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Abstract 

Background and aim. Biases are largely diffused in medical studies. 

Methods for remedying biases in medical literature would be advisable. 

Here we propose a simple tool for correcting some biased data by 

calculating the proportion of non-random biases embedded in the variance. 

Method. Starting from a variable in a given series, the proportion of 

variability due to fractal behavior and the proportion of variability due to 

stochastic distribution can be calculated. Thus, the ratio among 

proportions can provide the amount of variance due to non-random biases. 

This proportion is used for re-calculating standard errors and confidence 

intervals. The method is applied to 2018 rates of in-hospital births in the 

Umbria region of Italy and to a set of effect sizes re-calculated from 

already published systematic reviews and meta-analyses on intrahepatic 

cholestasis of pregnancy. Those topics have been chosen because they 

have been already acknowledged as heterogeneous. Results. Proofs 

demonstrated that corrected standard errors work better than usual 

standard errors in heterogeneous data syntheses. Conclusion. By 

combining fractal behavior and stochastic distribution characteristics to 

data sets, some non-random biases can be corrected. 
 

Keywords: Bias, fractal, confidence intervals, Cesarean section, birth, 

intrahepatic cholestasis of pregnancy. 

 

Introduction 
Evidence-based medicine is littered with biases [1]. In an instructive article, Delgado-Rodríguez 

and Llorca [1] illustrated how many biases can be observed in medical studies, leading readers to 

perceive that evidence-based medicine is rather a bias-based medicine. Moreover, in the medical 

literature, concerns have been reported for interpreting biased studies and how to correct biases [2-

7]. 

Lots of biases in medical studies would fall in the chaotic behavior of the natural processes, 

thereby describing a Gauss‟ bell of stochastic events in a given population. Therefore, in two 

samples of a given population, the bell shape would describe the behavior of a biased phenomenon 

and would allow comparisons with another biased phenomenon if same biases (qualitatively and 

quantitatively) have occurred. Ideally, it would be advisable to improve quality of data and 

methodologies of studies in medical literature. However, from a practical point of view, the main 

concern of the medical literature is to know how much and how many biases have occurred in 

studies on a single event. Therefore, in the vast medical literature, one would assume that the 
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diffusion of biases approximates best a stochastic shape if a highest number of articles assess the 

same phenomenon in the same way (the key concept of meta-analyses). Unfortunately, scientific 

journals reject studies assessing already published phenomena, as studies with the same 

characteristics of already published articles lack originality. 

In the current article, we propose a simple calculation for assessing and remedying some biases of 

data sets. Such analysis can be used to better interpret the poor data spread of medical literature. 
 

Simulation 
Let set a random sequence of 12 numbers (OpenEpi 3.01, 

wwww.openepi.com/Random/Random.htm, last accessed 11-Jan-2022), from 3 to 13. This set of 

numbers can be imagined as an outcome measure in a medical study, expressed as integer. Random 

numbers are listed as Set A and are reported in Table 1. Set B to E (Table 1) are transformations of 

Set A as following: 

Set B: to Set A numbers, it has been added or subtracted non-randomly a random sequence of 

numbers from 1 to 3 (OpenEpi 3.01, wwww.openepi.com/Random/Random.htm, last accessed 11-

Jan-2022). 

Set C: to Set A numbers, it has been added or subtracted randomly same random sequence of 

numbers added in Set B. 

Set D: to Set A numbers, it has been added or subtracted non-randomly a non-random sequence 

of numbers from 1 to 3. 

Set E: to Set A numbers, it has been added or subtracted randomly same non-random sequence of 

numbers added in Set D. 

Finally, set F is a sequence of non-random numbers from 3 to 13. 

 

Table 1. Data Sets for simulation. 

 Set A Set B Set C Set D Set E Set F 
1

st
 

2
nd

 

3
rd

 

4
th

 

5
th

 

6
th

 

7
th

 

8
th

 

9
th

 

10
th

 

11
th

 

12
th

 

5 

10 

6 

6 

9 

10 

10 

5 

13 

4 

12 

5 

3 

13 

4 

7 

11 

12 

11 

8 

12 

6 

13 

6 

7 

13 

8 

7 

11 

8 

9 

8 

15 

2 

11 

6 

3 

12 

5 

7 

12 

13 

13 

6 

12 

7 

15 

7 

8 

12 

7 

7 

12 

7 

7 

6 

14 

1 

9 

7 

13 

3 

5 

5 

7 

9 

11 

12 

13 

13 

4 

6 

Mean 

Uncorrected standard error 

Corrected standard error 

Percentage of correction 

7.92 

0.892 

0.892 

0 

8.83 

1.036 

1.036 

0 

8.75 

0.986 

0.986 

0 

9.33 

1.124 

0.969 

13.8%↓ 

8.08 

0.981 

0.824 

18.0%↓ 

8.42 

1.111 

0.956 

4.0%↓ 

-Set A: random data from 3 to 13. 

