Near and Closer Relations Via ω -Open Sets

¹P. REVATHI, ²B. MEERA DEVI AND ³O.RAVI

¹Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai -21, Tamilnadu, India, e-mail: revsanjeeve@gmail.com.

²Assistant Professor, Department of Mathematics, Sri S Ramasamy Naidy Memorial College, Virudhunagar Dt, Tamilnadu, India, e-mail: abmeeradevi@gmail.com.

¹Associate Professor, Department of Mathematics, PMT College, Usilampatti, Madurai District, Tamil nadu, India, e-mail: siingam@yahoo.com.

Article Info	ABSTRACT: This papeer is divided into two sections. The concepts of
Page Number: 1509-1523	near and closer relations that are defined respectively using the interior
Publication Issue:	and closure operators in omega topology, are respectively discussed in
Vol. 70 No. 2 (2021)	the first and second sections.

Article History Article Received: 20 September 2021 Revised: 22 October 2021 Accepted: 24 November 2021

1. Introduction

This paper starts by introducing the notions of ω -near and ω -closer relations on the subsets of a topological space. Some of the recent concepts that are available in the literature of topology and its omega topology are characterized using the above relations.

2. Prelimeneries

Result 2.1

Let A and B be any two subsets of a topological space (X,τ) . The following relations on the interior and closure operators will be useful.

2010 Mathematics Subject Classification: 54A05, 54A10

Key words and phrases., ω -near and ω -closer relations, regular ω^* -open sets, regular ω -closed sets.

 $IntA \subseteq IntClIntA \subseteq ClIntA \subseteq Cl IntCl A \subseteq ClA.$

 $IntA \subseteq IntClIntA \subseteq IntClA \subseteq Cl IntClA \subseteq ClA$.

 $IntCl (A \cap B) \subseteq (IntClA) \cap (IntClB).$

 $ClInt (A \cap B) \subseteq (ClIntA) \cap (ClIntB).$

 $(IntClA) \cup (IntClB) \subseteq IntCl(A \cup B).$

 $(ClIntA) \cup (ClIntB) \subseteq ClInt (A \cup B).$

ClIntClIntA = ClIntA.

IntClInt ClA = IntClA.

Lemma 2.2

(i) If B is open then $(ClA) \cap B \subseteq Cl(A \cap B)$.

(ii) If B is closed then $Int (A \cup B) \subseteq (IntA) \cup B$.

Lemma 2.3

- (i) $ClInt Cl (A \cup B) = ClIntClA \cup ClIn ClB.$
- (ii) $IntClInt (A \cap B) = IntClIntA \cap IntClIntB.$

Definition 2.4 The set A is called

- (i) regular open if A = Int ClA,
- (ii) semi-open if $A \subseteq Cl IntA$,
- (iii) pre-open if $A \subseteq IntClA$,
- (iv) b-open if $A \subseteq Cl Int A \cup Int ClA$,
- (v) *b-open if $A \subseteq Cl IntA \cap IntClA$,
- (vi) $b^{\#}$ -open if A=ClIntA \cup IntClA,

Definition 2.5 The set A is called

(i) a p-set if $ClIntA \subseteq IntClA$,

- (ii) a q-set if $IntClA \subseteq ClIntA$,
- (iii) a Q-set if $IntClA \subseteq ClIntA$,
- (iv) a t-set if IntA = IntClA,
- (v) a t*-set if ClA = ClIntA.

Definition 2.6 The set A is called

- (i) α -open if A \subseteq IntClIntA.
- (ii) β -open if A \subseteq *ClIntCl*A.

Definition 2.7 The set A is called

- (i) regular closed $\Leftrightarrow A = ClIntA$,
- (ii) semi-closed \Leftrightarrow *IntClA* \subseteq A,
- (iii) pre-closed \Leftrightarrow ClIntA \subseteq A,
- (iv) b-closed \Leftrightarrow Cl IntA \cap IntClA \subseteq A,
- (v) *b-closed \Leftrightarrow ClIntA \cup IntClA \subseteq A,
- (vi) $b^{\#}$ -closed $\Leftrightarrow Cl IntA \cap IntClA \subseteq A$,
- (vii) α -closed \Leftrightarrow Cl IntClA \subseteq A,

(viii) β -closed \Leftrightarrow *IntClInt*A \subseteq A.

Lemma 2.8 The set A is

(i) regular open $\Leftrightarrow A = IntClInt A$,

(ii) regular closed $\Leftrightarrow A = ClIntCl A$,

(iii) semi-open \Leftrightarrow ClA= ClIntA,

(iv) semi-closed \Leftrightarrow *Int*A=*IntCl*A,

(v) β -open \Leftrightarrow ClA=ClIntClA,

(vi) β -closed \Leftrightarrow *Int*A=*IntClInt*A.

Lemma 2.9

(i) If A or B is semi-open then $IntClA \cap IntClB = IntCl(A \cap B)$.

(ii) If A or B is semi-closed then $ClInt(A \cup B) = ClIntA \cup ClIntB$.

