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Abstract 

Clustering is the primary data mining functionality that groups the data 

points based on their similarities. As the dimensionality of the dataset 

increases, each data point appears to be equidistant to each other, thus 

making distance metrics less significant. Clustering in subspaces attempts to 

resolve the issue of the curse of dimensionality to some extent. However, 

determining clusters relevant to a subspace is a challenging task. Hubs are 

the data points which appear to be neighbours for most of the data points. 

Hence, the clusters are usually surrounded by such hubs, and it is efficient to 

consider these hubs as seed points while performing partitional clustering. In 

this paper, Hub based K-means Subspace Clustering (HKSC) is proposed, 

where K refers to the number of clusters to be identified. The initial seed 

points are selected using Hubness Scores on each subspace, and clusters are 

found using the partitional method. The proposed algorithm is evaluated and 

compared with state-of-the-art subspace clustering algorithms such as 

SUBCLU, SCHISM, and PCoC in terms of cluster quality metrics, namely 

purity and silhouette coefficient. It is proved that the proposed algorithm 

outperforms the existing algorithms. With regard to purity, on average, 

HKSC has shown an improvement of 71%, 18%, and 15% over SUBCLU, 

SCHISM and PCoC respectively. With respect to silhouette coefficient, the 

clustering result was 300% better when compared to SUBCLU result and 

54% better than SCHISM. Concerning the execution time, HKSC showed 

56% less than that of SUBCLU. The proposed approach uses the concept of 

hubs in order to efficiently mine the subspace clusters in partitional subspace 

clustering. 

Keywords: cluster quality, Hubness Score, partitional clustering, purity, 

subspace clustering.  
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1. Introduction 

Nowadays, data are abundant in nature, both in terms of size as well as dimensionality. Most real-

world applications accumulate voluminous data that provide ample opportunity for data analysts to 

extract knowledge in support of decision making. Data mining is the study of extracting interesting 

patterns from huge volumes of data. Depending on the context of decision making, different types of 

patterns are to be extracted by applying appropriate data mining techniques. However, the 

combinations of techniques are often employed for decision support, which is referred to as Data 

Science in recent times. Clustering, which is one of the important data pre-processing techniques, has 

become quite challenging due to the enormous size of the data.   

Drawbacks of Traditional Clustering Methods: 

(i) For high dimensional data, the true clusters are masked in the subspaces. 

(ii) Due to inherent sparsity of the data objects in high dimensional data spaces, the distance measures 

become insignificant with the increase in dimensionality of the dataset. This is referred to as curse 

of dimensionality. Due to this, the traditional methods [1] are incapable of mining meaningful 

clusters.  

(iii)Each attribute in the dataset contributes differently for different clusters and some of the attributes 

may be irrelevant for a given cluster. 

Need for Subspace Clustering 

The real-world data often consists of descriptions of complex data objects each of which is 

described in terms of a large set of attributes or variables [2]. The Availability of data in abundance 

calls for efficient algorithms to analyse the data for pattern extraction. This is a challenging task. Data 

mining functionalities such as cluster analysis become more complex as the number of dimensions 

increases [3]. The distance between data points may not be properly discriminated in a high-

dimensional space. This is referred to as the curse of dimensionality.  

The most common approaches to deal with the curse of dimensionality are dimensionality reduction, 

feature selection and feature creation. The dimensionality reduction methods such as Principal 

Component Analysis (PCA) and Singular Value Decomposition (SVD) [4] make use of linear algebra 

techniques and transform the original high dimensional feature space to lower dimensional feature 

space. These methods may not be well suited for the subspace clustering process since the clusters 

identifiable in the transformed feature space coincide with the clusters of the original space, still hiding 

the clusters of significance in subspaces. 

While conventional clustering refers to the process of grouping the data objects that exhibit similar 

behaviour, all the features of data may not be relevant to characterize the members of the given cluster. 

Clusters in full-dimensional space might not be interesting for all purposes since different features 

contribute differently to form clusters of objects for varied purposes. So, subspace clustering focuses 

on identifying a specific subset of attributes that describe a cluster. In other words, subspace clustering 
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aims to find meaningful clusters in subspaces formed by different combinations of attributes [5]. 

To deal with voluminous data, data reduction/feature extraction techniques may be applied. 

