$(1,2)^*$ - \hat{D} -Closed Sets in Bitopological Spaces

¹A. Saranya and ²O. Ravi

¹Assistant Professor, Department of Mathematics, Sri Adi Chunchanagiri Women's College, Cumbum, Theni District, Tamil Nadu, India. e-mail: <u>saranyajey88@gmail.com</u>, Research Scholar, Madurai Kamaraj University, Madurai - 21, Tamilnadu, India.

²Principal, Pasumpon Muthuramalinga Thevar College, Usilampatti - 625 532, Madurai District, Tamil Nadu, India. e-mail: <u>siingam@yahoo.com</u>.

Article Info	Abstract
Page Number: 1535 - 1540 Publication Issue: Vol 70 No. 2 (2021)	In the paper, we introduce the notions of $(1,2)^*-\widehat{D}$ -closed sets and $(1,2)^*-D$ -closed sets in bitopological spaces.
	Keywords and phrases. $(1,2)^*$ - \widehat{D} -closed sets, $(1,2)^*$ -D-closed sets, α -
Article History	open sets and β -open sets.
Article Received: 05 September 2021	
Revised: 09 October 2021	
Accepted: 22 November 2021	
Publication : 26 December 2021	

1. INTRODUCTION

Levine introduced the concept of g-closed sets in topological spaces. Following this attempts, modern mathematics generalized this concept and are being found many generalization of g-closed sets. In the paper, we introduce the notion of $(1,2)^*-\widehat{D}$ -closed sets and $(1,2)^*$ -D-closed sets in bitopological spaces.

2. PRELIMINARIES

Definition 2.1

A subset S of a TPS X is called:

- (i) semi-open if $S \subseteq cl(int(S))$;
- (ii) α -open if S \subseteq int(cl(int(S)));
- (iii) β -open (semi-pre-open) if S \subseteq cl(int(cl(S)));
- (vi) regular open if S = int(cl(S))

The complements of the above-mentioned open sets are called their respective closed sets.

The semi-closure (resp. α -closure, semi-pre-closure, regular-closure) of a subset S of X, scl(S) (resp. α cl(S), spcl(S), rcl(S)) is defined to be the intersection of all semi-closed (resp. α -closed, semi-pre-closed, regular-closed) of X containingS. It is known that scl(S) (resp. α cl(S), spcl(S), rcl(S)) is semi-closed (resp. α -closed, semi-pre-closed, regular-closed).

Definition 2.2

A subset S of a TPS X is called

- (i) g-closed set (briefly, g-cld) if cl(S) \subseteq P whenever S \subseteq P and P is open.
- (ii) αgs -closed (briefly, αgs -cld) if $\alpha cl(S) \subseteq Pwhenever S \subseteq P$ and P is semi-open.
- (iii) semi-generalized closed (briefly, sg-cld) if $scl(S) \subseteq P$ whenever $S \subseteq P$ and P is semi-open.
- (iv) ψ -closed (briefly, ψ -cld) if scl(S) \subseteq P whenever S \subseteq P and P is sg-open.
- (v) generalized semi-closed (briefly, gs-cld) if $scl(S) \subseteq P$ whenever $S \subseteq P$ and P is open.
- (vi) α -generalized closed (briefly, α g-cld) if α cl(S) \subseteq P whenever S \subseteq P and P is open.
- (vii) generalized semi-pre-closed(briefly, gsp-cld) if $spcl(S) \subseteq P$ whenever $S \subseteq P$ and P is open.

The complements of the above-mentioned closed sets are called their respective open sets.

Definition 2.3

The intersection of all sg-open subsets of X containing S is called the sg-kernel of S and denoted by sg-ker(S).

Definition 2.4

A subset S of X is called locally closed (briefly, lc) if $S = U \cap F$, where U is open and F is closed in X.

Definition 2.5

A subset S of a space X is called:

(i) \hat{g} -cld (= ω -cld) if cl(S) \subseteq P whenever S \subseteq P and P is semi-open in X. The complement of \hat{g} -cldis called \hat{g} -open set;

(ii) \ddot{g} -cld if cl(S) \subseteq Pwhenever S \subseteq P and P is sg-open in X.

The complement of \ddot{g} -cld is called \ddot{g} -open.