Definition 2. 10 Let A and B be any two subsets of a space (X,τ) . We say that

- (i) A is near to B in (X,τ) if IntA = IntB
- (ii) A is closer to B in (X,τ) if ClA = ClB.
- (iii) A is almost near to B in (X,τ) if IntClA = IntClB.
- (iv) A is almost closer to B in (X,τ) if *ClInt* A = *IntCl*B.

Definition 2.11 A function $f: (X,\tau) \rightarrow (Y, \sigma)$ is called

(i) regular continuous if $f^{-1}(V)$ is regular open in X for each $V \in \sigma$,

(ii) regular irresolute if $f^{-1}(V)$ is regular open in X for each $V \in RO(Y,\sigma)$.

Other types of continuity and irresoluteness can be analogously defined.

Definition 2.12 By a neighburhood (briefly nbd) of a point x in a space X we mean an open set containing x.

Definition 2.13 A space X is locally countable if the space has a base consisting of countable sets and is anti locally countable if every non-empty open set in X is uncountable.

Definition 2.14 For every open neighbourhood U of A,

- (i) if $ClA \subseteq U$ then A is g-closed,
- (ii) if $Cl IntA \subseteq U$ then A is wg-closed,
- (iii) if $\alpha ClA \subseteq U$ then A is αg -closed,
- (iv) if $sClA \subseteq U$ then A is gs-closed,

(v) if $pClA \subseteq U$ then A is gp-closed and

(vi) if $\beta ClA \subseteq U$ then A is g β -closed.

Definition 2.15

(i) If $A \subseteq V$, V is regular open $\Rightarrow ClA \subseteq V$ then A is rg-closed.

(ii) If $A \subseteq V$, V is regular open $\Rightarrow pClA \subseteq V$ then A is gpr-closed.

(iii) If $A \subseteq V$, V is α -open $\Rightarrow \alpha ClA \subseteq V$ then A is g α -closed.

Definition 2.16 A point x of X is said to be a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable.

Clearly every condensation point of A is its limit point. Let $Cond(A) = \{x:x \text{ is a condensation point of } A\}$ and $Limit(A) = \{x:x \text{ is a limit point of } A$. Obviously $Limit(A) \supseteq Cond(A)$.

Definition 2.17 A subset B of X is said to be ω -closed in (X,τ) if $B \supseteq Cond(B)$.

It is easy to see that every closed set is ω -closed. The complement of an ω -closed set is ω -open. Khalid Y.Al.Zoubi, Al.Nashef established that the collection of all ω -open sets in (X,τ) is a topology on X denoted by τ_{ω} which is finer than τ . Let $Cl_{\omega}()$ and $Int_{\omega}()$ denote the closure and interior operators in (X, τ_{ω}) .

Lemma 2.18 A subset B of X is ω -open in (X,τ) if and only if for each $x \in B$ there exists $U \in \tau$ such that U\B is countable. Equivalently $x \in Int_{\omega}B$ if and only if there exists $U \in \tau$ such that U\B is countable.

3. ρ - ω *- OPEN SETS where $\rho \in \{\text{semi, pre, } \alpha, \beta, b\}$

3. ω-NEAR RELATION

There are distinct subsets of a topological space having the same ω -interior. For instance consider the topology $\tau = \{\emptyset, Q, R\}$ where R is the set of real numbers and Q is the set of rational numbers. It is easy to see that every subset of Q is ω -open in (R, τ) . Let A be a non empty subset of Q. If x and y are any two distinct irrational numbers then $A_x = A \cup \{x\}$ and $A_y = A \cup \{y\}$ have the same ω -interior in (R, τ) . That is $Int_{\omega}A_x = Int_{\omega}A_y = A$. This motivates us to have the following definition.

Definition 3.1 The set A is ω -near to B if $Int_{\omega}A = Int_{\omega}B$.

Example 3.2 Let (R, τ) be the topological space where $\tau = \{\emptyset, Q, R\}$. It is easy to see that every subset of Q is ω -open in (R, τ) . Let N, W and Z respectively denote the set of all natural numbers, whole numbers and integer. If A and B are disjoint finite or countable subsets of Q^c then $Int_{\omega}(N \cup A) = Int_{\omega}(N \cup B) = N$, $Int_{\omega}(W \cup A) = Int_{\omega}(W \cup B) = W$,

 $Int_{\omega}(Z \cup A) = Int_{\omega}(Z \cup B) = Z$ and $Int_{\omega}(Q \cup A) = Int_{\omega}(Q \cup B) = Q$ so that $N \cup A$ is ω - near to $N \cup B$, $W \cup A$ is ω - near to $W \cup B$, $Z \cup A$ is ω - near to $Z \cup B$.

Proposition 3.3 A is ω -near to B \Rightarrow A is near to B. The converse need not be true.

Proof. A is ω -near to B \Rightarrow *Int* $_{\omega}$ A = *Int* $_{\omega}$ B.

 $\Rightarrow IntA \subseteq Int_{\omega} A = Int_{\omega} B \subseteq B.$

 \Rightarrow *Int* A \subseteq B \Rightarrow *Int* A \subseteq *Int* B.