-Set B: to Set A, added or subtracted non-randomly a random sequence of numbers from 1 to 3. 

-Set C: to Set A, added or subtracted randomly same random sequence of numbers added in Set B. 

-Set D: to Set A, added or subtracted non-randomly a non-random sequence of numbers from 1 to 3. 

-Set E: to Set A, added or subtracted randomly same non-random sequence of numbers added in Set D. 

-Set F: non-random sequence of numbers to 3 from 13. 
Table 1. Data sets built for simulation. The method for correcting standard errors is reported in the text. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Angular coefficients of ordered and non-ordered standardized series reported in Table 1. Regression lines were 

built versus ordinal numbers from 1
st
 to 12

th
. 

Numbers from 1 to 3 added or subtracted in Set B, C, D, E can be imagined as a confounding 

variable of the outcome measure, strongly linked to the outcome measure reported in Set A 

(endogeneity bias), while non-random processes would add more biases to the data Sets. All series 

fail the Shapiro-Wilk test for normality. This is due to the low sample size (all Sets share the low-

sample size bias). However, random numbers should fluctuate more homogenously around their 

mean, so better quality data should be supposed in Set A and C. To test this hypothesis, regression 

lines can be constructed among standardized values of each Set versus ordinal place from 1
st
 to 12

th
 

of observed value. In ordered series from the lower to the higher value, the “best” series would have 

its angular coefficient of regression line closer to 1, and, in non ordered series, closer to 0. Figure 1 

illustrates these coefficients. As expected, Set A and C have angular coefficients closer to 1 and 0 in 

ordered and non-ordered correlations. Even Set F seems having good fit, in spite of its not random 

genesis.  

Can be hypothesized that non-random changes (Set B, D, E) and non-random numbers (Set F) 

have any ordered, non-stochastic, fluctuations across their means before becoming chaotic and 
falling into the Gauss‟ shape of the chaotic events? 

As reported in the introduction section, stochastic events are best described by the Gauss‟ bell 

shape. Also, multiple biases produce a Gauss‟ bell shape. So, in multiple repeated observations of 

the same biased event, the equation of the normal distribution of biases is the same as the one of a 

biased event: 
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1

σ √2π
e
−

(x− μ )
2

2σ
2

biases≅
1

σ √2π
e
−

(x− μ )
2

2σ
2

biased− event
                                                                              

(1) 

The chaos provoked by biases impedes efforts to distinguish the behavior of the event. 

Now, let‟s remember that nature can arrange itself in ordered shapes, regardless of spatial and 

time dimensions [8]. This behavior is called self-organized criticality, being able to deliver shapes 

from chaos in relation to the characteristics of natural phenomena [9-13]. Therefore, the above 

mentioned (1) can be re-written as:  

 

1

σ √2π
e
−

(x− μ )
2

2σ
2

biases≅
1

σ √2π
e
−

(x− μ )
2

2σ
2

biased− event+
                                                                        

(2) 

 

where Φ would be a measure of a vanish fractal entity that can emerge from the chaos of the biased 

data. 

The fractal shape (Φ) is a function of the space and of a proper measure D: the so-called fractal 

dimension. There are some practical difficulties in addressing the fractal dimensions, partly due to 

the definition of space and partly due to the measure-unit of that space [14]. 

In the present work, we refer to the two-dimension Euclidean space and estimate the fractal 

dimension D as 2-H, where H is the Hurst‟ exponent, according to what was reported by Jahn and 

Truckenbrodt [15]. Jahn and Truckenbrodt [15] developed a simple formula to estimate the variance 

of a surface by combining Brownian motion with the fractal perturbation (roughness) of a surface. 

This is  

 

σ2=√(2/π)σ(Δx/1mm)(2− D)

                                                                                                                      
(3) 

 

The formula composes the stochastic portion with the fractal portion of the roughness of a 

surface, thereby linking D to standard deviation σ. The authors also highlights that the measure-unit 

is not arbitrary and that the formula can work best with medium size fractals (D≈1.5). So, for 

medium size fractals, the fractal component (Δx/1mm)
(2-D)

 can be easily detected by measuring 

point-by-point space in manufactured objects. 