However, these techniques involve loss of information leading to poor results. Subspace clustering 

addresses this problem as it mines the clusters in all possible subspaces. So, subspace clustering 

techniques are more useful in finding clusters hidden in subspaces. There are two important purposes 

involved in subspace clusters. Firstly, once the clusters are found, depending on the context, the 

clusters from the relevant subspace may be considered for decision making. Secondly, the subset of 

attributes that contribute to forming the clusters would be considered significant for that cluster. 

Subspace clustering is a complex task since the number of possible subspaces increases exponentially 

with the dimensionality of a dataset, which in turn results in enormously large numbers of subspace 

clusters affecting the interpretability of results negatively. For n-dimensional data, the possible number 

of subspaces is 2n-1. There is a trade-off between number of subspace clusters and subspace cluster 

quality. The existing subspace clustering algorithms which explore exponential number of subspace 

clusters take more time with considerably low cluster quality.   

Research on subspace clustering approaches aims to provide better solutions to the challenge of 

minimizing the complexity of exploring the subspace clusters in partitional methods. The authors 

intend to carry this research work to reduce the execution time of the subspace clustering algorithm and 

at the same time improving the quality of the subspace clusters. So, to reduce the complexity of the 

subspace clustering process while applying the partitional methods, the concept of hubs and Hubness 

Score is used. Hubs are used to interpret the data distribution, and it is found that they are closely 

located near the centre of clusters; therefore, it is appropriate to consider hubs as the initial seed points 

while expanding the clusters. Unlike the existing partitional subspace clustering algorithms, this 

reduces the number of iterations, and the algorithm converges soon resulting in better quality clusters 

thus minimising the research gap. 

2. Related Work 

In recent decades, subspace clustering has been a major focus area among researchers. The 

algorithms in this area can be categorized as bottom-up and top-down approaches [6]. One of the oldest 

algorithms for finding subspace clusters is SUBCLU [7], which follows a bottom-up approach to 

finding subspace clusters. First, it applies DBSCAN [7] algorithm to generate all one-dimensional 

clusters. Then, it checks in the higher dimensions if this clustering structure still exists. The 

monotonicity property of clustering is used to conclude that there can be no other clusters found in 

higher dimensions. Once all the lowest dimensional clusters are found, it generates candidates for the 

next level. For doing so, it takes all possible combinations of attributes. To minimize the number of 

subspaces generated, it prunes the combination that includes a subspace for which no clusters existed in 

a lower-dimensional space. The next stage is to evaluate the relevant subspaces as well as the one-

dimensional clusters further. In this step, it iteratively applies DBSCAN for each cluster in one-

dimensional space. For finding clusters in k-dimensional space, it takes the best subspace of (k-1) 
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dimension, the best subspace being the one with minimum coverage of data points. 

Unlike SUBCLU, SCHISM [6] is a top-down procedure that uses the concept of support and 

Chernoff-Hoeffding bounds. It mines for the maximal interesting subspaces by using a depth-first 

search with backtracking. As a first step, it divides the given dataset into a user-specified number of 

discrete bins. Further, it performs a data transformation by converting the horizontal format to vertical 

for optimal computation and memory utilization. Once it finds all the interesting maximal subspaces 

while pruning the search tree by merging similar subspaces, it finally either assigns a data point to the 

subspaces by estimating probability distribution functions or marks it as an anomaly. 

A subspace clustering algorithm that focuses on summarizing the results is PCoC [6]. All the one-

dimensional subspace clusters are first computed using the DBSCAN algorithm. Then, the set of all 

low-dimensional subspace clusters up to two or three dimensions can be generated by taking the 

intersection of objects and the union of attributes of two subspace clusters. The resultant cluster is said 

to be valid if it contains at least two elements. This set of clusters is given as input to the PCoC 

algorithm, which performs a k-medoids style grouping on clusters that results in a set of subspace 

clusters with their centres. 

