
Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1600

Vol. 70 No. 2 (2021)

http://philstat.org.ph

Data migration from SQL to NoSQL using snapshot- Livestream

Migration

Avnish Panwar

 Asst. Professor, Department of Comp. Sc. & Info. Tech., Graphic Era Hill University,

Dehradun, Uttarakhand India 248002

Article Info

Page Number:1600 - 1608

Publication Issue:

Vol 70 No. 2 (2021)

Article History

Article Received: 05 September 2021

Revised: 09 October 2021

Accepted: 22 November 2021

Publication: 26 December 2021

Abstract

The process of moving data from a source database to a destination

database is known as data migration. For a variety of reasons, including

higher data handling capacity, improved speed, and scalability, many

businesses are choosing to convert their databases from one kind (e.g.,

RDBMS) to another (e.g., NoSQL). Sqoop [3], mongoimport [2], and

mongify [1] are a few techniques and technologies that have been

developed to help with this transition from RDBMS to NoSQL databases.

NoSQL databases use different models, as opposed to the relational model

employed by RDBMS, including document, graph, and key-value. Large

data volumes were the main focus of the design of NoSQL databases. The

database migration model we provide in this paper can effectively transfer

both real-time and historical data in parallel. Our Java-based model

focuses on transferring data from MongoDB, a document-oriented NoSQL

database, to MySQL, an RDBMS. The prototype we created can migrate

both live data and a snapshot of the database at a particular moment in

time simultaneously. Our experimental evaluation shows that, in terms of

performance for both snapshot and live data migration, our model beats

competing approaches.

Keywords: Database migration, Schema Design Reengineering, RDBMS,

NoSQL

I. Introduction

Relational databases have been widely used by organisations for storing and analysing enterprise

data for the past three to four decades [4]. These databases' use of the relational paradigm enables

the systematic and orderly storage of information. Relational databases work well in situations

where data adheres to a predetermined structure and where data growth is moderate. However, there

has been an exponential increase in data generation recently from a variety of sources. Big data,

which includes the three fundamental ideas of volume, variety, and velocity (the "3 V's of big

data"), is a term that is frequently used to refer to this huge and varied body of data. Both organised

and unstructured big data are possible. A new kind of database known as NoSQL (sometimes

referred to as non-relational or not merely SQL) has evolved to address the problems brought on by

huge data. To meet the demands of huge data, software businesses like Amazon, Facebook, and

Google have embraced NoSQL databases. NoSQL databases offer adaptable data formats,

scalability, and the capacity to effectively manage massive amounts of data. They have been created

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1601

Vol. 70 No. 2 (2021)

http://philstat.org.ph

to take into account big data's many forms, quick expansion, and high velocity. Companies like

Amazon and Google have created their own NoSQL databases to meet their unique requirements.

For instance, Google created Bigtable whereas Amazon introduced DynamoDB [5]. These

databases were created to meet the specific requirements and difficulties that these businesses faced

when handling and processing massive amounts of data.

Amazon developed the fully managed NoSQL database service known as DynamoDB. For

applications that require consistent and predictable performance, it delivers seamless scalability,

minimal latency, and excellent performance. It is appropriate for a variety of use cases, from

modest applications to large-scale systems.

Bigtable is a distributed, extremely scalable NoSQL database that was created by Google. Massive

volumes of organised and semi-structured data can be stored there. Google uses Bigtable to offer

quick and effective data retrieval over a distributed infrastructure for a variety of applications,

including Google Search and Google Maps.

Companies like Amazon and Google were able to customise the features and functionality of these

databases to suit their own needs by developing their own NoSQL databases. These databases have

demonstrated to be crucial in handling the big data concerns and supporting the heavy workloads of

these businesses.

High performance, availability, and scalability are characteristics of NoSQL databases [8]. NoSQL

databases, in contrast to relational databases, enable data storage without the requirement to

predetermine a rigid database schema. In contrast, before saving data, relational databases demand

that users establish the structure, including table names, columns, and data types.

NoSQL databases are exceptional at horizontal scaling, which allows them to effectively handle

growing data loads by dispersing the data over several servers. Unlike relational databases, which

often rely on vertical scalability, which entails the addition of more resources to a single server, this

approach allows for greater flexibility.

There are different consistency models for relational and NoSQL databases. According to the

BASE (Basically Available, Soft state, and Eventually Consistent) model, NoSQL databases

prioritise high data availability even if it results in brief inconsistency. Relational databases, on the

other hand, follow the ACID (Atomicity, Consistency, Isolation, and Durability) model, which

places a strong emphasis on precise consistency.