In estimating the point-by-point distance in time spread observations (ni from i=1 to i=N), the 

same event would be affected by stochastic behavior in a non-stochastic way, leading to a fractal 

perturbation.  Most procedures for the determination of fractal parameters are based on power law, 

such 

 

f (x)= a(x)g

                                                                                                                                                  
(4) 

 

(where g is the rule for calculating D in the Euclidean space). Therefore, the trend of ordered series 

allows to link the observed trend to a power law, where D is embedded in the observed trend:  
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ax(n)− c= ax(n)(2− D)

                                                                                                                                  
(5) 

 

If the trend of ordered series has only a stochastic perturbation, it would be equal to the trend 

observed in non-ordered series, and Equation (5) becomes: 

 

ax(n)(2− D)ordered= ax(n)(2− D)non− ordered                                                                                             
(6) 

 

Therefore, the (3) Jahn‟ formula [15] can be re-written as:  

 

R= 2=√(2/ ) ( xfract /Var x fract )(2− D)

                                                                                                
(7) 

 

assuming that the whole variance σ
2
 of a given variable in a series has any fractal perturbation (in a 

2-dimension Euclidean space) as R is the roughness of a surface with both stochastic and fractal 

perturbation. The Δxfract is the mean of the quadratic differences from trend, and VarΔxfract is the 

variance among quadratic differences from trend in the ordered series. Δxfract/VarΔxfract works as a 

measure of the space of statistic distribution like Δx/1mm describes the space of a surface of a 

manufactured object in the Jahn and Truckenbrodt (15)
 
formula [3]. Additionally, let‟s re-write the 

Jahn and Truckenbrodt [15]
 
formula (3) as: 

 
2=√(2/ ) ( xbiases/Var xbiases)(2− D)

                                                                                                 
(8) 

 

(in the same 2-dimension Euclidean space) hypothesizing that no fractal observation is proven. 

Again, the Δxbiases is the mean of the quadratic differences from trend and VarΔxbiases is the variance 

among quadratic differences from the trend in the non-ordered series. From what is reported above,  

 
2=√(2/ ) ( xbiases/Var xbiases)(2− D)=√(2/ ) ( xfract /Var x fract )(2− D)

                                      
(9) 

 

if no fractal involvement appears from the data-set, and all biases are absorbed in the stochastic 

behavior of Gauss‟ shape.  

If  

 

√(2/ ) ( xbiases/Var xbiases)(2− D)−√(2/ ) ( x fract /Var xfract )(2− D)>0                                       
(10) 

 

chaotic behavior is perturbed by something of non chaotic, that can be interpreted as the action of 

one or more non-random biases, leading to overestimating the variance of:  

 

1− (√(2/ ) ( xfract /Var x fract)(2− D)/√(2/ ) ( xbiases/Var xbiases)(2− D))= k
                               

(11) 

 

Observed variance can be corrected as σ
2
-σ

2
k. The standard error can be therefore corrected as:  
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√( 2
−

2
k)/√(n)                                                                                                                                       

(12) 

If 

 

√(2/ ) ( xbiases/Var xbiases)(2− D)−√(2/ ) ( x fract /Var xfract )(2− D)<0                                       
(13) 

 

chaotic behavior due to non-random biases has underestimated the variance of: 

 

1− (√(2/ ) ( xbiases/Var xbiases)(2− D)/√(2/ ) ( xfract /Var x fract )(2− D))= y
                               

(14) 

 

Observed variance can be corrected as σ
2
+σ

2
y. The standard error can be therefore corrected as:  

√( 2
+

2
y)/√(n)                                                                                                                                        

(15) 

 

In the above reported data Sets (Table 1), we applied the proposed hypothesis of rule (2), aiming 

to check if the hypothetical fractal perturbation of non-random data Sets would have Ф≠0, while 

better quality data Sets would have Ф=0. 

