Near and Closer Relations Via ω-Open Sets

${ }^{1}$ P. REVATHI, ${ }^{2}$ B. MEERA DEVI AND ${ }^{3}$ O.RAVI

${ }^{1}$ Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai -21, Tamilnadu, India, e-mail: revsanjeeve@gmail.com.
${ }^{2}$ Assistant Professor, Department of Mathematics, Sri S Ramasamy Naidy Memorial College, Virudhunagar Dt, Tamilnadu, India, e-mail: abmeeradevi@gmail.com.
${ }^{1}$ Associate Professor, Department of Mathematics, PMT College, Usilampatti, Madurai District, Tamil nadu, India, e-mail: siingam@ yahoo.com.

Article Info

Page Number: 1509-1523
Publication Issue:
Vol. 70 No. 2 (2021)

Abstract

This papeer is divided into two sections. The concepts of near and closer relations that are defined respectively using the interior and closure operators in omega topology, are respectively discussed in the first and second sections.

Article History

Article Received: 20 September 2021
Revised: 22 October 2021
Accepted: 24 November 2021

1. Introduction

This paper starts by introducing the notions of ω-near and ω-closer relations on the subsets of a topological space. Some of the recent concepts that are available in the literature of topology and its omega topology are characterized using the above relations.

2. Prelimeneries

Result 2.1

Let A and B be any two subsets of a topological space (X, τ). The following relations on the interior and closure operators will be useful.

2010 Mathematics Subject Classification: 54A05, 54A10
Key words and phrases., ω-near and ω-closer relations, regular ω^{*}-open sets, regular ω closed sets.

```
\(I n t \mathrm{~A} \subseteq I n t C l I n t \mathrm{~A} \subseteq C l I n t \mathrm{~A} \subseteq C l \operatorname{Int} C l \mathrm{~A} \subseteq C l \mathrm{~A}\).
\(\operatorname{Int} \mathrm{A} \subseteq \operatorname{IntClInt} \mathrm{A} \subseteq \operatorname{Int} \mathrm{Cl} \mathrm{A} \subseteq C l \operatorname{IntClA} \subseteq C l \mathrm{~A}\).
\(\operatorname{IntCl}(\mathrm{A} \cap \mathrm{B}) \subseteq(\operatorname{IntClA}) \cap(\operatorname{IntClB})\).
ClInt \((\mathrm{A} \cap \mathrm{B}) \subseteq(C l I n t \mathrm{~A}) \cap(C l I n t \mathrm{~B})\).
\((I n t C l \mathrm{~A}) \cup(\operatorname{IntClB}) \subseteq \operatorname{IntCl}(\mathrm{A} \cup \mathrm{B})\).
```

$(C l \operatorname{Int} \mathrm{~A}) \cup(C l I n t \mathrm{~B}) \subseteq \operatorname{ClInt}(\mathrm{A} \cup \mathrm{B})$.
ClIntClInt $\mathrm{A}=$ ClInt A
IntClInt ClA $=$ IntClA.

Lemma 2.2

(i) If B is open then $(C l \mathrm{~A}) \cap \mathrm{B} \subseteq C l(\mathrm{~A} \cap \mathrm{~B})$.
(ii) If B is closed then $\operatorname{Int}(\mathrm{A} \cup \mathrm{B}) \subseteq(\operatorname{Int} \mathrm{A}) \cup \mathrm{B}$.

Lemma 2.3

(i) \quad ClInt $C l(A \cup B)=$ ClIntClA $\cup C l I n C l B$.
(ii) $\quad \operatorname{IntClInt}(\mathrm{A} \cap \mathrm{B})=\operatorname{Int}$ ClInt $\mathrm{A} \cap \operatorname{IntClInt} \mathrm{B}$.

Definition 2.4 The set A is called
(i) regular open if $\mathrm{A}=\operatorname{Int} C l \mathrm{~A}$,
(ii) semi-open if $\mathrm{A} \subseteq C l \operatorname{Int} \mathrm{~A}$,
(iii) pre-open if $\mathrm{A} \subseteq$ IntClA,
(iv) b -open if $\mathrm{A} \subseteq C l \operatorname{Int} \mathrm{~A} \cup \operatorname{Int} C l \mathrm{~A}$,
(v) \quad b-open if $\mathrm{A} \subseteq C l \operatorname{Int} \mathrm{~A} \cap \operatorname{Int} \operatorname{Cl} \mathrm{~A}$,
(vi) $\mathrm{b}^{\#}$-open if $\mathrm{A}=C l I n t \mathrm{~A} \cup I n t C l \mathrm{~A}$,

Definition 2.5 The set A is called
(i) a p-set if $\operatorname{ClInt} \mathrm{A} \subseteq \operatorname{Int} \operatorname{ClA}$,
(ii) a q-set if $\operatorname{Int} C l \mathrm{~A} \subseteq C l I n t \mathrm{~A}$,
(iii) a Q-set if IntClA \subseteq ClIntA,
(iv) at-set if $\operatorname{Int} \mathrm{A}=\operatorname{IntClA}$,
(v) $\quad \mathrm{a}$ t*-set if $C l \mathrm{~A}=C l I n t \mathrm{~A}$.

Definition 2.6 The set A is called
(i) α-open if $\mathrm{A} \subseteq$ IntClIntA.
(ii) β-open if $\mathrm{A} \subseteq$ ClIntClA.

Definition 2.7 The set A is called
(i) regular closed $\Leftrightarrow \mathrm{A}=\operatorname{ClInt} \mathrm{A}$,
(ii) semi-closed $\Leftrightarrow I n t C l \mathrm{~A} \subseteq \mathrm{~A}$,
(iii) pre-closed $\Leftrightarrow C l I n t \mathrm{~A} \subseteq \mathrm{~A}$,
(iv) $\quad \mathrm{b}$-closed $\Leftrightarrow C l \operatorname{Int} \mathrm{~A} \cap \operatorname{Int} C l \mathrm{~A} \subseteq \mathrm{~A}$,
(v) $\quad * \mathrm{~b}$-closed \Leftrightarrow ClInt $\mathrm{A} \cup$ IntClA $\subseteq \mathrm{A}$,
(vi) $\quad \mathrm{b}^{\#}$-closed $\Leftrightarrow C l \operatorname{Int} \mathrm{~A} \cap \operatorname{IntCl} \mathrm{~A} \subseteq \mathrm{~A}$,
(vii) $\quad \alpha$-closed $\Leftrightarrow C l \operatorname{Int} C l \mathrm{~A} \subseteq \mathrm{~A}$,
(viii) β-closed $\Leftrightarrow \operatorname{Int} C$ IInt $\mathrm{A} \subseteq \mathrm{A}$.

Lemma 2.8 The set A is
(i) regular open $\Leftrightarrow \mathrm{A}=$ IntClInt A ,
(ii) regular closed $\Leftrightarrow \mathrm{A}=\operatorname{ClIntCl} \mathrm{A}$,
(iii) semi-open $\Leftrightarrow C l \mathrm{~A}=$ ClInt A ,
(iv) semi-closed $\Leftrightarrow \operatorname{Int} \mathrm{A}=\operatorname{Int} C l \mathrm{~A}$,
(v) β-open $\Leftrightarrow C l \mathrm{~A}=$ ClIntClA,
(vi) β-closed \Leftrightarrow Int $\mathrm{A}=\operatorname{Int}$ ClInt A .

