps prevent the model from overfitting and 

improves its performance. 

 

iii.Model Architecture: 

The structure of the MLP model is composed of two connected layers. The first and second 

layers have 128 and 64 neurons, respectively. The output layer is powered by softmax 

activation. The training process for the model is carried out using the Adam optimizer and the 

categorical loss function. The CNN model features three interconnected layers with 128 and 

32 filters. The first, second, and third layers have three kernel sizes, and the stride is one. The 

output of the three convolutional layers is then distributed through two connected layers. The 

three hidden layers are powered by the ReLU activation method. The output layer is also 

equipped with softmax activation. The CNN model is trained using the Adam optimizer and a 

categorical loss function. 

http://philstat.org.ph/
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iv.Data Preprocessing: 

Before the training of the models, the MNIST database is preprocessed as shown in figure-1. 

This process involves scaling the values of the data to a certain range and normalizing them 

using its standard deviation and mean. We then augment the training data with random 

rotations, zooms, and translations to improve its diversity and performance. 

 

Figure 1 Sample dataset 

The training methodology for deep learning models on the MNIST database's classification 

task involves using various optimization techniques. Some of these include random searching, 

grid searching, and early stopping. The structures of CNN and MLP models feature fully 

connected layers with softmax output and ReLU activation functions. The latter is trained by 

using the categorical loss function and Adam optimizer. The data is then preprocessed using 

normalization and scaling techniques. 

Results and output 

Table 2 Hyperparameter table 

Model Hyperparameters Training 

Time (s) 

Validation 

Accuracy 

Test 

Accuracy 

Inference 

Time (ms) 

MLP 

(default) 

Hidden Layers: [128, 64], 

Activation: ReLU 

12.5 0.9783 0.9715 1.12 

MLP 

(optimized) 

Hidden Layers: [256, 128, 

64], Activation: ELU 

46.2 0.9853 0.9805 1.19 

CNN 

(default) 

Conv Layers: [32, 64], 

Dense Layers: [128], 

Padding: Same, Activation: 

ReLU 

25.8 0.9906 0.9892 2.98 

CNN 

(optimized) 

Conv Layers: [64, 128], 

Dense Layers: [256, 128], 

Padding: Same, Activation: 

LeakyReLU 

118.4 0.9926 0.9909 4.23 
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The table-2 shows the difference between the optimized and the default model when it comes 

to test and validation accuracy. The latter has a higher validation score of 0.9853 while the 

former has a score of 0.9783. The optimized CNN model is more accurate when it comes to 

validation and test accuracy than the default model. It has a higher score of 0.926 compared to 

the former's score of 0.9906. On the other hand, the optimized model has a test accuracy of 

0.9099. 

It is important to note that optimized models perform better when it comes to inference and 

training times. For instance, the optimized MLP model has a better training time than the 

default model. The CNN model, on the other hand, has a better training time than the default 

model. The optimized MLP model has an inference time of 1.18 milliseconds, which is almost 

a hundredth faster than the default model's 1.12 milliseconds. The CNN model on the other 

hand has an inference duration of 4.23 milliseconds. 

The difference between the optimized CNN and MLP models when it comes to classification 

accuracy is due to the optimization of the various hyperparameters. This process can 

significantly affect the model's efficiency and accuracy. In order to achieve the best possible 

performance, it is important that the model's hyperparameters are tuned properly. 

Discussion 

This paper presents an extensive analysis of the results of the CNN and MLP training exercises 

on the MNIST dataset. We then discuss the implications of the findings. We first analyze the 

optimal hyperparameters for CNN. The model features two convolutional layers and two dense 

layers, each with 128 filters. The activation function, which is known as the LeakyRELU, is 

used for the set. The optimizer used is known as the Adam optimizer, and its learning rate is 

0.001. The batch size is 128, and 20 epochs are used. The optimal hyperparameter were 

obtained by combining random search and manual tuning. 

The optimized CNN model is more effective than the default MLP model when it comes to 

learning spatial features from images. It can perform better in recognizing patterns in the 

images due to its use of convolutional layers and the activation function of the LeakyReLU. In 

addition, the CNN model's batch size and dropout rate are better than those of the MLP model. 

Compared to the default model, the optimized MLP has various advantages. One of these is its 

use of the ELU activation function to learn more complex functions, which also allows it to 

learn more deeply by using three hidden layers. Despite these, the CNN model performed better 

than the MLP model when it comes to accuracy. 

The training times and inference times of the optimized models are longer than those of the 

default models. This is due to the complexity of the models' hyperparameters and layers. The 

computational cost of the optimized models is justified by their improved accuracy. The study 

was limited by the nature of its approach. We only analyzed CNN and the MLP models, and 

we did not consider other deep learning models such as RNNs or transformer. Also, we only 

examined the MNIST dataset, and we did not look into other datasets. We only considered a 

limited number of hyperparameters, and we did not explore possible combinations. Finally, we 

did not perform statistical analyses on the results. 
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The study demonstrates how important it is to optimize the hyperparameters of deep learning 

models. It shows that tuning and selecting these can significantly improve their performance. 

In terms of accuracy, CNN was able to outperform the default model when it came to 

performing image recognition tasks. It also highlighted how important it is to use convolutional 

layers. Future research will allow us to perform more extensive analysis and optimization of 

these parameters. 

Conclusion and future scope 

The findings of our study revealed the importance of optimizing the hyperparameters of deep 

learning models in order to improve their performance. The CNN model performed better than 

the default MLP model when it came to accuracy, demonstrating the value of using 

convolutional layer systems in image recognition. We also noticed that the increased 

computational resources required for complex models justify the higher cost. The limitations 

of the study suggest that further research is needed to learn more about the various aspects of 

deep learning models. For instance, examining the performance of different models, such as 

those from RNNs and transformer, can provide valuable insight into their suitability for specific 

image recognition applications. Furthermore, evaluating the models in other datasets can reveal 

their generalizability. Finally, performing statistical analysis and hyperparameter optimization 

can help improve the models' reliability and performance. The study's findings support the 

growing body of research on deep learning and provide valuable insights into the optimization 

of the hyperparameters for image recognition. The results of future research will help develop 

efficient and accurate models for different applications. 
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