As a corollary, better quality data Sets (Set A and C) should not have any correction of their 

variance, while poor quality data Sets should have a correction of their variance. Therefore, 

standard errors should not be changed in good quality series and should be changed in poor quality 

series. By applying the rules from (9) to (12) we can prove that Sets A, B, and C does not have any 

standard errors correction, while Sets D, E, F have a standard error reduction (Table 1) of 13.8% 

(Set D), 18.0% (Set E), 4.0% (Set F). Rules from (13) to (15) have not be applied because Ф was 

not found <0, leading to suppose that non-stochastic fluctuations around mean would more likely 

increase than reduce standard errors of data distributions. Finally, it should be noticed that Set B 

does not have any standard error correction, leading to conclude that its fluctuation of data around 

its mean has been stochastic. Therefore the non-random addition of subtraction of random sets of 

numbers from 1 to 3 does not have disrupted the homogeneity of fluctuations of the random data 

distribution in the Set B. 

 

Real world applications 

-Administrative data 

Administrative data on birth in the Italian region of Umbria in 2018 has been provided by the 

regional Government (CeDAP 2018). These are reported in Table 2 at the aggregate level. Data had 

been provided according to Umbria hospitals for each month. We already know that data on birth in 

Italy is largely heterogeneous, as previously reported by authors. This is acknowledged even for the 

Umbria region [16, 17]. Causes of such heterogeneity are related to the level of assistance and 

several cultural beliefs and criticality in Italy [18-20]. Therefore, it is difficult to compare data on 

mode of birth and hospital care among Italian hospitals, among Italian regions, and across the 

whole of Italy. Heterogeneity and biases can also be presumed by reading Table 2 concerning the 

wording “other kind of birth” and their relative distribution among hospitals. We cannot clarify 

what “other kind of birth” wording means, but we strongly suspect misclassification among 

hospitals. 
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Table 2. Distribution of births among Umbria hospitals in 2018. 

 Spontaneous 

vaginal birth 

Planned 

Cesarean 

section 

Ceasrean 

section 

during labor 

Operative 

vaginal birth 

Urgent 

cesarean 

section 

Other kind 

of birth†  

TOTAL 

Città di Castello 408 67 57 40 12 0 584 

Pantalla 166 45 20 4 10 0 245 

Spoleto 374 56 19 22 26 3 500 

Orvieto 287 54 31 10 31 0 423 

Foligno 711 136 56 35 62 16 1016 

Branca 228 54 46 11 16 9 364 

Perugia 1314 220 161 66 43 2 1806 

Terni 745 162 155 18 36 0 1133 

TOTAL 4233 794 545 206 236 30 6071 

† It‟s unclear what “other kind of birth” means. 
Table 2. Raw numbers are reported for all 2018 Umbria hospitals, according to kind of birth. 

 

We aim to clean up the administrative data reported in Tables 2 on birth rates from non-random 

biases. According to all categories of birth, rates were calculated monthly for all hospitals and all of 

2018 (except for the category “other kind of birth”). Mean rates were calculated. Then, trends of 

ordered and non-ordered series were calculated. The squared differences among observed rates and 

trends for ordered and non-ordered series were averaged, and variances were calculated. Then, the 

rules above were applied (11 and 14), and the variances were corrected for having the corrected 

standard errors (by applying rules (12) and (15)). From the corrected standard errors, the 99.9% 

confidence intervals (CI) were calculated. In this paper, the Hurst coefficient (H) has been 

calculated according to Glattre and Nygård [21]: H=(Hurst‟ fluctuation/2)
0.73

σ. 

Figure 2 to 4 reports results. Diamonds represent mean rates included in the corrected 99.9% CI, 

while circles represent mean rates included in uncorrected 99.9% CI. Table 3 reports the percentage 

of correction of the variance, also clarifying in which direction biases have acted. 

 

Figure 2 
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Figure 2. Rates and 99.9% CI for uncorrected (●) and corrected (♦) rates for vaginal births and planned Cesarean 

sections. 

 

Figure 3 
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Figure 3. Rates and 99.9% CI for uncorrected (●) and corrected (♦) rates for Cesarean sections during labor and 

urgent Cesarean sections not in labor. 

Figure 4 

 
 

Figure 4. Rates and 99.9% CI for uncorrected (●) and corrected (♦) rates for operative vaginal births. 
 

Table 3. Percentage of correction of variance. 