Subspace clustering is widely used in the application domains like biology [2], computer vision, 

astronomy, the discovery of conducive living environments for animals, community identification in 

social networking sites and social media mining. Recent research focused on multi-view subspace 

clustering [8-10] as real-time data can sometimes be obtained from multiple sources with distinct sets 

of attributes. It has also been applied to address the problem of image segmentation by using the 

feature vectors of images [5, 11]. In recent years, the concept of hubness to find clusters in subspaces 

has also been gaining popularity. While some research focused on the impact of hubness on K-nearest 

neighbour graphs [12], others studied hub-based clustering for high-dimensional data by focusing on 

the association between hubs and subspace clusters [13]. 

Section 3 describes in detail the methodology used in the proposed Hub based K-means Subspace 

Clustering (HKSC). The experimental results are provided in Section 4. Section 5 concludes the paper 

with its possible future scope. 

3. Methodology 

The existing algorithms for subspace clustering extend the idea of density connectedness to each 

subspace; however, the proposed algorithm introduces a novel approach of Hub based K-means 

Subspace Clustering to search for the clusters in each feature space. The algorithms are explained in 

detail with an example by first defining the introductory concepts. 

3.1. Preliminary concepts 

Let DB be the set of data points. Let A be the set of attributes. A subspace is a feature space formed 

by a subset of attributes; For example, S⊆A be the subset of attributes and hence a subspace. For a set 

of attributes, A, the possible number of subspaces are 2|A| − 1.  
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Epsilon (ε): Epsilon is defined as the radius around an object that defines the neighbourhood of it. 

Epsilon-Neighbourhood: It is defined as the area covered within the epsilon radius of an object. 

MinPoints: It is a user-specified threshold value of the number of objects that lie in the epsilon-

neighbourhood of a data point for it to be dense. 

Hubness Score: The Hubness Score of a data point <di, ai>, where di represents the i
th

 data point in DB 

and ai represents the i
th

 attribute in A, is defined as the number of times <di, ai> has contributed as a 

neighbour for other data points. 

K-Hubs: Once the data points are arranged in decreasing order of their Hubness Scores, the top K 

points, <d1, a1> to <dk, ak>, are assigned as K-Hubs.  

3.2. Hub based K-means Subspace Clustering (HKSC) 

The proposed methodology for finding subspace clusters in each dimension is a two-step process in 

which the algorithm starts with identifying K-Hubs, where K is the number of clusters to be found in 

each subspace, and iteratively applies the k-means [14] algorithm to find the clusters in each feature 

space. 

The FindKHubs algorithm begins by computing the Hubness Scores of all the data points. The data 

points that have crossed the threshold would be treated as hubs. Then the K-Hubs would be chosen as 

the initial cluster centres, unlike the traditional k-means method where the initial cluster centres are 

chosen randomly. Once the initial centres are decided, then it iteratively assigns all the other data 

points to one of the cluster centres to which it is nearer. After the first iteration is completed, it updates 

the cluster centres by computing the average of all the data points in a cluster. It continues the process 

until there is no change in clustering or it reaches the max iterations. Thus, convergence is reached with 

a minimal number of iterations. This whole process is applied to all possible subspaces of the dataset. 

 

Algorithm: HKSC 

Input: Dataset, K, MinPoints. 

Output: subspace clusters from all combinations of subspaces. 

Method: 

(1) call FindKHubs method and assign the returned K data points as initial seeds of K clusters C1, C2, …., 

Ck 

(2) for each subspace 

(3)  repeat 

(4)  for each data point <di, ai> 

(5)  find distance from each seed point 

(6)  assign data point <di, ai> to nearest cluster 

(7)  end for  
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(8)  calculate new cluster centres by updating cluster means 

(9)  until two successive iterations yield the same clustering patterns 

(10) end for 

 

Algorithm: FindKHubs 

Input: Dataset, K, epsilon. 

Output: K-Hubs. 

Method: 

(1) Hubness Score←0 

(2) for each data point <di, ai> 

(3)  for each data point <dj, aj> where i≠j 

(4)  if <di, ai> lies within epsilon neighbourhood of <dj, aj> 

(5)  increment Hubness Score of <di, ai> 

(6)  end for 

(7)  update the final score of <di, ai> 

(8)  reset Hubness Score 

(9) end for 

(10) Sort the data points in decreasing order of their Hubness Scores 

(11) return top K data points as K-Hubs 

 

3.2.1. Example 

Consider a dataset D with 12 objects, namely o1, o2, …., and o12, which are described over three 

attributes scilicet A1, A2, and A3. The input parameters, namely the dataset, epsilon, and K, are fed to 

FindKHubs. For this example, epsilon is fixed to 0.3, and K is taken as 3. 