Lemma 2.9

(i) If A or B is semi-open then $\operatorname{IntCl} \mathrm{A} \cap \operatorname{Int} C l \mathrm{~B}=\operatorname{IntCl}(\mathrm{A} \cap \mathrm{B})$.
(ii) If A or B is semi-closed then $\operatorname{ClInt}(\mathrm{A} \cup \mathrm{B})=\operatorname{ClInt} \mathrm{A} \cup \operatorname{ClInt} \mathrm{B}$.

Definition 2.10 Let A and B be any two subsets of a space (X, τ). We say that
(i) A is near to B in (X, τ) if $\operatorname{Int} \mathrm{A}=\operatorname{Int} \mathrm{B}$
(ii) A is closer to B in (X, τ) if $C l \mathrm{~A}=C l \mathrm{~B}$.
(iii) A is almost near to B in (X, τ) if $\operatorname{IntClA}=\operatorname{IntCl\mathrm {B}}$.
(iv) A is almost closer to B in (X, τ) if ClInt $\mathrm{A}=\operatorname{IntClB}$.

Definition 2.11 A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called
(i) regular continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X for each $\mathrm{V} \in \sigma$,
(ii) regular irresolute if $f^{-1}(V)$ is regular open in X for each $\mathrm{V} \in \mathrm{RO}(\mathrm{Y}, \sigma)$.

Other types of continuity and irresoluteness can be analogously defined.

Definition 2.12 By a neighourhood (briefly nbd) of a point x in a space X we mean an open set containing x .

Definition 2.13 A space X is locally countable if the space has a base consisting of countable sets and is anti locally countable if every non-empty open set in X is uncountable.

Definition 2.14 For every open neighbourhood U of A,
(i) if $\mathrm{ClA} \subseteq \mathrm{U}$ then A is g -closed,
(ii) if $\mathrm{Cl} \operatorname{Int} \mathrm{A} \subseteq \mathrm{U}$ then A is wg-closed,
(iii) if $\alpha C l \mathrm{~A} \subseteq \mathrm{U}$ then A is $\alpha \mathrm{g}$-closed,
(iv) if $\mathrm{sCl} \mathrm{A} \subseteq \mathrm{U}$ then A is gs-closed,
if $\mathrm{pCl} \mathrm{A} \subseteq \mathrm{U}$ then A is gp-closed and
(vi) if $\beta C l \mathrm{~A} \subseteq \mathrm{U}$ then A is $\mathrm{g} \beta$-closed.

Definition 2.15

(i) If $\mathrm{A} \subseteq \mathrm{V}, \mathrm{V}$ is regular open $\Rightarrow C l \mathrm{~A} \subseteq \mathrm{~V}$ then A is rg-closed.
(ii) If $\mathrm{A} \subseteq \mathrm{V}, \mathrm{V}$ is regular open $\Rightarrow p C l \mathrm{~A} \subseteq \mathrm{~V}$ then A is gpr-closed.
(iii) If $\mathrm{A} \subseteq \mathrm{V}, \mathrm{V}$ is α-open $\Rightarrow \alpha C l \mathrm{~A} \subseteq \mathrm{~V}$ then A is g α-closed.

Definition 2.16 A point x of X is said to be a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable.

Clearly every condensation point of A is its limit point. Let $\operatorname{Cond}(A)=\{x: x$ is a condensation point of $A\}$ and $\operatorname{Limit}(A)=\{x: x$ is a limit point of A. Obviously $\operatorname{Limit}(A) \supseteq \operatorname{Cond}(A)$.

Definition 2.17 A subset B of X is said to be ω-closed in (X, τ) if $B \supseteq \operatorname{Cond}(B)$.
It is easy to see that every closed set is ω-closed. The complement of an ω-closed set is ω open. Khalid Y.Al.Zoubi, Al.Nashef established that the collection of all ω-open sets in (X, τ) is a topology on X denoted by τ_{ω} which is finer than τ. Let $C l_{\omega}\left(\right.$) and Int $t_{\omega}($) denote the closure and interior operators in $\left(\mathrm{X}, \tau_{\omega}\right)$.

Lemma 2.18 A subset B of X is ω-open in (X, τ) if and only if for each $x \in B$ there exists $\mathrm{U} \in \tau$ such that $\mathrm{U} \backslash \mathrm{B}$ is countable. Equivalently $\mathrm{x} \in \operatorname{In} t_{\omega} \mathrm{Bif}$ and only if there exists $\mathrm{U} \in \tau$ such that $\mathrm{U} \backslash \mathrm{B}$ is countable.

3. $\rho-\omega^{*}$ - OPEN SETS where $\rho \in\{$ semi, pre, $\alpha, \beta, b\}$

3. ω-NEAR RELATION

There are distinct subsets of a topological space having the same ω-interior. For instance consider the topology $\tau=\{\varnothing, Q, R\}$ where R is the set of real numbers and Q is the set of rational numbers. It is easy to see that every subset of Q is ω-open in (R, τ). Let A be a non empty subset of Q. If x and y are any two distinct irrational numbers then $A_{x}=A \cup\{x\}$ and $\mathrm{A}_{\mathrm{y}}=\mathrm{A} \cup\{\mathrm{y}\}$ have the same ω-interior in (R, τ). That is $\operatorname{Int} t_{\omega} \mathrm{A}_{\mathrm{x}}=\operatorname{Int} \mathrm{A}_{\mathrm{A}} \mathrm{A}_{\mathrm{y}}=\mathrm{A}$. This motivates us to have the following definition.

Definition 3.1 The set A is ω-near to B if $\operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int} t_{\omega} \mathrm{B}$.

Example 3.2 Let (R, τ) be the topological space where $\tau=\{\varnothing, Q, R\}$. It is easy to see that every subset of Q is ω-open in (R, τ). Let N, W and Z respectively denote the set of all natural numbers, whole numbers and integer. If A and B are disjoint finite or countable subsets of Q^{c} then $\operatorname{Int}_{\omega}(\mathrm{N} \cup \mathrm{A})=\operatorname{Int}_{\omega}(\mathrm{N} \cup \mathrm{B})=\mathrm{N}, \operatorname{Int} t_{\omega}(\mathrm{W} \cup \mathrm{A})=\operatorname{Int}_{\omega}(\mathrm{W} \cup \mathrm{B})=\mathrm{W}$,
$\operatorname{Int} t_{\omega}(\mathrm{Z} \cup \mathrm{A})=\operatorname{Int}_{\omega}(\mathrm{Z} \cup \mathrm{B})=\mathrm{Z}$ and $\operatorname{Int} t_{\omega}(\mathrm{Q} \cup \mathrm{A})=\operatorname{Int}_{\omega}(\mathrm{Q} \cup \mathrm{B})=\mathrm{Q}$ so that $\mathrm{N} \cup \mathrm{A}$ is ω - near to $N \cup B, W \cup A$ is ω - near to $W \cup B, Z \cup A$ is ω - near to $Z \cup B$.