 Vaginal birth Planned Cesarean 

section 

Cesarean section 

in labor 

Urgent Cesarean 

section not in labor 

Operative 

vaginal birth  

Città di Castello 23.2% ↓ ≈0% ↑ 23.4% ↓ 17.2% ↓ 81.1% ↑ 

Pantalla 47.7% ↓ ≈0% ↑ 9.9% ↓ 39.3% ↓ 76.4% ↑ 
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Spoleto 37.3% ↓ ≈0% ↑ 33.2% ↓ 62.8% ↓ 78.3% ↑ 

Orvieto 56.2% ↓ ≈0% ↓ 21.8% ↓ 38.6% ↓ 73.6% ↑ 

Foligno 42.5% ↓ ≈0% ↓ 32.8% ↓ 24.4% ↓ 67.1% ↑ 

Branca 54.1% ↓ 5.3% ↑ 1.8% ↑ 20.8% ↓ 80.2% ↑ 

Perugia 25.2% ↓ 2.6%↓ 15.7% ↓ 15.0% ↓ 72.9% ↑ 

Terni 31.3% ↓ 41.3%↓ 29.6% ↓ 27.5% ↓ 37.8% ↑ 

Table 3. ↓ means that variance has been decreased because chaos has increased the observed variance value; ↑ 

means that variance has been increased because chaos has decreased the observed variance value. 
 

Table 4 reports the overall rate of each kind of birth for Umbria. These rates, along with 99.9% 

CI, have been calculated, weighing the rates for the inverse of variances (random effect models 

always used) as is usually done for meta-analyses. The corrected standard errors clean up the 

overall rates from non random biases (while random effect model would clean up the random 

biases), providing overall estimated rates slightly different from usual weighted data syntheses. P-

values reported in Table 4 refer to comparisons of means of uncorrected and corrected standard 

errors. 

 

Table 4. Overall proportions with CI – Administrative data. 

DATA ON BIRTH MODE IN UMBRIA, 2018 – Rates Uncorrected 

standard error 

Corrected 

standard error 

p†  

 

-Vaginal birth 

Lower 99.9% CI 

 

Upper 99.9% CI 

0.6905516 

0.6923549 

0.6941524 

0.6901429 

0.6925201 

0.6948871 

 

0.003* 

 

-Planned Cesarean section 

Lower 99.9% CI 

 

Upper 99.9% CI 

0.1330681 

0.1344394 

0.1358237 

0.1331729 

0.1344417 

0.1357207 

 

n.s. 

 

-Cesarean section in labor 

 

Lower 99.9% CI 

 

Upper 99.9% CI 

0.0798727 

0.0809823 

0.0821060 

0.0812213 

0.0819153 

0.0826147 

 

0.044* 

 

-Urgent Cesarean section not in 

labor 

Lower 99.9% CI 

 

Upper 99.9% CI 

0.0389827 

0.0397563 

0.0405446 

0.0398118 

0.0401002 

0.0403905 

 

0.018* 

 Lower 99.9% CI 0.0291036 0.0301858  
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-Operative vaginal birth 

 

 

Upper 99.9% CI 

0.0298074 

0.0305278 

0.0304518 

0.0307201 

0.001* 

 

† Comparisons among uncorrected standard errors and corrected standard errors. Testing the null hypothesis 

that means of corrected standard errors are not lower or higher than means of uncorrected standard errors. t-

test for paired data (two tiled). 

 
Figure 5 reports the mean percentage of correction plotted versus the numerosity of the samples. As expected, the 

higher the numerosity of the sample, the lower the mean percentage of correction. 
 

Figure 5 

 
Figure 5. Mean percentage of correction (y-axis) plotted according to number of births (x-axis). The higher number 

of births, the lower the percentage of correction. 

 

-Meta-analysis 

In line with the aim of this article, we have chosen to re-make some recent meta-analyses about 

intrahepatic cholestasis of pregnancy by applying the standard error corrections. We clarify we do 

not aim to improve the results of the already published studies. 

Intrahepatic cholestasis of pregnancy is uncommon and very heterogeneous pregnancy disorder 

thereby providing biased data at aggregate level. Finding several reviews and meta-analyses on 

intrahepatic cholestasis of pregnancy in recent literature suggests that data on the diseases would be 

heterogeneous and still under debate [22]. 

Intrahepatic cholestasis of pregnancy data were extracted from references [23-28] at aggregate 

level. The Di Mascio et al [28] systematic review assesses some pregnancy outcomes according 

with bile acid levels. Rates of some outcomes reported in that article [28] were meta-analyzed 

independently from bile acid levels. Table 4 reports all results of calculations at aggregate level, 
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performed by re-computing variances and standard errors (rules (11) and (14); rules (12) and (15)). 