Definition 2.6

A subset S of a space X is called a g^*s -cld set if $scl(S) \subseteq P$ whenever $S \subseteq P$ and P is gs-open in X. The complement of g^*s -cld is called g^*s -open.

Definition 2.7

A space X is called

- (i) $T_{1/2}$ -space if every g-cld is closed.
- (ii) T_b-space if every gs-cldis closed.
- (iii) α T_b-space if every α g-cld is closed.
- (iv) T_{ω} -space if every ω -cldis closed.
- (v) T_p^* -space if every g*p-cldis closed.

- (vi) $*_{s}T_{p}$ -space if every gsp-cld is g*p-cld.
- (vii) αT_d -space if every α g-cld is g-cld.
- (viii) α -space if every α -cldis closed.
- (ix) T_{ω} -space if every ω -cld is closed.

Definition 2.8

A topological space X is called:

(i) semi generalized $-T_0$ (briefly, sg- T_0) if and only if to each pair of distinct points x, y of X, there exists a sg-open set containing one but not the other.

(ii) semi generalized $-T_1$ (briefly, sg- T_1) if and only if to each pair of distinct points x, y of X, there exists a pair of sg-open sets, one containing x but not y, and the other containing y but not x.

(iii) semi generalized $-R_0$ (briefly, sg- R_0) if and only if for each sg-open set G and $x \in G$ implies $sg-cl(\{x\}) \subseteq G$.

Remark 2.9

The collection of all rg-closed sets in X is denoted by RG C(X).

The collection of all rg-open sets in X is denoted by RG O(X).

Definition 2.10

A subset S of a space X is called:

- (i) generalized locally closed (briefly, glc) if $S = V \cap F$, where V is g-open and F is g-cld.
- (ii) semi-generalized locally closed (briefly, sglc) if $S = V \cap F$, where V is sg-open and F is sgcld.

(iii) regular-generalized locally closed (briefly, rg-lc) if $S = V \cap F$, where V is rg-open and F is rg-cld.

(iv) generalized locally semi-closed (briefly, glsc) if $S = V \cap F$, where V is g-open and F is semicld.

(v) locally semi-closed (briefly, lsc) if $S = V \cap F$, where V is open and F is semi-cld.

(vi) α -locally closed (briefly, α -lc) if S = V \cap F, where V is α -open and F is α -cld.

(vii) ω -locally closed (briefly, ω -lc) if S = V \cap F, where V is ω -open and F is ω -cld.

The class of all generalized locally closed (resp. generalized locally semi-closed, locally semi-closed, ω -locally closed) sets in X is denoted by *GLC* (X) (resp. *GLSC* (X), *LSC* (X), ω -LC(X)).

Throughout this paper (X, τ_1 , τ_2) or X will always denote bitopological spaces when A is a subset of $\tau_{1,2}$ -cl(A) and $\tau_{1,2}$ -int(A) denote the $\tau_{1,2}$ -closure set of A and $\tau_{1,2}$ -interior set of A respectively.

3. $(1,2)^*$ - \hat{D} -CLOSED SETSIN BITOPOLOGICAL SPACES

Definition 3.1

A subset A of X is called

(i) $(1,2)^*$ -D-closed (briefly, $(1,2)^*$ -D-cld) if $(1,2)^*$ -scl(A) $\subseteq \tau_{1,2}$ -int U whenever A \subseteq U and U is

 $(1,2)^*$ - ω -open. The complement of $(1,2)^*$ -D-closed set is called $(1,2)^*$ -D-open.

(ii) $(1,2)^* \cdot \hat{D}$ -closed (briefly, $(1,2)^* \cdot \hat{D}$ -cld) if $(1,2)^* \cdot \text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* \cdot D$ -open. The complement of $(1,2)^* \cdot \hat{D}$ -closed set is called $(1,2)^* \cdot \hat{D}$ -open.

The class of all $(1,2)^*$ - \widehat{D} -cld in X is denoted by $(1,2)^*$ - \widehat{D} C.

Proposition 3.2

Each $\tau_{1,2}$ -closed (resp. (1,2)*- α -cld, (1,2)*-pre-cld, (1,2)*-semi-cld) is (1,2)*- \widehat{D} -cld.