The FindKHubs method first calculates the Hubness Scores of all the objects by checking for each 

object how many times it is acting as a neighbour for other data points. Table 1 shows the Hubness 

Scores of all the 12 objects. Then it arranges these points in the decreasing order of their Hubness 

Scores, and selects the top K data points, which is 3 in this case and returns as the output as shown in 

Table 2. These top-3 objects (o6, o7, and o1) are then considered the initial seeds for the next step in 

the process. 

Once the initial seeds are returned by the FindKHubs algorithm, these points are given as input to 

the k-means algorithm along with K, the number of clusters. It starts generating clusters iteratively 

from lower-dimensional subspaces. The clusters generated after three iterations in the A1 subspace are 

shown in Tables 3.1 through 3.3. As the clustering structure in iterations 2 and 3 are the same, the 

algorithm converges here and gives the output clusters for the A1 subspace. In a similar manner, the 

algorithm is applied repeatedly for all the other subspaces. 
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Table 1. Dataset D                                                Table 2. Hubness 

Scores of the objects of D 

Object A1 A2 A3 

 

Object 
Hubness 

Score 
Seed (Yes/No) 

o1 0.441 0.502 0.571 o1 9 Yes 

 o2 0.552 0.587 0.725 o2 8 No 

 o3 0.617 0.649 0.736 o3 8 No 

o4 0.639 0.692 0.639 o4 8 No 

o5 0.141 0.169 0.529 o5 4 No 

o6 0.405 0.446 0.662 o6 10 Yes 

o7 0.349 0.347 0.879 o7 10 Yes 

o8 0.441 0.504 0.558 o8 9 No 

o9 0.201 0.240 0.549 o9 6 No 

o10 0.229 0.279 0.508 o10 6 No 

o11 0.613 0.614 0.906 o11 8 No 

o12 0.788 0.843 0.607 o12 4 No 

Table 3.1. Iteration 1                                     Table 3.2. Iteration 2                         

Table 3.3. Iteration 3 

Cluster Objects 

 

Cluster Objects 

 

Cluster Objects 

C1 {o6} 

 

C1 {o1, o6, o7, o8} 

 

C1 {o1, o6, o7, o8} 

C2 {o5, o7, o9, o10} 

 

C2 {o5, o9, o10} 

 

C2 {o5, o9, o10} 

C3 
{o11, o1, o12, o2, 

o3, o4, o8} 

 

C3 
{o11, o12, o2, o3, 

o4} 

 

C3 
{o11, o12, o2, o3, 

o4} 
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4. Results and Discussion 

The proposed algorithm was developed in Java (JDK 1.8) on a PC with 8 GB RAM and a 2.11 GHz 

processor. Both existing and proposed algorithms are tested across various benchmark datasets taken 

from UCI Machine Learning Repository [15]. Table 4 gives a brief description of the datasets used for 

testing. 

4.1.Cluster quality measures 

Purity: It is an external evaluation criterion of cluster quality. It is the per cent of the total number of 

objects (data points) classified correctly. The range of purity is [0, 1]. 

The purity values of SUBCLU and HKSC are presented in Table 5 and depicted as a column chart 

in Figure 1. From the results, it is clear that the performance of HKSC is far more efficient when 

compared to the existing algorithms. HKSC outperformed individually with each of these methods. 

The purity has been improved by 71%, 18%, and 15% concerning SUBCLU, SCHISM, and PCoC 

respectively. 

Silhouette Coefficient: It is the ratio of the difference between the inter-cluster distance and intra-

cluster distance of an object to the maximum of those two distances. 

In addition to the improvement of purity, HKSC has also shown a dramatic enhancement in terms of 

silhouette coefficient. It can be deduced from Table 6 and Figure 2 that HKSC outperformed SUBCLU 

with an improvement of 300%. The proposed algorithm showed a 54% increase in cluster quality with 

respect to SCHISM. 

Table 7 summarises the running times of the algorithms. The same is shown pictorially in Figure 3. 

It can be concluded that the execution time of HKSC when compared to the existing SUBCLU method 

has been reduced by 56% on average. 