Again A is ω -near to $B \Longrightarrow Int_{\omega} B = Int_{\omega} A$.

 $\Rightarrow IntB \subseteq Int_{\omega} B = Int_{\omega} A \subseteq A.$

 \Rightarrow *Int* B \subseteq A \Rightarrow *Int* B \subseteq *Int* A.

Therefore, IntA = IntB that implies A is near to B. However the reverse implication need not true as shown below. As seen from Example 3. 2,

 Int_{ω} (N \cup A) = Int_{ω} (N \cup B) =N and

Int $(N \cup A) = Int(N \cup B) = \emptyset$ that implies $N \cup A$ is ω -near to $N \cup B$ and $N \cup A$ is near to $N \cup B$ respectively. This example shows that near $\Rightarrow \omega$ - near.

It is easy to check that Q is ω -closed and Q^c is ω -open in the real line with standard topology. It is easy to check that *Int* Q = *Int* Q^c = \emptyset but $Int_{\omega}Q = \emptyset$ and $Int_{\omega}Q^{c} = Q^{c}$ so that Q is near to Q^c but Q is not ω -near to Q^c which shows that near relation does not imply ω -near relation.

Lemma 3. 4 Let (X,τ) be a topological space. The relation " is ω -near to" is an equivalence relation on the power set of X.

Proof. Let A, B, C be the subsets of X. Since $Int_{\omega} A = Int_{\omega} A$, A is ω -near to A so that the relation is reflexive.

A is ω -near to B \Rightarrow *Int* $_{\omega}$ A = *Int* $_{\omega}$ B \Rightarrow *Int* $_{\omega}$ B = *Int* $_{\omega}$ A \Rightarrow B is ω -near to A.

A is ω -near to B and B is ω -near to C \Rightarrow Int $_{\omega}$ A = Int $_{\omega}$ B and Int $_{\omega}$ B = Int $_{\omega}$ C

 \Rightarrow *Int*_{ω}A = *Int*_{ω}C.

 \Rightarrow A is ω -near to C.

The equivalence classes of the relation "is ω -near to" are called the ω -near classes of the subsets of X. If A is a subset of X, then the ω -near class of A = ω -near[A] = {B: A is ω -near to B}.

Proposition 3. 5 There is an one-to-one correspondence between $\omega O(X, \tau)$ and the collection of ω -near classes in X,

Proof. For any ω -open set O in (X,τ) , a subset A of X is ω -near to O if and only if $O = Int_{\omega}A$. Conversely, every subset A of X is ω -near to some ω -open set in (X,τ) . This proves the proposition.

Corollary 3. 6 The set $B \in \omega$ -near[A] $\Leftrightarrow A \in \omega$ -near[B]

Example 3.7 Let X = R, the set of all real numbers. Fix $t \in R$. Then $\tau = \{ \emptyset, \{t\}, R \}$ is a topology on R. $\tau' = \{ \emptyset, R \setminus \{t\}, R \}$ = the set of all closed sets in (R, τ) . Let A, B be subsets of R with $t \in A$ and $t \notin B$. We compute the condensation points of A and B.

 $x \in Cond(A) \Leftrightarrow$ for every $U \in \tau$ with $x \in A$, $U \cap A$ is uncountable.

 $x \notin Cond(A) \Leftrightarrow$ there exists $U \in \tau$ with $x \in A, U \cap A$ is not uncountable.

By taking $U = \{t\}$, we see that tis neither a condensation point of Anor a condensation point of B. So let $x \in R$ and $x \neq t$. The only open set containing x is R.

Since $R \cap A = A$, it is clear that $R \cap A$ is uncountable if and only if A is uncountable,

 $R \cap A$ is countable if and only if A is countable ,

 $R \cap A$ is finite if and only if A is finite.

Therefore, $Cond(A) = Cond(B) = \emptyset$ if and only if A and B are finite or countable.

 $Cond(A) = Cond(B) = R \setminus \{t\}$ if and only if A, B are uncountable.

Thus, if A and B are finite or countable then they are ω -closed. If A and B are uncountable, then $A \cup (R \setminus \{t\}) = R$ and $B \cup (R \setminus \{t\}) = R \setminus \{t\}$ are ω -closed sets.

Therefore, $\omega C(\mathbf{R}, \tau) = \{A: A \text{ is a finite or countable subset of } \mathbf{R}\} \cup \{\emptyset, \mathbf{R} \setminus \{t\}, \mathbf{R}\}.$

 $\omega O(R, \tau) = \{A: A \text{ is an uncountable subset of } R, R \setminus A \text{ is finite or countable} \} \cup \{ \emptyset, \{ t \}, R \}.$

This shows that ω -topology of (R, τ) is strictly finer than τ .

Clearly,{t}, R\{t} are both ω -closed and ω -open in (R, τ) and {t} is the only non empty finite set which is ω -open.

In the following three cases, we assume $A \subseteq R$, $t \in A$, $B \subseteq R$, $t \notin B$, $B \neq \emptyset$.

Case-1: Suppose A and B are finite or countable.