Proof

Let A be any $\tau_{1,2}$ -closed set. Let $A \subseteq U$ and U is $(1,2)^*$ -D-open set in X. Then $\tau_{1,2}$ -cl(A) $\subseteq U$. But $(1,2)^*$ -spcl(A) $\subseteq \tau_{1,2}$ -cl(A) $\subseteq U$. Thus A is $(1,2)^*$ - \widehat{D} -cld. The proof follows from the facts that $(1,2)^*$ -spcl(A) $\subseteq (1,2)^*$ -scl(A) $\subseteq \tau_{1,2}$ -cl(A) and $(1,2)^*$ -spcl(A) $\subseteq (1,2)^*$ -acl(A) $\subseteq \tau_{1,2}$ -cl(A).

Remark 3.3

The reverse of the above proposition need not be true.

Example 3.4

Let X={m,n,o,p,q} with τ_1 ={ ϕ ,{m},{m,n},X} and τ_2 ={ ϕ ,{o,p},X}. Then $\tau_{1,2}$ ={ ϕ ,{m},{m,n},{o,p},{m,o,p},X}. Here, J={m,n,p} is (1,2)*- \hat{D} -cld (resp. not (1,2)*-pre-cld, not (1,2)*- α -cld, not (1,2)*-semi-cld).

Proposition 3.5

Each $(1,2)^*$ - \hat{D} -cld is $(1,2)^*$ -gspr-cld

Proof

Let A be any $(1,2)^*$ - \hat{D} -cld set. Let A \subseteq U and U is regular $(1,2)^*$ -open in X. Since each regular $(1,2)^*$ -open set is $\tau_{1,2}$ -open and each $\tau_{1,2}$ -open is $(1,2)^*$ -D-open, we get $(1,2)^*$ -spcl(A) \subseteq U. Hence, A is $(1,2)^*$ -gspr-cld.

Remark 3.6

The reverse of the above proposition need not be true.

Example 3.7

Let X={m,n,o,p} with τ_1 ={ ϕ ,{m},{n},X} and τ_2 ={ ϕ ,{p}, {n,p},X}. The $\tau_{1,2}$ ={ ϕ ,{m},{n},{p},{m,n},{m,p},X}. Then, J={m,n,p} is (1,2)*-gspr-cld but not (1,2)*- \hat{D} -cld.

Theorem 3.8

Each $(1,2)^*$ - ω -cld is $(1,2)^*$ - \widehat{D} -cld.

Proof

Let A be $(1,2)^*-\omega$ -cld in X. Let A \subseteq U and U is $(1,2)^*$ -D-open. Then $\tau_{1,2}$ -cl(A) \subseteq U. Since each $(1,2)^*-\omega$ -cld set is $(1,2)^*$ -pre-cld and each $(1,2)^*$ -pre-cld set is $(1,2)^*$ -semi-pre-cld, A is $(1,2)^*$ semi-pre-cld.

Then A \subset (1,2)*-pcl(A) \subset (1,2)*- ω cl(A), Since each $\tau_{1,2}$ -closed is (1,2)*- ω -cld, (1,2)*- ω -cl(A) \subset $\tau_{1,2}$ cl(A). Therefore, $(1,2)^*$ -spcl(A) $\subseteq (1,2)^*$ -pcl(A) $\subseteq \tau_{1,2}$ -cl(A) $\subseteq U$. Hence, A is $(1,2)^*$ - \widehat{D} -cld.

Remark 3.9

The reverse of the above proposition need not be true.

Example 3.10

Let X={m,n,o} with $\tau_1 = \{\phi, \{m\}, X\}$ and $\tau_2 = \{\phi, \{n\}, X\}$. Then $\tau_{1,2} = \{\phi, \{m\}, \{n\}, \{m,n\}, X\}$. Then, J ={m} is $(1,2)^* \cdot \hat{D}$ -cld but not $(1,2)^* \cdot \omega$ -cld.

Proposition 3.11

Each $(1,2)^*$ - \hat{D} -cld is $(1,2)^*$ -gsp-cld.

Proof

Let A be any $(1,2)^* - \widehat{D}$ -cld in X. Let A $\subseteq U$ and U is $\tau_{1,2}$ -open set in X. Since every $\tau_{1,2}$ -open is $(1,2)^*$ -D-open, we get $(1,2)^*$ -spcl(A) \subset U. Hence A is $(1,2)^*$ -gsp-cld.