Hub based K-means Subspace Clustering (HKSC), the proposed algorithm, is tested on different 

benchmark datasets from the UCI machine learning repository by comparing its performance with 

existing subspace clustering algorithms: SUBCLU, SCHISM, and PCoC. It is observed that HKSC has 

produced better quality clusters consistently in all the datasets. The proposed algorithm is proved to be 

a better and optimal method for forming subspace clusters with maximum purity, minimum execution 

time, and a good silhouette coefficient.  

Table 4. Dataset description 

Dataset Tuples  Attributes Classes 

Seeds 210 7 3 

User 

Knowledge 

Modeling 

258 5 4 

Wholesale 

Customer 
440 7 2 
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Data 

Pima Indian 

Diabetes 
768 8 2 

Bank Note 1372 4 2 

Yeast 1484 8 9 

Steel Plates 1772 9 7 

Image 

Segmentation 
2100 9 7 

Wine Quality 3000 9 7 

Table 5. Purity comparison among various algorithms for different benchmark datasets 

 

 

Figure 1. Comparison of purity various algorithms  

Dataset SUBCLU SCHISM PCoC HKSC 

Seeds 0.342 0.736 0.739 0.878 

User Knowledge Modeling 0.642 0.649 0.636 0.659 

Wholesale Customers 0.681 0.712 0.735 0.835 

Pima Indian Diabetes 0.659 0.674 0.684 0.706 

Bank Note 0.555 0.726 0.555 0.797 

Yeast 0.317 0.548 0.558 0.608 

Steel Plates 0.365 0.372 0.539 0.553 

Image Segmentation 0.198 0.544 0.428 0.584 

Wine Quality 0.417 0.502 0.656 0.694 
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Table 6. Silhouette Coefficient comparison among various algorithms 

 

 

Figure 2. Comparison of silhouette coefficient of various algorithms 

Table 7. Comparison of execution time (in minutes) between SUBCLU & HKSC 

Dataset SUBCLU SCHISM HKSC 

Seeds -0.567 0.591 0.608 

User Knowledge Modeling -0.516 0.174 0.283 

Wholesale Customer Data 0.091 0.301 0.346 

Pima Indian Diabetes 0.146 0.216 0.305 

Bank Note -1.000 0.422 0.430 

Yeast 0.482 0.531 0.590 

Steel Plates -0.094 0.237 0.469 

Image Segmentation 0.167 0.142 0.435 

Wine Quality -0.030 0.192 0.280 

Dataset SUBCLU HKSC 

Seeds 0.111 0.017 

User Knowledge Modeling 0.045 0.001 
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Figure 3. Comparison of execution time between SUBCLU & HKSC 

5. Conclusion  

Clustering in high-dimensional data poses the problem of generating meaningless clusters because 

of the exponential increase in the distance measures as we move towards the higher dimensions. 

Existing subspace clustering algorithms address this problem up to some extent by searching for 

meaningful clusters in different subspaces. This paper proposed a novel approach to subspace 

clustering, which uses the concept of hubness to select the initial seeds for the k-means clustering 

algorithm that iteratively finds clusters in each possible feature space. Since the traditional k-means 

method chooses initial cluster centres randomly, the output differs each time a different set is 

considered, sometimes compromising the cluster quality. Interestingly, the proposed method evaluates 

the data points before choosing the initial seeds, which helps in better convergence with improved 

Wholesale Customer Data 3.007 0.317 

Pima Indian Diabetes 11.230 1.000 

Bank Note 4.155 0.850 

Yeast 32.000 28.000 

Steel Plates 52.000 45.500 

Image Segmentation 104.000 84.483 

Wine Quality 569.000 455.533 
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cluster quality. Hub based K-means Subspace Clustering (HKSC), the proposed algorithm was 

compared with state-of-the-art algorithms like SUBCLU, SCHISM and PCoC, and with regard to 

purity, it has shown improvement of 71%, 18% and 15% over SUBCLU, SCHISM and PCoC 

algorithms respectively. With respect to silhouette coefficient, the clustering result was 300% better 

when compared to SUBCLU result and 54% better than that of SCHISM. The runtime of HKSC was 

56% less when compared to that of SUBCLU. 