The 95% CI are reported both using uncorrected and corrected standard errors in Table 5. While 

corrected standard errors do not add more information as usual methods (except for “stillbirth” 

outcome in the 2019‟ Ovadia et al [23] meta-analysis: Table 5), it is proven that means of corrected 

and uncorrected standard errors are significantly different (p=0.02). The corrected standard errors is 

mainly lower than uncorrected standard error, as non random biases act mainly by increasing the CI 

of means from mean effect sizes. Additional, the scatter plot provided in Figure 6 (upper and left 

plot-graph) highlights that the regression slope of corrected standard errors is closer to effect sizes 

and more horizontal, as compared with regression slope obtained from uncorrected standard errors. 

This behavior demonstrates more homogeneous estimates. 

 

Table 5. Overall proportions with 95% CI – Meta-analyses 

OUTCOMES measures of meta-analyses  Uncorrected standard 

error 
Corrected standard 

error 
p†  

Ovadia et al 2021 (24) meta-analysis – Odds Ratio 

 

-Stillbirth 

UDCA vs No-UDCA 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0866486 

0.4422247 

1.0157970 

0.0977676 

0.4422247 

2.0002776 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-All preterm births 

UDCA vs No-UDCA 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.4307221 

0.5654138 

0.7422252 

0.5378428 

0.5654138 

0.5943981 

 

-Spontaneous preterm births 

UDCA vs No-UDCA 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.4332457 

0.6854013 

1.0843152 

0.4457312 

0.6854013 

1.0539424 

Ovadia et al 2019 (23) meta-analysis – Odds Ratio   

 

-Stillbirth 

Intrahepatic cholestasis vs Controls 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.9486583 

1.4742224 

2.2909529 

1.3350636 

1.4742224 

1.6278862 

 

-Spontaneous preterm birth 

Intrahepatic cholestasis vs Controls 

Lower 95.0% CI 

 

Upper 95.0% CI 

2.3790721 

2.6604697 

2.9751512 

2.3802763 

2.6604697 

2.9736461 

 

-Meconium stained amniotic fluid 

Intrahepatic cholestasis vs Controls 

Lower 95.0% CI 

 

Upper 95.0% CI 

2.5011320 

2.7189302 

2.9556941 

2.5029661 

2.7189302 

6.2752684 

Bacq et al 2012 (26) meta-analysis – Odds Ratio   
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-Fetal distress 

UDCA vs Others 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.1487357 

0.2917217 

0.5721665 

0.2882822 

0.2917217 

0.2952023 

 

 

 

 

 

 

 

 

 

0.02* 

 

 

 

 

 

 

 

 

 

 

 

-Fetal distress 

UDCA vs Placebo 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0986099 

0.4038097 

1.6536109 

0.0986099 

0.4038097 

1.6536109 

 

-Spontaneous preterm birth 

UDCA vs Others 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.3115257 

0.5975086 

1.1460261 

0.5957708 

0.5975086 

0.5992515 

 

-Sponteneous preterm birth 

UDCA vs Placebo 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0223740 

0.0682378 

0.2081168 

0.0223740 

0.0682378 

0.2081168 

Walker et al 2020 (25) meta-analysis – Risk Ratio   

 

-Stillbirth 

UDCA vs Placebo 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0400617 

0.2917512 

2.1246923 

0.2698713 

0.2917512 

0.3161845 

 

-Fetal distress 

UDCA vs Placebo 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.3929520 

0.7522199 

1.4399590 

0.7520015 

0.7522199 

0.7524384 

 

-Meconium stained amniotic fluid 

UDCA vs Placebo 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.4350425 

0.6295085 

0.9082148 

0.5871723 

0.6295085 

0.6748972 

 

-Spontaneous preterm birth 

UDCA vs Placebo 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.5008686 

0.7984001 

1.2726746 

0.5781672 

0.7984001 

1.0252313 

Di Mascio et al 2021 (28) systematic review – Rates   

 

-Stillbirth 

 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0051082 

0.0107466 

0.0844040 

0.0106199 

0.0107466 

0.0108748 
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-Meconium stained amniotic fluid 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0894629 

0.1232792 

0.1675260 

0.0931051 

0.1232792 

0.1265572 

 

-Spontaneous preterm birth 

 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.0375827 

0.0656379 

0.1121950 

0.0523757 

0.0656380 

0.0819681 

Kong et al 2016 (27) meta-analysis – Risk Ratio   

 

-Prematurity 

UDCA vs Control 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.4394761 

0.5664328 

0.7300648 

0.5607298 

0.5664328 

0.5721937 

 

-Fetal distress 
UDCA vs Control 

Lower 95.0% CI 

 

Upper 95.0% CI 

0.5536480 

0.7764762 

1.0889868 

0.7758501 

0.7764762 

0.7771029 

†Comparisons among uncorrected standard errors and corrected standard errors. Testing the null hypothesis that means of 

corrected standard errors are not lower or higher than means of uncorrected standard errors. t-test for paired data (two tiled). 
 