 $IntA = \{t\} = Int_{\omega}A$ and $Int B = \emptyset$, $Int_{\omega} B = \emptyset$. This shows that

A is neither ω -near to B nor near to B.

Case-2:Suppose A and B are uncountable such that $R \setminus B$, $R \setminus A$ are finite or countable.

Int_{ω}A =A, Int A ={t} and Int_{ω}B = BandInt B = \emptyset .

This shows that A is neither ω -near to B nor near to B.

Case-3: Suppose A and B are uncountable such that $R\setminus A$ and $R\setminus B$ are uncountable.

 $Int_{\omega}A = \{t\}, Int A = \{t\} \text{ and } Int_{\omega}B = \emptyset, Int B = \emptyset.$

This shows that A is neither ω -near to B nor near to B.

In the following three cases, we assume $A \subseteq R$, $B \subseteq R$, $t \in A$, $t \in B$, $B \neq A$.

Case-4: Suppose A and B are finite or countable.

 $IntA = \{t\} = Int_{\omega}A$ and $IntB = \{t\} = Int_{\omega}B$. This shows that

A is ω -near to B and A is near to B.

Case-5: Suppose A and B are uncountable such that $R\setminus B$, $R\setminus A$ are finite or countable.

 $Int_{\omega}A = A$, $Int A = \{t\}$ and $Int_{\omega}B = B$, $Int B = \{t\}$.

This shows that A is not ω -near to B but A is near to B.

Case-6: Suppose A and B are uncountable such that $R \setminus A$ and $R \setminus B$ are uncountable.

 $Int_{\omega}A = \{t\}$, $Int A = \{t\}$ and $Int_{\omega}B = \{t\}$, $Int B = \{t\}$.

This shows that A is ω -near to B and is near to B.

In the following three cases, we assume $\emptyset \neq A \subseteq R$, $\emptyset \neq B \subseteq R$, $t \notin A$, $t \notin B$, $B \neq A$.

Case-7: Suppose A and B are finite or countable.

 $IntA=\emptyset$, $Int_{\omega}A=\emptyset$ and $IntB=\emptyset=Int_{\omega}B$. This shows that

A is ω -near to B and A is near to B.

Case-8: Suppose A and B are uncountable such that $R\setminus B$, $R\setminus A$ are finite or countable.

 $Int_{\omega}A=A, IntA=\emptyset$ and $Int_{\omega}B=B$ and $Int B=\emptyset$.

This shows that A is not ω -near to B but A is near to B.

Case-9:Suppose A and B are uncountable such that $R\setminus A$ and $R\setminus B$ are uncountable.

 $Int_{\omega}A = \emptyset$, $Int A = \emptyset$ and $Int_{\omega}B = \emptyset$, $Int B = \emptyset$..

This shows that A is ω -near to B and is near to B.

The proper subsets of R will be classified in the following ways.

 $PR_1 = \{A: A \subset R, A \text{ is finite or countable}\}$

 $PR_2 = \{A: A \subset R, A \text{ is uncountable with finite or countable complement }\}$

 $PR_3 = \{A: A \subset R, A \text{ is uncountable with uncountable complement } \}$

The above discussion leads to the following table which compares the near and ω -near classes

Open/ω-open set A	Near[A] where $A \in \tau$	ω -near[A] where A $\in \tau_{\omega}$
Ø	$\{B: B \subset R, t \notin B\}$	$\{B: B \in PR_1 \cup PR_3, t \notin B\}$
{t}	$\{B: B \subset \mathbb{R}, t \in B\}$	$\{B: B \in PR_1 \cup PR_3, t \in B\}$
R	{R}	{R}
A ∈PR ₂	Not applicable	{A}

Table 3.8 C	omparison of	near and	ω-near classes.
-------------	--------------	----------	-----------------

Proposition 3.9 Every regular ω^* -open set is near to a regular ω -closed set.

Proof. Let A be a regular ω^* -open set. We have .

A= $IntCl_{\omega}IntA$ that implies IntA= $IntCl_{\omega}IntA$ = $Int(Cl_{\omega}IntA)$ which shows that A is near $Cl_{\omega}IntA$. Since $Cl_{\omega}IntA$ is regular ω -closed, it follows that A is near to a regular ω -closed set.

Proposition 3. 10 Let A be a subset of X.

(i) A is semi- ω -closed \Leftrightarrow A is near to $Cl_{\omega}A$.

(ii) A is β - ω -closed in (X, τ) \Leftrightarrow A is near to a regular ω -closed set.

Proof. Suppose A is semi- ω -closed in (X,τ) . Then $IntA = IntCl_{\omega}A$ that implies A is near to $Cl_{\omega}A$. The converse part is obvious. This proves (i). Suppose A is β - ω -closed in (X,τ) . Then $IntCl_{\omega}Int A \subseteq A$ that implies $IntA \subseteq IntCl_{\omega}Int A \subseteq IntA$ that proves that A is near to $Cl_{\omega}Int A$. The converse part is trivial. This proves (ii).