Proposition 3.3 A is ω-near to $\mathrm{B} \Rightarrow \mathrm{A}$ is near to B . The converse need not be true.
Proof. A is ω-near to $\mathrm{B} \Rightarrow \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B}$.
$\Rightarrow \operatorname{Int} \mathrm{A} \subseteq \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B} \subseteq \mathrm{B}$.
\Rightarrow Int $\mathrm{A} \subseteq \mathrm{B} \Rightarrow$ Int $\mathrm{A} \subseteq \operatorname{Int} \mathrm{B}$.
Again A is ω-near to $\mathrm{B} \Rightarrow \operatorname{Int}_{\omega} \mathrm{B}=\operatorname{Int}_{\omega} \mathrm{A}$.
$\Rightarrow I n t \mathrm{~B} \subseteq \operatorname{Int}_{\omega} \mathrm{B}=\operatorname{Int}_{\omega} \mathrm{A} \subseteq \mathrm{A}$.
\Rightarrow Int $\mathrm{B} \subseteq \mathrm{A} \Rightarrow$ Int $\mathrm{B} \subseteq$ Int A .
Therefore, $\operatorname{Int} \mathrm{A}=\operatorname{Int} \mathrm{B}$ that implies A is near to B . However the reverse implication need not true as shown below. As seen from Example 3. 2,
$\operatorname{Int} t_{\omega}(\mathrm{N} \cup \mathrm{A})=\operatorname{Int} t_{\omega}(\mathrm{N} \cup \mathrm{B})=\mathrm{N}$ and
Int $(N \cup A)=\operatorname{Int}(N \cup B)=\varnothing$ that implies $N \cup A$ is ω-near to $N \cup B$ and $N \cup A$ is near to $N \cup B$ respectively. This example shows that near $\Rightarrow \omega$ - near.

It is easy to check that Q is ω-closed and Q^{c} is ω-open in the real line with standard topology. It is easy to check that $\operatorname{Int} \mathrm{Q}=\operatorname{Int} \mathrm{Q}^{\mathrm{c}}=\varnothing$ but $\operatorname{Int} t_{\omega} \mathrm{Q}=\varnothing$ and $\operatorname{Int} \omega_{\omega} \mathrm{Q}^{\mathrm{c}}=\mathrm{Q}^{\mathrm{c}}$ so that Q is near to Q^{c} but Q is not ω-near to Q^{c} which shows that near relation does not imply ω near relation.

Lemma 3. 4 Let (X, τ) be a topological space. The relation " is ω-near to" is an equivalence relation on the power set of X .

Proof. Let A, B, C be the subsets of X . Since $\operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{A}, \mathrm{A}$ is ω-near to A so that the relation is reflexive.

A is ω-near to $\mathrm{B} \Rightarrow \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B} \Rightarrow \operatorname{Int}_{\omega} \mathrm{B}=\operatorname{Int}_{\omega} \mathrm{A} \Rightarrow \mathrm{B}$ is ω-near to A .
A is ω-near to B and B is ω-near to $\mathrm{C} \Rightarrow \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B}$ and $\operatorname{Int}_{\omega} \mathrm{B}=\operatorname{Int}_{\omega} \mathrm{C}$
$\Rightarrow \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{C}$.
$\Rightarrow \mathrm{A}$ is ω-near to C .
The equivalence classes of the relation "is ω-near to" are called the ω-near classes of the subsets of X. If A is a subset of X, then the ω-near class of $A=\omega$-near $[A]=\{B$: A is ω-near to B \}.

Proposition 3. 5 There is an one-to-one correspondence between $\omega O(X, \tau)$ and the collection of ω-near classes in X,

Proof. For any ω-open set O in (X, τ), a subset A of X is ω-near to O if and only if $\mathrm{O}=\operatorname{Int}_{\omega} \mathrm{A}$. Conversely, every subset A of X is ω-near to some ω-open set in (X, τ). This proves the proposition.

Corollary 3.6 The set $B \in \omega$-near $[A] \Leftrightarrow A \in \omega$-near $[B]$
Example 3.7 Let $\mathrm{X}=\mathrm{R}$, the set of all real numbers. Fix $\mathrm{t} \in \mathrm{R}$. Then $\tau=\{\varnothing$, $\{t\}, \mathrm{R}\}$ is a topology on $R . \tau^{\prime}=\{\varnothing, R \backslash\{t\}, R\}=$ the set of all closed sets in (R, τ). Let A, B be subsets of R with $t \in A$ and $t \notin B$. We compute the condensation points of A and B.
$x \in \operatorname{Cond}(A) \Leftrightarrow$ for every $U \in \tau$ with $x \in A, U \cap A$ is uncountable.
$\mathrm{x} \notin \operatorname{Cond}(\mathrm{A}) \Leftrightarrow$ there exists $\mathrm{U} \in \tau$ with $\mathrm{x} \in \mathrm{A}, \mathrm{U} \cap \mathrm{A}$ is not uncountable.
By taking $U=\{t\}$,we see that tis neither a condensation point of Anor a condensation point of B. So let $x \in R$ and $x \neq t$. The only open set containing x is R.

Since $\mathrm{R} \cap \mathrm{A}=\mathrm{A}$, it is clear that $\mathrm{R} \cap \mathrm{A}$ is uncountable if and only if A is uncountable,
$\mathrm{R} \cap \mathrm{A}$ is countable if and only if A is countable,
$\mathrm{R} \cap \mathrm{A}$ is finite if and only if A is finite.
Therefore, $\operatorname{Cond}(A)=\operatorname{Cond}(B)=\varnothing$ if and only if A and B are finite or countable.
$\operatorname{Cond}(A)=\operatorname{Cond}(B)=R \backslash\{t\}$ if and only if A, B are uncountable.
Thus, if A and B are finite or countable then they are ω-closed. If A and B are uncountable, then $A \cup(R \backslash\{t\})=R$ and $B \cup(R \backslash\{t\})=R \backslash\{t\}$ are ω-closed sets.

Therefore, $\omega C(R, \tau)=\{A: A$ is a finite or countable subset of $R\} \cup\{\varnothing, R \backslash\{t\}, R\}$.
$\omega \mathrm{O}(\mathrm{R}, \tau)=\{\mathrm{A}: \mathrm{A}$ is an uncountable subset of $\mathrm{R}, \mathrm{R} \backslash \mathrm{A}$ is finite or countable $\} \cup\{\varnothing,\{\mathrm{t}\}, \mathrm{R}\}$.
This shows that ω-topology of (R, τ) is strictly finer than τ.
Clearly, $\{t\}, R \backslash\{t\}$ are both ω-closed and ω-open in (R, τ) and $\{t\}$ is the only non empty finite set which is ω-open.