Table 5. Uncorrected and corrected CI for some outcome measures were reported. They are calculated from already 

published systematic reviews and meta-analyses already published in literature. 

Figure 6 

 
Figure 6. Trends of standard error plotted versus effect size, numerosity, fractal dimension and number of meta-

analyzed studies. The blue squares are the uncorrected standard errors. The orange diamonds are the corrected standard 

errors. 
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Discussion 
We describe a practical method for checking out for non-random biases at a quantitative level in 

data reporting. Those biases are supposed to be multiple and working non-randomly (Set B, Set D, 

Set E, Set F). When such behavior of biases can be presumed, oscillations of variance can be 

corrected by applying the key concept of self-similarities of natural processes. Otherwise, a single 

bias or a small number of biases are working randomly (Set A and Set C), describing a stochastic 

perturbation itself or being unable to disrupt the stochastic behavior of the assessed event (Set B). 
 

The method has been applied to rates of births in Umbria, Italy, during 2018. CI for each kind of 

birth were corrected for Umbria‟s birth centers. It seems that planned Cesarean sections are more 

likely to be unbiased in all hospitals, while CI of vaginal birth, Cesarean section during labor, and 

urgent Cesarean section not in labor are overestimated. Finally, operative vaginal birth CI are 

largely underestimated. Those findings lead to a better estimate of the true rates of birth in Umbria 

(Table 4) and are not too different from the usual methods of data synthesis. Perception of chaotic 

behavior of data can be obtained by plotting the mean percentage of correction of rates for the 

number of births per hospital (Figure 5). It is expected that the higher the observed sample 

numerosity, the lower the risk of biases. Contrary, a linear trend is not clearly observed in Figure 5, 

thereby proving that data variability is not only linked with the sample numerosity. Additionally, 

Spoleto and Orvieto seem to work out from trend slope, while the trend line lays towards 

horizontality for a birth/year number of 1000. This phenomenon can be explained for a better 

distribution of factors conditioning the mode of birth in a stochastic way in the case of a larger 

number of births, thereby producing a normal distribution shape. As a result, rare events (operative 

vaginal birth) are more likely to be non-randomly biased, as the conditioning factors are less likely 

to follow a normal distribution. 
 

In case of meta-analyses, we have proven that standard error corrections result in a mean 

reduction of CIs, without affecting information drawn by using usual method of data syntheses. It is 

interesting to observe that the higher the overall effect size, the lower the corrected standard error 

values, while the higher numerosity and fractal dimension the higher the corrected standard errors 

values (Figure 6). The behavior suggests that fractal assessment for correcting standard errors with 

the above formulas provides better estimates in case of lower to medium fractal dimensions (as 

reported by Jahn and Truckenbrodt [15] in 2004) and with lower numerosity. 

Fractal behavior in biological phenomena has been assumed in this paper based on the literature 

[8]. Authors [21, 29] have reported checking for fractality to distinguish chaotic behavior from non-

chaotic behavior. As detrimental fractal analysis has not been performed in this article, the proposed 

method for remedying non-random biases can be questioned. However, we have reported a 

calculation for a proportion of the variance to be corrected by dividing the same entity assessed in 

the same way. Therefore, it is not strictly needed to prove that the trend is fractal. Additionally, 

vanish fractal shapes are reported but not already proven for Cesarean section trends in a previously 

published article
 
[16], thereby confirming the premise of self-organized criticality reported in the 

literature
 
[8]. 

 

Conclusion 
In conclusion, hypothesizing the Gauss bell as an extremely smoothed (previously rough) fractal 

object, the roughness of a biased statistic distribution can be assessed from the mean of squared 

differences from the trend and its variance. The method is easy and can improve data synthesis in 

meta-analyses. Also, it can allow checking how stochastic administrative data are, thereby helping 

health managers to assess hospitals‟ performances in less biased way. 
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