Proposition 3.11

- (i) If A is regular ω -open then A is ω -near to ClA.
- (ii) If A is α - ω -closed then A is near to $Cl_{\omega}A$.
- (iii) If A is pre- ω -closed or b- ω -closed or b[#]- ω -closed or *b- ω -closed, then A is near to a regular ω -closedset.

Proof .A is regular ω -open $\Rightarrow A = Int_{\omega}ClA \Rightarrow Int_{\omega}A = Int_{\omega}ClA$

 \Rightarrow A is ω -near to ClA

A is α - ω -closed \Rightarrow $Cl_{\omega}IntCl_{\omega}A \subseteq A \Rightarrow$ $IntCl_{\omega}A \subseteq A$

 \Rightarrow IntCl_wA \subseteq IntA

$$\Rightarrow IntA \subseteq IntCl_{\omega}A \subseteq IntA$$

$$\Rightarrow$$
 IntA = IntCl_wA

 \Rightarrow A is near to Cl_{ω} A

The set A is pre- ω -closed $\Rightarrow b$ - ω -closed $\Rightarrow \beta$ - ω -closed

$$\Rightarrow$$
A is near to $Cl_{\omega}Int$ A.

The set A is *b- ω -closed \Rightarrow b- ω -closed \Rightarrow β - ω -closed

 \Rightarrow A is near to $Cl_{\omega}Int$ A.

The set A is $b^{\#}-\omega$ -closed $\Rightarrow b-\omega$ -closed $\Rightarrow \beta-\omega$ -closed

 \Rightarrow A is near to $Cl_{\omega}Int$ A.

Proposition 3. 12 Let A be a subset of X.

(i) A is semi- ω^* -closed \Leftrightarrow A is ω -near to ClA.

(ii) A is β - ω *-closed in (X, τ) \Leftrightarrow A is ω -near to a regular ω *-closed set.

Proof. Suppose A is semi- ω^* -closed in (X, τ). Then $Int_{\omega}A = Int_{\omega}ClA$ that implies A is ω -near to *ClA*. The convers part is obvious. This proves (i). Suppose A is β - ω^* -closed in (X, τ). Then $Int_{\omega}A = Int_{\omega}ClInt_{\omega}A$ that proves that A is ω -near to $ClInt_{\omega}A$. The converse part is trivial. This proves (ii)

Proposition 3.13

- (i) If A is regular ω^* -open then A is near to $Cl_{\omega}A$.
- (ii) If A is α - ω *-closed then A is ω -near to ClA.
- (iii) If A is pre- ω^* -closed or b- ω^* -closed or b[#]- ω^* -closed or *b- ω^* closed, then A is ω -near to a regular ω^* -closed set.

Proof. A is regular ω^* -open $\Rightarrow A = IntCl_{\omega}A \Rightarrow IntA = IntCl_{\omega}A$

 \Rightarrow A is near to Cl_{ω} A

A is α - ω *-closed \Rightarrow *ClInt* $_{\omega}$ *ClA* \subseteq A \Rightarrow *Int* $_{\omega}$ *ClA* \subseteq A

 \Rightarrow *Int*_{ω}*ClA* \subseteq *Int*_{ω}A

 \Rightarrow Int_wA \subseteq Int_wClA \subseteq Int_wA

 $\Rightarrow Int_{\omega}A = Int_{\omega}ClA$

 \Rightarrow A is ω -near to ClA

The set A is pre- ω^* -closed \Rightarrow b- ω^* -closed $\Rightarrow\beta$ - ω^* -closed

 \Rightarrow A is ω -near to *ClInt* $_{\omega}$ A.

The set A is *b- ω *-closed \Rightarrow b- ω *-closed \Rightarrow β - ω *-closed

 \Rightarrow A is ω -near to *ClInt* $_{\omega}$ A.

The set A is $b^{\#}-\omega^{*}$ -closed $\Rightarrow b-\omega^{*}$ -closed $\Rightarrow \beta-\omega^{*}$ -closed

 \Rightarrow A is ω -near to *ClInt* $_{\omega}$ A.

Proposition 3. 14 Let A be ω -near to B and C be ω -near to D. Then

(i) $A \cap C$ is ω -near to $B \cap D$

(ii) $A \cap D$ is ω -near to $B \cap C$

Proof. Suppose A is ω -near to B and C is ω -near to D. Then $Int_{\omega}A = Int_{\omega}B$ and $Int_{\omega}C = Int_{\omega}D$. Now $Int_{\omega}(A \cap C) = Int_{\omega}A \cap Int_{\omega}C = Int_{\omega}B \cap Int_{\omega}D = Int_{\omega}(B \cap D)$ that implies $A \cap C$ is ω -near to $B \cap D$. This proves (i) and the proof for (ii) is analog.

Definition 3. 15 Let $B \in \omega$ -near[A]. If $B \subseteq A$ then, B is called a ω -near subset of A and if $B \supseteq A$ then B is called a ω -near superset of A in X.

Proposition 3. 16 The set B is a ω -near subset of A \Leftrightarrow A is a ω -near super set of B.