In the following three cases, we assume $\mathrm{A} \subseteq \mathrm{R}, \mathrm{t} \in \mathrm{A}, \mathrm{B} \subseteq \mathrm{R}, \mathrm{t} \notin \mathrm{B}, \mathrm{B} \neq \varnothing$.
Case-1: Suppose A and B are finite or countable.
$\operatorname{Int} \mathrm{A}=\{\mathrm{t}\}=\operatorname{Int}_{\omega} \mathrm{A}$ and $\operatorname{Int} \mathrm{B}=\varnothing, \operatorname{Int} \omega_{\omega} \mathrm{B}=\varnothing$. This shows that
A is neither ω-near to B nor near to B.
Case-2:Suppose A and B are uncountable such that $\mathrm{R} \backslash \mathrm{B}, \mathrm{R} \backslash \mathrm{A}$ are finite or countable.
$\operatorname{Int}_{\omega} \mathrm{A}=\mathrm{A}, \operatorname{Int} \mathrm{A}=\{\mathrm{t}\}$ and $\operatorname{Int} t_{\omega} \mathrm{B}=\operatorname{Band} \operatorname{Int} \mathrm{B}=\varnothing$.

This shows that A is neither ω-near to B nor near to B .
Case-3: Suppose A and B are uncountable such that $R \backslash A$ and $R \backslash B$ are uncountable.
$\operatorname{Int} t_{\omega} \mathrm{A}=\{\mathrm{t}\}, \operatorname{Int} \mathrm{A}=\{\mathrm{t}\}$ and $\operatorname{Int}_{\omega} \mathrm{B}=\varnothing$, Int $\mathrm{B}=\varnothing$.
This shows that A is neither ω-near to B nor near to B .
In the following three cases, we assume $\mathrm{A} \subseteq \mathrm{R}, \mathrm{B} \subseteq \mathrm{R}, \mathrm{t} \in \mathrm{A}, \mathrm{t} \in \mathrm{B}, \mathrm{B} \neq \mathrm{A}$.
Case-4: Suppose A and B are finite or countable.
$\operatorname{Int} \mathrm{A}=\{\mathrm{t}\}=\operatorname{Int} t_{\omega} \mathrm{A}$ and $\operatorname{Int} \mathrm{B}=\{\mathrm{t}\}=\operatorname{Int} t_{\omega} \mathrm{B}$. This shows that
A is ω-near to B and A is near to B.
Case-5: Suppose A and B are uncountable such that R\B , $\mathrm{R} \backslash \mathrm{A}$ are finite or countable.
Int $\omega_{\omega} \mathrm{A}=\mathrm{A}$, Int $\mathrm{A}=\{\mathrm{t}\}$ and $\operatorname{Int}_{\omega} \mathrm{B}=\mathrm{B}$, Int $\mathrm{B}=\{\mathrm{t}\}$.
This shows that A is not ω-near to B but A is near to B .
Case-6: Suppose A and B are uncountable such that $\mathrm{R} \backslash \mathrm{A}$ and $\mathrm{R} \backslash \mathrm{B}$ are uncountable.
$\operatorname{Int}_{\omega} \mathrm{A}=\{\mathrm{t}\}$, Int $\mathrm{A}=\{\mathrm{t}\}$ and $\operatorname{Int}_{\omega} \mathrm{B}=\{\mathrm{t}\}$, Int $\mathrm{B}=\{\mathrm{t}\}$.
This shows that A is ω-near to B and is near to B .
In the following three cases,we assume $\varnothing \neq A \subseteq R, \varnothing \neq B \subseteq R, t \notin A, t \notin B, B \neq A$.
Case-7: Suppose A and B are finite or countable.
$\operatorname{Int} \mathrm{A}=\varnothing, \operatorname{Int}_{\omega} \mathrm{A}=\varnothing$ and $\operatorname{Int} \mathrm{B}=\varnothing=\operatorname{Int}_{\omega} \mathrm{B}$. This shows that
A is ω-near to B and A is near to B.
Case-8: Suppose A and B are uncountable such that $R \backslash B, R \backslash A$ are finite or countable.
$\operatorname{Int} t_{\omega} \mathrm{A}=\mathrm{A}, \operatorname{Int} \mathrm{A}=\varnothing$ and $\operatorname{Int}_{\omega} \mathrm{B}=\mathrm{B}$ and $\operatorname{Int} \mathrm{B}=\varnothing$.
This shows that A is not ω-near to B but A is near to B .
Case-9:Suppose A and B are uncountable such that $\mathrm{R} \backslash \mathrm{A}$ and $\mathrm{R} \backslash \mathrm{B}$ are uncountable.
$\operatorname{Int}_{\omega} \mathrm{A}=\varnothing, \operatorname{Int} \mathrm{A}=\varnothing$ and $\operatorname{Int}_{\omega} \mathrm{B}=\varnothing$, Int $\mathrm{B}=\varnothing .$.
This shows that A is ω-near to B and is near to B .
The proper subsets of R will be classified in the following ways.
$\mathrm{PR}_{1}=\{\mathrm{A}: \mathrm{A} \subset \mathrm{R}, \mathrm{A}$ is finite or countable $\}$
$\mathrm{PR}_{2}=\{\mathrm{A}: \mathrm{A} \subset \mathrm{R}, \mathrm{A}$ is uncountable with finite or countable complement $\}$
$\mathrm{PR}_{3}=\{\mathrm{A}: \mathrm{A} \subset \mathrm{R}, \mathrm{A}$ is uncountable with uncountable complement $\}$
The above discussion leads to the following table which compares the near and ω-near classes

Table 3. 8 Comparison of near and ω-near classes.

Open/ ω-open set A	Near $[\mathrm{A}]$ where $\mathrm{A} \in \tau$	ω-near $[\mathrm{A}]$ where $\mathrm{A} \in \tau_{\omega}$
\varnothing	$\{\mathrm{B}: \mathrm{B} \subset \mathrm{R}, \mathrm{t} \notin \mathrm{B}\}$	$\left\{\mathrm{B}: \quad \mathrm{B} \in \mathrm{PR}_{1} \cup \mathrm{PR}_{3}, \quad \mathrm{t} \notin\right.$ $\mathrm{B}\}$
$\{\mathrm{t}\}$	$\{\mathrm{B}: \mathrm{B} \subset \mathrm{R}, \mathrm{t} \in \mathrm{B}\}$	$\left\{\mathrm{B}: \mathrm{B} \in \mathrm{PR}_{1} \cup \mathrm{PR}_{3}, \mathrm{t} \in \mathrm{B}\right\}$
R	$\{\mathrm{R}\}$	$\{\mathrm{R}\}$
$\mathrm{A} \in \mathrm{PR}_{2}$	Not applicable	$\{\mathrm{A}\}$

Proposition 3.9 Every regular ω^{*}-open set is near to a regular ω-closed set.
Proof. Let A be a regular ω^{*}-open set. We have .
$\mathrm{A}=\operatorname{Int} C l_{\omega} \operatorname{Int} \mathrm{A}$ that $\mathrm{implies} \operatorname{Int} \mathrm{A}=\operatorname{Int} C l_{\omega} \operatorname{Int} \mathrm{A}=\operatorname{Int}\left(C l_{\omega} \operatorname{Int} \mathrm{A}\right)$ which shows that A is near $C l_{\omega} I n t \mathrm{~A}$. Since $C l_{\omega} \operatorname{Int} \mathrm{A}$ is regular ω-closed, it follows that A is near to a a regular ω-closed set.