The proposed algorithm is applied to numeric datasets. This research work could be extended to 

apply to other complex data types and to deal with datasets containing missing values. In certain 

domains, data objects contribute partially to more than one cluster of a subspace, and the research work 

could be expanded to extract soft clusters based on the participation count of the cluster members. A 

data object could be a member of different clusters in a given subspace based on its characteristics. 

Fuzzy membership of the data object could be considered as future work while forming subspace 

clusters. 

References  

[1] A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah, J. O. Agushaka, C. I. Eke, A. A. 

Akinyelu, “A comprehensive survey of clustering algorithms: State-of-the-art machine learning 

applications, taxonomy, challenges, and future research prospects,” Engineering Applications of 

Artificial Intelligence, vol. 110, 2022. 

[2] S. Ehsani, C. K. Reddy, B. Foreman, J. Ratcliff, V. Subbian, “Subspace Clustering of 

Physiological Data From Acute Traumatic Brain Injury Patients: Retrospective Analysis Based 

on the PROTECT III Trial,” JMIR Biomed Engineering, vol. 6, no. 1, 2022. 

[3] W. Li, J. Hannig, S. Mukherjee, “Subspace Clustering through Sub-Clusters,” The Journal of 

Machine Learning Research, vol. 22, no. 1, pp. 2413–2449, 2021. 

[4] H. Peng, N.G. Pavlidis, “Weighted sparse simplex representation: a unified framework for 

subspace clustering, constrained clustering, and active learning,” Data Mining and Knowledge 

Discovery, vol. 36, no. 3, pp. 958–986, 2022.  

[5] B. Sun, P. Zhou, L. Du, X. Li, “Active deep image clustering,” Knowledge-Based Systems-

Elsevier, vol. 252, 2022. 

[6] B. J. Lakshmi, M. Shashi, K. B. Madhuri, “A rough set based subspace clustering technique for 

high dimensional data,” Journal of King Saud University - Computer and Information Sciences, 

vol. 32, no. 3, pp. 329-334, 2020.  

[7] J. R. Jørgensen, K. Scheel, I. Assent, “GPU-INSCY: A GPU-Parallel Algorithm and Tree 

Structure for Efficient Density-based Subspace Clustering,” in Proc. 24th International 

Conference on Extending Database Technology (EDBT), pp. 25-36, 2021. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
1691 

 
Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

[8] R. -k. Lu, J. -w. Liu, W, X. Zuo, W. -m. Li, “Multi-view subspace clustering with consistent 

and view-specific latent factors and coefficient matrices,” in Proc. International Joint 

Conference on Neural Networks (IJCNN), pp. 1-8, 2021.  

[9] Q. Zheng, J. Zhu, “Multi-view Subspace Clustering with View Correlations via low-rank tensor 

learning,” Computers and Electrical Engineering, vol. 100, 2022.  

[10] Y. Duan, H. Yuan, C. S. Lai, L. L. Lai, “Fusing Local and Global Information for One-Step 

Multi-View Subspace Clustering,” Applied Science, vol. 12, no. 10, 2022.  

[11] J. Francis, A. Johnson, B. Madathil, S. N. George, “A Joint Sparse and Correlation Induced 

Subspace Clustering Method for Segmentation of Natural Images”, in Proc. IEEE 17th India 

Council International Conference (INDICON), pp. 1-7, 2020.  

[12] B. Bratic, M. E. Houle, V. Kurbalija, V. Oria, M. Radovanovic, “The Influence of Hubness on 

NN-Descent,” International Journal on Artificial Intelligence Tools, vol. 28, no. 6, 2019. 

[13] P. Mani, C. Domeniconi, “Hub-based subspace clustering,” Neurocomputing, vol. 413, pp. 193-

209, 2020. 

[14] I. Ali, A. U. Rehman, D. M. Khan, Z. Khan, M. Shafiq, J. -g. Choi, “Model Selection Using K-

Means Clustering Algorithm for the Symmetrical Segmentation of Remote Sensing 

Datasets,” Symmetry, vol. 14, no. 6, 2022. 

[15] The UCI Machine Learning Repository website, 2021. [Online]. Available: 

http://archive.ics.uci.edu/ml 

http://archive.ics.uci.edu/ml