Proof. The set B is a ω -near subset of A \Leftrightarrow B $\in \omega$ -near[A] and B \subseteq A

 $\Leftrightarrow A \in \omega$ -near[B] and $A \supseteq B$

 \Leftrightarrow A is a ω -near super set of B.

Proposition 3. 17 Every ω -near subset of an ω -open set is ω -open.

Proof. Let B be a ω - near subset of A and A be ω -open. Then

 $B \subseteq A = Int_{\omega}A = Int_{\omega}B$ that implies $B = Int_{\omega}B$ is ω -open.

Proposition 3. 18 Let B be a ω -near subset of A. The set B is semi- ω -open or α - ω -open according as A is semi- ω -open or α - ω -open.

Proof. Suppose A is semi- ω -open. Then A \subseteq *ClInt* $_{\omega}$ A. Since A is ω -near to B, *Int* $_{\omega}$ A = *Int* $_{\omega}$ B that implies B \subseteq A \subseteq *ClInt* $_{\omega}$ A=*Cl Int* $_{\omega}$ B. This proves that B is semi- ω -open. If A is α - ω -open, then A \subseteq *Int* $_{\omega}$ *Cl Int* $_{\omega}$ A that implies B \subseteq A \subseteq *Int* $_{\omega}$ *ClInt* $_{\omega}$ A = *Int* $_{\omega}$ *ClInt* $_{\omega}$ B, proving that B is α - ω -open. This proves (i).

Proposition 3. 19 Let B be a near subset of A. The set B is semi- ω -open or α - ω *-open according as A is semi- ω *-open or α - ω *-open.

Proof. Suppose A is semi- ω^* -open. Then A $\subseteq Cl_{\omega}IntA$. Since A is near to B, IntA = IntB that implies B $\subseteq A \subseteq Cl_{\omega}IntA = Cl_{\omega}IntB$. This proves that B is semi- ω^* -open. If A is α - ω^* -open then A $\subseteq Int Cl_{\omega}IntA$ that implies B $\subseteq A \subseteq Int Cl_{\omega}IntA = Int Cl_{\omega}IntB$, proving that B is α - ω^* -open.

Corollary 3.20

- (i) A is semi- ω -open \Leftrightarrow every ω -near subset of A is semi- ω -open.
- (ii) A is α - ω -open \Leftrightarrow every ω -near subset of A is α - ω -open.
- (iii) A is semi- ω^* -open \Leftrightarrow every near subset of A is semi- ω^* -open.
- (iv) A is α - ω *-open \Leftrightarrow every near subset of A is α - ω *-open.

Proposition 3. 21 If A is an ω -t-set then

- (i) A is near to ClA and $Cl_{\omega}A$ and
- (ii) ClA is near to and ω -near to $Cl_{\omega}A$.

Proof. Let A be an ω -t-set. We have

 $IntA = IntClA = Int_{\omega}ClA = Int Cl_{\omega}A = Int_{\omega}Cl_{\omega}A.$

IntA= IntClA = Int $Cl_{\omega}A \Rightarrow A$ is near to ClA and $Cl_{\omega}A$. This proves (i)

IntClA= IntCl_{ω} A \Rightarrow ClA is near to Cl_{ω}A.

Int_{ω}ClA= Int_{ω}Cl_{ω} A \Rightarrow ClA is ω -near to Cl_{ω}A. This proves (ii).

Proposition 3. 22 Let A and B be any two subsets of an anti locally countable space (X, τ) . Then, the following results always hold.

- (i) If A and B are closed sets then A is near to B if and only if A is ω -near B.
- (ii) Cl A is near to Cl B \Leftrightarrow Cl A is ω -near Cl B.

(iii) $Cl_{\omega}A$ is ω -near to $Cl_{\omega}B \Leftrightarrow Cl A$ is near Cl B.

Proof. Let (X, τ) be an anti locally countable space. Let A and B be any two closed sets. Then using we have $IntA = Int_{\omega}A$ and $IntB = Int_{\omega}B$ that implies $IntA = IntB \Leftrightarrow Int_{\omega}A = Int_{\omega}B$ that proves that A is near to B \Leftrightarrow A is ω -near B.

This proves (i).

Now let A and B be any two subsets of X. Then, using

 $IntClA = Int_{\omega}ClA$ and $IntClB = Int_{\omega}ClB$.

 $Int_{\omega}Cl_{\omega}A = IntCl_{\omega}A$ and $Int_{\omega}Cl_{\omega}B = IntCl_{\omega}B$.

 \Rightarrow IntClA = IntClB \Leftrightarrow Int_{ω}ClA = Int_{ω}ClB

 \Rightarrow *Cl* A is near to *Cl* B \Leftrightarrow *Cl* A is ω -near *Cl* B.

 $\Rightarrow Int_{\omega}Cl_{\omega}A = Int_{\omega}Cl_{\omega}B \Leftrightarrow IntCl_{\omega}A = IntCl_{\omega}B$

 \Rightarrow *Cl*_{ω}A is ω -near to *Cl*_{ω}B \Leftrightarrow *Cl* A is near *Cl* B.