Proposition 3.10 Let A be a subset of X.
(i) A is semi- ω-closed $\Leftrightarrow \mathrm{A}$ is near to $C l_{\omega} \mathrm{A}$.
(ii) A is β - ω-closed in $(\mathrm{X}, \tau) \Leftrightarrow \mathrm{A}$ is near to a regular ω-closedset.

Proof. Suppose A is semi- ω-closed in (X, τ). Then $\operatorname{Int} \mathrm{A}=\operatorname{Int}^{2} l_{\omega} \mathrm{A}$ that implies A is near to $C l_{\omega} \mathrm{A}$. The converse part is obvious. This proves (i). Suppose A is $\beta-\omega$-closed in (X, τ). Then IntCl l_{ω} Int $\mathrm{A} \subseteq \mathrm{A}$ that implies $\operatorname{Int} \mathrm{A} \subseteq \operatorname{Int} C l_{\omega} \operatorname{Int} \mathrm{A} \subseteq \operatorname{Int} \mathrm{A}$ so that $\operatorname{Int} \mathrm{A}=\operatorname{Int} C l_{\omega} \operatorname{Int} \mathrm{A}$ that proves that A is near to $C l_{\omega}$ Int A . The converse part is trivial. This proves (ii).

Proposition 3.11

(i) If A is regular ω-open then A is ω-near to ClA .
(ii) If A is $\alpha-\omega$-closed then A is near to $C l_{\omega} \mathrm{A}$.
(iii) IfA is pre- ω-closed or $\mathrm{b}-\omega$-closed or $\mathrm{b}^{\#}$ - ω-closed or $* \mathrm{~b}-\omega$-closed, then A is near to a regular ω-closedset.

Proof . A is regular ω-open $\Rightarrow \mathrm{A}=\operatorname{Int} t_{\omega} C l \mathrm{~A} \Rightarrow I n t_{\omega} \mathrm{A}=\operatorname{Int} t_{\omega} C l \mathrm{~A}$
$\Rightarrow \mathrm{A}$ is ω-near to ClA

A is α - ω-closed $\Rightarrow C l_{\omega} I n t C l_{\omega} \mathrm{A} \subseteq \mathrm{A} \Rightarrow I n t C l_{\omega} \mathrm{A} \subseteq \mathrm{A}$
$\Rightarrow I n t C l_{\omega} \mathrm{A} \subseteq \operatorname{Int} \mathrm{A}$
$\Rightarrow \operatorname{Int} \mathrm{A} \subseteq \operatorname{Int} C l_{\omega} \mathrm{A} \subseteq \operatorname{Int} \mathrm{A}$
$\Rightarrow \operatorname{Int} \mathrm{A}=\operatorname{Int} C l_{\omega} \mathrm{A}$
$\Rightarrow \mathrm{A}$ is near to $C l_{\omega} \mathrm{A}$

The set A is pre $-\omega$-closed $\Rightarrow b-\omega$-closed $\Rightarrow \beta-\omega$-closed
$\Rightarrow \mathrm{A}$ is near to $C l_{\omega}$ Int A .

The set A is $* b-\omega$-closed $\Rightarrow b-\omega$-closed $\Rightarrow \beta-\omega$-closed
$\Rightarrow \mathrm{A}$ is near to $C l_{\omega}$ Int A .
The set A is $b^{\#}-\omega$-closed $\Rightarrow b-\omega$-closed $\Rightarrow \beta-\omega$-closed
$\Rightarrow \mathrm{A}$ is near to $C l_{\omega}$ Int A .
Proposition 3. 12 Let A be a subset of X.
(i) A is semi- ω^{*}-closed $\Leftrightarrow \mathrm{A}$ is ω-near to $C l \mathrm{~A}$.
(ii) A is $\beta-\omega^{*}$-closed in $(\mathrm{X}, \tau) \Leftrightarrow \mathrm{A}$ is ω-near to a regular ω^{*}-closed set.

Proof. Suppose A is semi- ω^{*}-closed in (X, τ). Then $\operatorname{Int} t_{\omega} \mathrm{A}=\operatorname{Int} t_{\omega} C l \mathrm{~A}$ that implies A is ω-near to $C l A$. The convers part is obvious. This proves (i). Suppose A is $\beta-\omega^{*}$-closed in (X, $\left.\tau\right)$. Then $\operatorname{Int} \omega_{\omega} \mathrm{A}=\operatorname{Int} t_{\omega}$ ClInt $_{\omega} \mathrm{A}$ that proves that A is ω-near to CIInt $_{\omega} \mathrm{A}$. The converse part is trivial. This proves (ii)

Proposition 3.13

(i) If A is regular ω^{*}-open then A is near to $C l_{\omega} \mathrm{A}$.
(ii) If A is $\alpha-\omega^{*}$-closed then A is ω-near to $C l \mathrm{~A}$.
(iii) IfA is pre- ω^{*}-closed or $\mathrm{b}-\omega^{*}$-closed or $\mathrm{b}^{\#}-\omega^{*}$-closed or $* \mathrm{~b}-\omega^{*}$ - closed, then A is ω-near to a regular ω^{*}-closed set.

Proof. A is regular ω^{*}-open $\Rightarrow \mathrm{A}=\operatorname{IntCl} l_{\omega} \mathrm{A} \Rightarrow \operatorname{Int} \mathrm{A}=\operatorname{IntCl} l_{\omega} \mathrm{A}$
$\Rightarrow \mathrm{A}$ is near to $C l_{\omega} \mathrm{A}$

$$
\begin{aligned}
& \mathrm{A} \text { is } \alpha-\omega^{*} \text {-closed } \Rightarrow C l I n t_{\omega} C l \mathrm{~A} \subseteq \mathrm{~A} \Rightarrow I n t_{\omega} C l \mathrm{~A} \subseteq \mathrm{~A} \\
\Rightarrow & I n t_{\omega} C l \mathrm{~A} \subseteq \operatorname{In} t_{\omega} \mathrm{A} \\
\Rightarrow & I n t_{\omega} \mathrm{A} \subseteq \operatorname{In} t_{\omega} C l \mathrm{~A} \subseteq \operatorname{In} t_{\omega} \mathrm{A} \\
\Rightarrow & I n t_{\omega} \mathrm{A}=\operatorname{In} t_{\omega} C l \mathrm{~A}
\end{aligned}
$$

$\Rightarrow \mathrm{A}$ is ω-near to ClA
The set A is pre- ω^{*}-closed $\Rightarrow \mathrm{b}$ - ω^{*}-closed $\Rightarrow \beta-\omega^{*}$-closed
$\Rightarrow \mathrm{A}$ is ω-near to Clint $_{\omega} \mathrm{A}$.
The set A is $* \mathrm{~b}-\omega^{*}$-closed $\Rightarrow \mathrm{b}-\omega^{*}$-closed $\Rightarrow \beta-\omega^{*}$-closed
$\Rightarrow \mathrm{A}$ is ω-near to ClInt $_{\omega} \mathrm{A}$.
The set A is $\mathrm{b}^{\#}-\omega^{*}$-closed $\Rightarrow \mathrm{b}-\omega^{*}$-closed $\Rightarrow \beta-\omega^{*}$-closed
$\Rightarrow \mathrm{A}$ is ω-near to ClInt $_{\omega} \mathrm{A}$.
Proposition 3. 14 Let A be ω-near to B and C be ω-near to D . Then
(i) $\quad \mathrm{A} \cap \mathrm{C}$ is ω-near to $\mathrm{B} \cap \mathrm{D}$
(ii) $\mathrm{A} \cap \mathrm{D}$ is ω-near to $\mathrm{B} \cap \mathrm{C}$