Remark 3.12

The reverse of the above proposition need not be true.

Example 3.13

Let X={m,n,o} with $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{m\}, X\}$. Then $\tau_{1,2} = \{\phi, \{m\}, X\}$. Then, J={m,n} is

 $(1,2)^*$ -gsp-cld but not $(1,2)^*$ - \widehat{D} -cld.

Proposition 3.14

Each $(1,2)^*$ - \hat{D} -cld is $(1,2)^*$ -pre-semi-cld

Proof

Let A be any $(1,2)^*$ - \widehat{D} -cld in X. Let A \subseteq U and U is $(1,2)^*$ -g-open in X. Since each $(1,2)^*$ -g-open is $(1,2)^*$ -D-open, we get $(1,2)^*$ -spcl(A) \subset U. Hence, A is $(1,2)^*$ -pre-semi-cld.

Remark 3.15

The reverse of the above proposition need not be true.

Example 3.16

Let X={m,n,o,p} with $\tau_1 = \{\phi, \{m\}, X\}$ and $\tau_2 = \{\phi, \{m,n,o\}, X\}$. Then $\tau_{1,2} = \{\phi, \{m\}, \{m,n,o\}, X\}$.

Then, $J=\{m,n,o,p\}$ is $(1,2)^*$ -pre-semi-cld but not $(1,2)^*$ - \widehat{D} -cld.

REFERENCES

- [1] I. Arockiarani, K. Balachandran and M. Ganster, Regular-generalized locally closed sets and RGL-continuous functions, Indian J. Pure. Appl. Math., 28(1997), 661-669.
- [2] P. Battacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.

- [3] R. Devi, K. Balachandran and H. Maki, On generalized α-continuous maps and α-generalized continuous maps, Far East J. Math. Sci., Special Volume, Part I (1997), 1-15.
- [4] Z. Duszynski, M. Jeyaraman, M. Joseph Israel and O. Ravi, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [5] Y. Gnanambal, Studies on generalized pre-regular closed sets and generalization of locally closed sets, Ph.D Thesis, Bharathiar University, Coimbatore1998.
- [6] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internat J. Math. Sci., 12(3)(1989), 417-424.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(1970), 89-96.
- [8] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [9] G. B. Navalagi, Semi generalized Separation axioms in topology, International Journal of Mathematics and Computing Applications, 3 91-1 (2011), 23-31.
- [10] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [11] J. H. Park and J. K. Park, On semi-generalized locally closed sets and SGLC-continuous functions, Indian J. Pure. Appl. Math., 31(9) (2000), 1103-1112.
- [12] O. Ravi, and S. Ganesan, \ddot{g} -Closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(3) (2011), 330-337.
- [13] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [14] P. Sundaram and M. Rajamani, Some decompositions of regular generalized continuous maps in topological spaces, Far East J. Math. Sci., special volume, Part II,(2000), 179-188.
- [15] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi-T1/2-spaces, Bull. Fukuoka Univ. Ed. III, 40(1991), 33-40.
- [16] P. Sundaram, Study on generalizations of continuous maps in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, 1991.
- [17] M. K. R. S. Veera Kumar, Between semi-closed sets and semi pre-closed sets, Rend Istit Mat. Univ. Trieste, Vol XXXII, (2000), 25-41.
- [18] M. K. R. S. Veera Kumar, \hat{g} -locally closed sets and $\hat{G}LC$ -functions, Indian J.Math., 43(2) (2001), 231-247.
- [19] M. K. R. S. Veerakumar, On \hat{g} -closed sets in topological spaces, Bull. Allah.Math. Soc.,18(2003), 99-112.
- [20] M. K. R. S. Veera Kumar, g*-preclosed sets, Acta Ciencia Indica, Vol. XXVI-IIM, (1) (2002), 51-60.
- [21] Dhablia, D., & Timande, S. (n.d.). Ensuring Data Integrity and Security in Cloud Storage.
- [22] Dhabalia, D. (2019). A Brief Study of Windopower Renewable Energy Sources its Importance, Reviews, Benefits and Drwabacks. Journal of Innovative Research and Practice, 1(1), 01–05.