Proposition 3. 23 In an anti locally countable space,

(i) every regular ω -closed set is near to a regular closed set.

(ii) every regular ω -closed set is ω -near to a regular closed set.

(iii) every regular closed set in (X, τ_{ω}) is near to a regular ω^* -closed set.

(iv) every regular closed set in (X, τ_{ω}) is ω -near to a regular ω^* -closed set.

Proof. Let X be an anti locally countable space and A be regular ω -closed. we have

Int $Cl_{\omega}IntA = Int ClIntA$.

 $Int_{\omega}Cl_{\omega}IntA = Int_{\omega}ClIntA.$

Int $Cl_{\omega}Int_{\omega}A = Int ClInt_{\omega}A$.

 $Int_{\omega}Cl_{\omega}Int_{\omega}A = Int_{\omega}ClInt_{\omega}A.$

 \Rightarrow every regular ω -closed set is near to a regular closed set.

 \Rightarrow every regular ω -closed set is ω -near to a regular closed set.

 \Rightarrow every regular closed set in (X, τ_{ω}) is near to a regular ω^* -closed set.

 \Rightarrow every regular closed set in (X, τ_{ω}) is ω -near to a regular ω^* -closed set.

Proposition 3.24

(i) If A is a Q ω -set, then *ClInt* $_{\omega}$ A is both ω -near and near to *Cl*A.

(ii) If A is a Q ω -set in an anti locally countable space, then $Cl_{\omega}Int_{\omega}A$ and Cl $Int_{\omega}A$ are near to ClA.

(iii) If B is a Q ω *-set in an anti locally countable space, then *Cl Int*B is ω -near to $Cl_{\omega}B$ and also near $Cl_{\omega}B$.

Proof.Let A be a Q ω -set. Then $ClInt_{\omega}A = Int_{\omega}$ ClA that implies $Int_{\omega}ClInt_{\omega}A = Int_{\omega}$ ClA so that $ClInt_{\omega}A$ is ω -near ClA.

Also $ClInt_{\omega}A = Int_{\omega} ClA \Longrightarrow Int ClInt_{\omega}A = Int Int_{\omega}ClA = IntClA$

 \Rightarrow *ClInt*_{ω}A is near *Cl*A. This proves (i).

Now,let A be a Q ω -set and B be a Q ω *-set in an anti locally countable space. Since A is a Q ω -set , we have

 $Cl_{\omega}Int_{\omega}A = IntClA = ClInt_{\omega}A$

 \Rightarrow *IntCl*_{\omega}*Int*_{\omega}A = *IntCl*A = *IntCl Int*_{\omega}A that implies both Cl_{\omega}*Int*_{\omega}A and ClInt_{\omega}A are near to ClA.

Now since B is a $Q\omega^*$ -set, we have

 $Cl IntB = Int_{\omega}Cl_{\omega}B = IntCl_{\omega}B.$

 $\Rightarrow IntCl IntB = IntInt_{\omega}Cl_{\omega}B = IntIntCl_{\omega} B$

 $\Rightarrow IntCl IntB = IntCl_{\omega}B = IntCl_{\omega}B$

 \Rightarrow *Cl Int*B is near to *Cl*_{ω}B.

Also \Rightarrow *Int*_{ω}*Cl Int*B = *Int*_{ω}*Int*_{ω}*Cl*_{ω}B = *Int*_{ω}*IntCl*_{ω}B

 $\Rightarrow Int_{\omega}Cl \ IntB = Int_{\omega}Cl_{\omega}B = IntCl_{\omega}B = Int_{\omega}Cl_{\omega}B$

(since the space is anti locally finite)

 \Rightarrow *Cl Int*B is ω -near to *Cl* $_{\omega}$ B.

REFERENCES

- 1. Andrijevic D, 'Semi-pre-open sets', Math. Vesnik, vol. 38(1986), pp.24-32.
- 2. Andrijevic D, 'On b-open sets', Mat. Vesnik, vol. 48(1996), pp. 59-64.
- 3. Arya SP and Nour TM, 'Characterizations of s-normal Spaces', *Indian. J. Pure. Appl. Math.*, vol.19(1988), pp.42-50.
- 4. Chattopadhyay C and Bandyopadhyay C, 'On structure of δ-sets', *Bulletin of Calcutta Mathematical Society*, vol.83(1991), pp.281-290.
- 5. Chattopadhyay C and Roy UK, 'δ-sets, irresolvable and resolvable spaces', *Mathematica Slovaca*,vol.42(1992), pp.371-378.
- 6. Chiralekha R, Anitha M and Meena N, 'Near and closer relations in topology' *Malaya Journal of Metematik*, vol.8, no.4 (2020), pp.2169-2172.
- 7. Chiralekha R, ' On b-open sets, near and closer relations in topology and related concepts' *Ph.D thesis, Manonmniam Sundaranar University*, India.(2021),
- 8. Dontchev J, 'On generalizing semi-pre-open sets', *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, vol 16(1995),, pp.36 48.
- Kumar, S. A. S., Naveen, R., Dhabliya, D., Shankar, B. M., & Rajesh, B. N. (2020). Electronic currency note sterilizer machine. Materials Today: Proceedings, 37(Part 2), 1442-1444. doi:10.1016/j.matpr.2020.07.064
- Mandal, D., Shukla, A., Ghosh, A., Gupta, A., & Dhabliya, D. (2022). Molecular dynamics simulation for serial and parallel computation using leaf frog algorithm. Paper presented at the PDGC 2022 - 2022 7th International Conference on Parallel, Distributed and Grid Computing, 552-557. doi:10.1109/PDGC56933.2022.10053161 Retrieved from <u>www.scopus.com</u>