Proof. Suppose A is ω-near to B and C is ω-near to D . Then $\operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B}$ and Int $_{\omega} \mathrm{C}=$ $\operatorname{Int} t_{\omega} \mathrm{D}$. Now $\operatorname{Int}_{\omega}(\mathrm{A} \cap \mathrm{C})=\operatorname{Int}_{\omega} \mathrm{A} \cap \operatorname{Int}_{\omega} \mathrm{C}=\operatorname{Int}_{\omega} \mathrm{B} \cap \operatorname{Int} t_{\omega} \mathrm{D}=\operatorname{Int}_{\omega}(\mathrm{B} \cap \mathrm{D})$ that implies $\mathrm{A} \cap \mathrm{C}$ is ω near to $\mathrm{B} \cap \mathrm{D}$. This proves (i) and the proof for (ii) is analog.

Definition 3. 15 Let $B \in \omega$-near[A]. If $B \subseteq A$ then, B is called a ω-near subset of A and if $B \supseteq A$ then B is called a ω-near superset of A in X.

Proposition 3.16 The set B is a ω-near subset of A $\Leftrightarrow A$ is a ω-near super set of B.
Proof. The set B is a ω-near subset of $A \Leftrightarrow B \in \omega$-near[A] and $B \subseteq A$
$\Leftrightarrow A \in \omega-$ near $[B]$ and $A \supseteq B$
$\Leftrightarrow A$ is a ω-near super set of B.
Proposition 3. 17 Every ω-near subset of an ω-open set is ω-open.
Proof. Let B be a ω - near subset of A and A be ω-open. Then
$\mathrm{B} \subseteq \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B}$ that implies $\mathrm{B}=\operatorname{Int}_{\omega} \mathrm{B}$ is ω-open.
Proposition 3. 18 Let B be a ω-near subset of A. The set B is semi- ω-open or α - ω-open according as A is semi- ω-open or α - ω-open.

Proof. Suppose A is semi- ω-open. Then $\mathrm{A} \subseteq \operatorname{ClInt}_{\omega} \mathrm{A}$. Since A is ω-near to $\mathrm{B}, \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{B}$ that implies $\mathrm{B} \subseteq \mathrm{A} \subseteq$ ClInt $_{\omega} \mathrm{A}=C l$ Int ${ }_{\omega} \mathrm{B}$. This proves that B is semi- ω-open. If A is $\alpha-\omega$ open,then $\mathrm{A} \subseteq I n t_{\omega} C l \operatorname{Int} t_{\omega} \mathrm{A}$ that implies $\mathrm{B} \subseteq \mathrm{A} \subseteq \operatorname{Int}_{\omega}$ ClInt $_{\omega} \mathrm{A}=\operatorname{Int}_{\omega}$ ClInt $_{\omega} \mathrm{B}$, proving that B is $\alpha-\omega$-open. This proves (i).

Proposition 3. 19 Let B be a near subset of A. The set B is semi- ω-open or $\alpha-\omega^{*}$-open according as A is semi- ω^{*}-open or $\alpha-\omega^{*}$-open.

Proof. Suppose A is semi- ω^{*}-open. Then $\mathrm{A} \subseteq C l_{\omega} \operatorname{Int} \mathrm{A}$. Since A is near to $\mathrm{B}, \operatorname{Int} \mathrm{A}=\operatorname{Int} \mathrm{B}$ that implies $\mathrm{B} \subseteq \mathrm{A} \subseteq C l_{\omega} \operatorname{Int} \mathrm{A}=C l_{\omega} \operatorname{Int} \mathrm{B}$. This proves that B is semi- ω^{*}-open. If A is $\alpha-\omega^{*}$-open then $\mathrm{A} \subseteq \operatorname{Int} C l_{\omega} \operatorname{Int} \mathrm{A}$ that implies $\mathrm{B} \subseteq \mathrm{A} \subseteq \operatorname{Int} C l_{\omega} \operatorname{Int} \mathrm{A}=\operatorname{Int} C l_{\Phi} \operatorname{Int} \mathrm{B}$, proving that B is $\alpha-\omega^{*}$ open.

Corollary 3.20

(i) $\quad \mathrm{A}$ is semi- ω-open \Leftrightarrow every ω-near subset of A is semi- ω-open.
(ii) $\quad \mathrm{A}$ is α - ω-open \Leftrightarrow every ω-near subset of A is α - ω-open.
(iii) A is semi- ω^{*}-open \Leftrightarrow every near subset of A is semi- ω^{*}-open.
(iv) A is $\alpha-\omega^{*}$-open \Leftrightarrow every near subset of A is $\alpha-\omega^{*}$-open.

Proposition 3.21 If A is an ω-t-set then
(i) $\quad \mathrm{A}$ is near to $C l \mathrm{~A}$ and $C l_{\omega} \mathrm{A}$ and
(ii) $\quad C l \mathrm{~A}$ is near to and ω-near to $C l_{\omega} \mathrm{A}$.

Proof. Let A be an ω-t-set. We have
$\operatorname{Int} \mathrm{A}=\operatorname{Int} C l \mathrm{~A}=\operatorname{Int} t_{\omega} C l \mathrm{~A}=\operatorname{Int} C l_{\omega} \mathrm{A}=\operatorname{Int} t_{\omega} C l_{\omega} \mathrm{A}$.
$\operatorname{Int} \mathrm{A}=\operatorname{Int} C l \mathrm{~A}=\operatorname{Int} C l_{\omega} \mathrm{A} \Rightarrow \mathrm{A}$ is near to $C l \mathrm{~A}$ and $C l_{\omega} \mathrm{A}$. This proves (i)
$\operatorname{IntClA}=\operatorname{IntCl}_{\omega} \mathrm{A} \Rightarrow C l \mathrm{~A}$ is near to $C l_{\omega} \mathrm{A}$.
$I n t_{\omega} C l \mathrm{~A}=I n t_{\omega} C l_{\omega} \mathrm{A} \Rightarrow C l \mathrm{~A}$ is ω-near to $C l_{\omega} \mathrm{A}$. This proves (ii).
Proposition 3. 22 Let A and B be any two subsets of an anti locally countable space (X, τ). Then, the following results always hold.
(i) If A and B are closed sets then A is near to B if and only if A is ω-near B .
(ii) $\quad C l \mathrm{~A}$ is near to $C l \mathrm{~B} \Leftrightarrow C l \mathrm{~A}$ is ω-near $C l \mathrm{~B}$.
(iii) $\quad C l_{\omega} \mathrm{A}$ is ω-near to $C l_{\omega} \mathrm{B} \Leftrightarrow C l \mathrm{~A}$ is near $C l \mathrm{~B}$.