- Mehraj, H., Jayadevappa, D., Haleem, S. L. A., Parveen, R., Madduri, A., Ayyagari, M. R., & Dhabliya, D. (2021). Protection motivation theory using multi-factor authentication for providing security over social networking sites. Pattern Recognition Letters, 152, 218-224. doi:10.1016/j.patrec.2021.10.002
- Raghavendra, S., Dhabliya, D., Mondal, D., Omarov, B., Sankaran, K. S., Dhablia, A., . . Shabaz, M. (2022). Development of intrusion detection system using machine learning for the analytics of internet of things enabled enterprises. IET Communications, doi:10.1049/cmu2.12530
- 13. Gnanambal Y, 'On generalized pre regular closed sets in topological spaces', *Indian J. Pure. Appl. Math.*, vol.28(1997), pp.351 360.
- 14. Indira T & Rekha K, ' Applications of *b-open sets and **b-open sets in topological spaces' *Annals of Pure and Applied Mathematics*, vol.1, no.1(2012), pp.44-56.
- 15. Indira T & Rekha K,'Decomposition of Continuity via *b-open Set', Acta Ciencia Indica, Vol.39 M, no.1(2013), pp. 73-85.
- 16. Levine N, 'On the commutativity of the interior and closure operators in topological spaces', *Amer.Math.Monthly*, vol.68(1961), pp.474-477.
- 17. Levine N,'Semiopen Sets and Semi Continuity in Topological Spaces', *Amer.Math.Monthly*, vol.70(1963), pp. 36-41.
- 18. Levine N, 'Generalized closed sets in topology', *Rend. Circ. Mat. Palermo*, vol.19, no.2(1970), pp. 89-96.
- 19. Maki H, Umehara J and NoiriT, 'Every topological space is pre-T_{1/2}', *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.* vol.17(1996), pp.33 42.
- 20. Maki H, Balachandran K and Devi R, 'Generalized α-closed sets in topology', *Bull. Fukuoka Univ. Ed part III*, vol.42(1993), pp.13 21.
- Maki H, Balachandran K and Devi R, 'Associated topologies of generalized α-closed sets and α-generalized closed sets', *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, vol.15 (1994), pp.57 63.
- 22. Mashhour AS, Abd El-Monsef ME & El-Deeb SN, 'On Pre-Continuous and Weak Pre-Continuous Functions', *Proc. Math. Phys. Soc. Egypt*, vol. 53(1982), pp. 47-53.
- 23. Murugesan S, ' On Rω-open sets', *Journal of Advanced Studies in Topology*, vol.5, no.3(2014), pp.24-27.
- 24. Nagaveni N, Studies on Generalizations of Homeomorphisms in Topological spaces', *Ph.D. Thesis, Bharathiar University*, Coimbatore(1999),.
- 25. Palaniappan N and Rao KC, 'Regular generalized closed sets', *Kyungpook Math. J.*, vol.33(1993), pp. 211 219.
- 26. Samer Al Ghour, Souad Al-Zoubi, 'A new class between theta open sets and theta omega open sets', *Heliyon*, vol.7(2021), pp. 1-11.
- 27. Stone MH, 'Application of the Theory of Boolean Rings to the General Topology', *Trans. A.M.S.*, vol. 41(1937), pp. 375-481.
- 28. Takashi Noiri, 'Super Continuity and Some Strong Forms of Continuity', *Indian J. Pure Appl.Math.*, vol.15, no. 3(1984), pp. 241-250.
- 29. Thamizharasi G, 'Studies in Bitopological Spaces', *Ph.D Thesis, Manonmaniam Sundaranar University*, Tirunelveli, TN, India.(2010),

- 30. Thangavelu P & Rao KC, 'p-sets in Topological Spaces', *Bulletion of Pure and Applied Sciences*, vol.21E, no. 2(2002),, pp. 341-355.
- 31. Thangavelu P & Rao KC,' q-sets in Topological Spaces', *Prog.of Maths*, vol.36, no. 1&2(2002),, pp. 159-165.
- 32. Usha Parameswari R,'A Study on Generalization of b-Open Sets and Related Concepts in Topology', *Ph.D Thesis, Manonmaniam Sundaranar University*, Tirunelveli- 12, India.(2015),
- 33. Usha Parameswari R& Thangavelu P, 'On b[#]-open Sets', *International Journal of Mathematics Trends and Technology*, vol. 5, no. 3(2014), pp. 202-218.