Proof. Let (X, τ) be an anti locally countable space. Let A and B be any two closed sets. Then using we have $\operatorname{Int} \mathrm{A}=\operatorname{Int}_{\omega} \mathrm{A}$ and $\operatorname{Int} \mathrm{B}=\operatorname{Int}_{\omega} \mathrm{B}$ that implies $\operatorname{Int} \mathrm{A}=\operatorname{Int} \mathrm{B} \Leftrightarrow \operatorname{Int} t_{\omega} \mathrm{A}=$ Int $\omega_{\mathrm{B}} \mathrm{B}$ that proves that A is near to $\mathrm{B} \Leftrightarrow \mathrm{A}$ is ω-near B .

This proves (i).
Now let A and B be any two subsets of X. Then, using
$\operatorname{IntClA}=\operatorname{Int} t_{\omega} C l \mathrm{~A}$ and $\operatorname{IntCl\mathrm {B}}=\operatorname{Int} t_{\omega} C l \mathrm{~B}$.
$I n t_{\omega} C l_{\omega} \mathrm{A}=\operatorname{Int} C l_{\omega} \mathrm{A} \quad$ and $\operatorname{Int}_{\omega} C l_{\omega} \mathrm{B}=\operatorname{Int} C l_{\omega} \mathrm{B}$.

$$
\Rightarrow I n t C l \mathrm{~A}=I n t C l \mathrm{~B} \Leftrightarrow I n t_{\omega} C l \mathrm{~A}=I n t_{\omega} C l \mathrm{~B}
$$

$\Rightarrow C l \mathrm{~A}$ is near to $C l \mathrm{~B} \Leftrightarrow C l \mathrm{~A}$ is ω-near $C l \mathrm{~B}$.

$$
\Rightarrow I n t_{\omega} C l_{\omega} \mathrm{A}=\operatorname{Int} t_{\omega} C l_{\omega} \mathrm{B} \Leftrightarrow \operatorname{Int} C l_{\omega} \mathrm{A}={\operatorname{Int} C l_{\omega}} \mathrm{B}
$$

$\Rightarrow C l_{\omega} \mathrm{A}$ is ω-near to $C l_{\omega} \mathrm{B} \Leftrightarrow C l \mathrm{~A}$ is near $C l \mathrm{~B}$.

Proposition 3. 23 In an anti locally countable space,
(i) every regular ω-closed set is near to a regular closed set.
(ii) every regular ω-closed set is ω-near to a regular closed set.
(iii) every regular closed set in $\left(\mathrm{X}, \tau_{\omega}\right)$ is near to a regular ω^{*}-closed set.
(iv) every regular closed set in $\left(X, \tau_{\omega}\right)$ is ω-near to a regular ω^{*}-closed set.

Proof. Let X be an anti locally countable space and A be regular ω-closed. we have
Int $C l_{\omega} \operatorname{Int} \mathrm{A}=\operatorname{Int} C l I n t \mathrm{~A}$
$I n t_{\omega} C l_{\omega} \operatorname{Int} \mathrm{A}=\operatorname{Int}{ }_{\omega} C l \operatorname{Int} \mathrm{~A}$.

Int $C l_{\omega} I n t_{\omega} \mathrm{A}=\operatorname{Int} C l$ Int $_{\omega} \mathrm{A}$.
$\operatorname{Int} t_{\omega} C l_{\omega} \operatorname{Int}{ }_{\omega} \mathrm{A}=\operatorname{Int}{ }_{\omega} C l I n t_{\omega} \mathrm{A}$.
\Rightarrow every regular ω-closed set is near to a regular closed set.
\Rightarrow every regular ω-closed set is ω-near to a regular closed set.
\Rightarrow every regular closed set in $\left(X, \tau_{\omega}\right)$ is near to a regular ω^{*}-closed set.
\Rightarrow every regular closed set in $\left(X, \tau_{\omega}\right)$ is ω-near to a regular ω^{*}-closed set.

Proposition 3. 24

(i) If A is a $\mathrm{Q} \omega$-set, thenClInt $\omega_{\omega} \mathrm{A}$ is both ω-near and near to $C l \mathrm{~A}$.
(ii) If A is a $\mathrm{Q} \omega$-set in an anti locally countable space, then $C l_{\omega} \mathrm{Int}_{\omega} \mathrm{A}$ and Cl $I n t_{\omega} \mathrm{A}$ are near to $C l \mathrm{~A}$.
(iii) If B is a $\mathrm{Q} \omega^{*}$-set in an anti locally countable space, then $C l \operatorname{Int} \mathrm{~B}$ is ω-near to $C l_{\omega} \mathrm{B}$ and also near $C l_{\omega} \mathrm{B}$.

Proof.LetA be a $\mathrm{Q} \omega$-set. Then $\operatorname{ClInt}_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} \quad C l \mathrm{~A}$ that implies $\operatorname{Int} \omega_{\omega} C l I n t_{\omega} \mathrm{A}=\operatorname{Int}_{\omega} C l \mathrm{~A}$ so that $C l I n t_{\omega} \mathrm{A}$ is ω-near $C l \mathrm{~A}$.

Also $C l I n t{ }_{\omega} \mathrm{A}=\operatorname{Int}{ }_{\omega} C l \mathrm{~A} \Rightarrow \operatorname{Int} \operatorname{ClInt}_{\omega} \mathrm{A}=\operatorname{Int} \operatorname{Int}{ }_{\omega} C l \mathrm{~A}=\operatorname{Int} C l \mathrm{~A}$
$\Rightarrow C l I n t_{\omega} \mathrm{A}$ is near $C l \mathrm{~A}$. This proves (i).
Now, let A be a $Q \omega$-set and B be a $Q \omega^{*}$-set in an anti locally countable space. Since A is a $\mathrm{Q} \omega$-set, we have
$C l_{\omega} \operatorname{Int}_{\omega} \mathrm{A}=\operatorname{IntCl} \mathrm{A}=C l i n t{ }_{\omega} \mathrm{A}$
$\Rightarrow I n t C l_{\omega} I n t_{\omega} \mathrm{A}=\operatorname{Int} C l \mathrm{~A}=\operatorname{IntCl} \operatorname{Int} t_{\omega} \mathrm{A}$ that implies both $C l_{\omega} \operatorname{Int}_{\omega} \mathrm{A}$ and $C l I n t_{\omega} \mathrm{A}$ are near to ClA.

Now since B is a $\mathrm{Q} \omega^{*}$-set, we have
$C l \operatorname{Int} \mathrm{~B}=\operatorname{Int} t_{\omega} C l_{\omega} \mathrm{B}=\operatorname{IntCl} l_{\omega} \mathrm{B}$.
$\Rightarrow I n t C l \operatorname{Int} \mathrm{~B}=\operatorname{IntInt}_{\omega} C l_{\omega} \mathrm{B}=\operatorname{IntIntCl} l_{\omega} \mathrm{B}$
$\Rightarrow \operatorname{IntCl} \operatorname{Int} \mathrm{B}=\operatorname{Int} C l_{\omega} \mathrm{B}=\operatorname{IntCl} l_{\omega} \mathrm{B}$
$\Rightarrow C l \operatorname{Int} \mathrm{~B}$ is near to $C l_{\omega} \mathrm{B}$.
$\mathrm{Also} \Rightarrow \operatorname{Int} t_{\omega} C l \operatorname{Int} \mathrm{~B}=\operatorname{Int}_{\omega} \operatorname{Int} t_{\omega} C l_{\omega} \mathrm{B}=\operatorname{Int}_{\omega} I n t C l_{\omega} \mathrm{B}$
$\Rightarrow \operatorname{Int} t_{\omega} C l \operatorname{Int} \mathrm{~B}=\operatorname{Int} t_{\omega} C l_{\omega} \mathrm{B}=\operatorname{IntCl} l_{\omega} \mathrm{B}=\operatorname{Int}{ }_{\omega} C l_{\omega} \mathrm{B}$
(since the space is anti locally finite)
$\Rightarrow C l \operatorname{Int} \mathrm{~B}$ is ω-near to $C l_{\omega} \mathrm{B}$.

REFERENCES

1. Andrijevic D, ‘Semi-pre-open sets’, Math.Vesnik, vol. 38(1986), pp.24-32.
2. Andrijevic D, ‘On b-open sets’, Mat. Vesnik, vol. 48(1996), pp. 59-64.
3. Arya SP and Nour TM, ‘Characterizations of s-normal Spaces’, Indian. J. Pure. Appl. Math., vol.19(1988), pp.42-50.
4. Chattopadhyay C and Bandyopadhyay C, 'On structure of δ-sets', Bulletin of Calcutta Mathematical Society, vol.83(1991), pp.281-290.
5. Chattopadhyay C and Roy UK, ' δ-sets, irresolvable and resolvable spaces’, Mathematica Slovaca,vol.42(1992), pp.371-378.
6. Chiralekha R, Anitha M and Meena N, ' Near and closer relations in topology' Malaya Journal of Metematik, vol.8, no. 4 (2020), pp.2169-2172.
7. Chiralekha R, ' On b-open sets, near and closer relations in topology and related concepts' Ph.D thesis, Manonmniam Sundaranar University, India.(2021),
8. Dontchev J,'On generalizing semi-pre-open sets’, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., vol 16(1995),, pp.36-48.
9. Kumar, S. A. S., Naveen, R., Dhabliya, D., Shankar, B. M., \& Rajesh, B. N. (2020). Electronic currency note sterilizer machine. Materials Today: Proceedings, 37(Part 2), 1442-1444. doi:10.1016/j.matpr.2020.07.064
10. Mandal, D., Shukla, A., Ghosh, A., Gupta, A., \& Dhabliya, D. (2022). Molecular dynamics simulation for serial and parallel computation using leaf frog algorithm. Paper presented at the PDGC 2022-2022 7th International Conference on Parallel, Distributed and Grid Computing, 552-557. doi:10.1109/PDGC56933.2022.10053161 Retrieved from www.scopus.com
11. Mehraj, H., Jayadevappa, D., Haleem, S. L. A., Parveen, R., Madduri, A., Ayyagari, M. R., \& Dhabliya, D. (2021). Protection motivation theory using multi-factor authentication for providing security over social networking sites. Pattern Recognition Letters, 152, 218-224. doi:10.1016/j.patrec.2021.10.002
12. Raghavendra, S., Dhabliya, D., Mondal, D., Omarov, B., Sankaran, K. S., Dhablia, A., . . . Shabaz, M. (2022). Development of intrusion detection system using machine learning for the analytics of internet of things enabled enterprises. IET Communications, doi:10.1049/cmu2.12530
13. Gnanambal Y,'On generalized pre regular closed sets in topological spaces’, Indian J. Pure. Appl. Math., vol.28(1997), pp.351-360.
14. Indira T \& Rekha K, ‘Applications of *b-open sets and **b-open sets in topological spaces’ Annals of Pure and Applied Mathematics, vol.1, no.1(2012), pp.44-56.
15. Indira T \& Rekha K,'Decomposition of Continuity via *b-open Set', Acta Ciencia Indica, Vol. 39 M, no.1(2013), pp. 73-85.
16. Levine N , 'On the commutativity of the interior and closure operators in topological spaces', Amer.Math.Monthly, vol.68(1961), pp.474-477.
17. Levine N,'Semiopen Sets and Semi Continuity in Topological Spaces', Amer.Math.Monthly, vol.70(1963), pp. 36-41.
18. Levine N, 'Generalized closed sets in topology’, Rend. Circ. Mat. Palermo, vol.19, no.2(1970), pp. 89-96.
19. Maki H, Umehara J and NoiriT,'Every topological space is pre- $\mathrm{T}_{1 / 2}$ ', Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. vol.17(1996), pp.33-42.
20. Maki H, Balachandran K and Devi R,‘Generalized α-closed sets in topology’, Bull. Fukuoka Univ. Ed part III, vol.42(1993), pp.13-21.
21. Maki H, Balachandran K and Devi R,'Associated topologies of generalized α-closed sets and α-generalized closed sets', Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., vol. 15 (1994), pp.57-63.
22. Mashhour AS, Abd El-Monsef ME \& El-Deeb SN,'On Pre-Continuous and Weak PreContinuous Functions', Proc. Math. Phys. Soc. Egypt, vol. 53(1982), pp. 47-53.
23. Murugesan S, ‘ On R ω-open sets’, Journal of Advanced Studies in Topology, vol.5, no.3(2014), pp.24-27.
24. Nagaveni N,'Studies on Generalizations of Homeomorphisms in Topological spaces', Ph.D. Thesis, Bharathiar University, Coimbatore(1999),
25. Palaniappan N and Rao KC,'Regular generalized closed sets’, Kyungpook Math. J., vol.33(1993), pp. 211-219.
26. Samer Al Ghour, Souad Al-Zoubi, 'A new class between theta open sets and theta omega open sets', Heliyon, vol.7(2021), pp. 1-11.
27. Stone MH, 'Application of the Theory of Boolean Rings to the General Topology', Trans. A.M.S. ,vol. 41(1937), pp. 375-481.
28. Takashi Noiri, 'Super Continuity and Some Strong Forms of Continuity', Indian J. Pure Appl.Math., vol.15, no. 3(1984), pp. 241-250.
29. Thamizharasi G, 'Studies in Bitopological Spaces', Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli , TN, India.(2010),
30. Thangavelu P \& Rao KC, 'p-sets in Topological Spaces', Bulletion of Pure and Applied Sciences, vol.21E, no. 2(2002),, pp. 341-355.
31. Thangavelu P \& Rao KC,' q-sets in Topological Spaces’, Prog.of Maths, vol.36, no. 1\&2(2002),, pp. 159-165.
32. Usha Parameswari R,'A Study on Generalization of b-Open Sets and Related Concepts in Topology', Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli- 12, India.(2015),
33. Usha Parameswari R\& Thangavelu P, 'On b"-open Sets’, International Journal of Mathematics Trends and Technology, vol. 5, no. 3(2014), pp. 202-218.