Figure 1: Data Generation in 1 Minute (60 Sec)

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1602

Vol. 70 No. 2 (2021)

http://philstat.org.ph

For typical relational databases, the exponential expansion of data generated by social media sites

within a period of 60 seconds, as shown in Figure 1, poses serious difficulties. Companies are

switching more frequently from relational databases to NoSQL databases, which are better suited to

tackle these difficulties, to address the complexity and size of big data. In addition to a parallel

technique, this work also introduces a hybrid migration model known as the Snapshot-Live Stream

Db Migration Model. The suggested architecture and technique, which takes into account both

snapshot and live data migration, provides an automated answer to the problem of document

database migration.

II. Literature Review

Due to the requirement for processing large-scale and diverse data in current applications, there has

been a substantial increase in interest in the data transfer from SQL (relational) databases to NoSQL

databases. This research proposes a method for effective and automated data migration that

combines snapshot and livestream migration approaches.

This study [1] offers a hybrid method for transferring data between SQL and NoSQL databases.

The strategy combines the advantages of streaming migration with snapshots. The authors suggest a

migration paradigm in which the SQL database is snapshotted at a specific moment and then

subsequent updates are streamed in real-time to the NoSQL database. The outcomes of the

experiment show how effective and efficient the hybrid strategy is.

An overview of various SQL to NoSQL database data migration methods is provided in this survey

report. It analyses the drawbacks and advantages of various migrating strategies, such as snapshot

and streaming migration. The study also emphasises the significance of taking data consistency,

performance, and scalability into account during the migration process[2].

Real-time data migration from a relational database to a NoSQL database is the main topic of this

research article. The real-time changes occurring in the source database are captured and replicated

using the authors' suggested livestream migration technique. The paper provides a thorough design

and analysis of the suggested technique, proving both its viability and performance advantages [3].

In this paper [4], a snapshot-based migration strategy for NoSQL databases is presented. It covers

the difficulties of transferring massive amounts of data and offers a productive technique for taking

copies of the source database and moving them to the NoSQL system. The authors assess the

suggested strategy using a case study and show how well it manages data migration.

Data migration strategies fall under the area of snapshot differential database transformation [6]. In

this method, changes between two separate database snapshots are identified via comparison. The

updated data from the source database is converted and copied to the target database if changes are

found in the second snapshot. Three approaches snapshot differential, log-based, and trigger-

based—have been developed by Yong et al. [7] as part of their work on change data capturing

approaches. Low data update rates are particularly suited to the trigger-based strategy. Furthermore,

Wei et al. [5] described a Hadoop MapReduce technique for differential snapshots. They used

concurrent programming based on Hadoop MapReduce to obtain a summary of the altered data

using SQL queries and the MD5 technique.

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1603

Vol. 70 No. 2 (2021)

http://philstat.org.ph

Creating a database schema utilising graph traversing techniques like depth-first search and

breadth-first search is one method suggested in [25]. A Table-like Structure (TLS) is produced as a

result of this operation. Data migration is then carried out with DigiBrowser.

[26] proposes yet another clever strategy for RDBMS to big data transfer. The schema

transformation and data transformation components make up this strategy. The schema

transformation module converts the MySQL schema into an Oracle NoSQL schema by obtaining

MySQL schema information from the JDBC driver and Java database metadata API. The Oracle

NoSQL database stores the extracted table data from the MySQL database in JSON format once it

has been transformed by the data transformation module.

III. Live Stream Snapshot Database Migration

A complete solution for database migration in NoSQL systems is provided by the suggested

Snapshot-Live Stream Db Migration Model (SLSDMM). The migration of snapshot and live stream

data in parallel from a relational database management system (RDBMS) to the document

component of a NoSQL database is the main goal of this architecture.

A quick procedure or function is designed to take a snapshot of the RDBMS tables in order to start

the migrating process. This snapshot records the data as it was at that precise moment. A change

data capturer is simultaneously turned on to monitor and record any real-time changes made to the

source database. Data is frequently updated or produced quickly in big data applications. In order to

ensure that all data, including both snapshot and live stream data, is properly copied to the new

NoSQL database, this is the main goal of SLSDMM. Although the transfer of the snapshot data

takes some time in practical applications, any alterations (additions, deletions, or updates) made

during the migration of the snapshot database are likewise synchronised and mirrored in the new

NoSQL database working model shown in figure 1.

Figure 2: Live Stream Snapshot Database Migration

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1604

Vol. 70 No. 2 (2021)

http://philstat.org.ph

The concurrent migration of data from an RDBMS to a NoSQL database relies heavily on the

migration thread component of the SLSDMM. This part functions as follows:

1. Pipeline Creation: Each document in the MongoDB (NoSQL) database is given its own

pipeline by the migration thread. Each pipeline in the RDBMS relates to a particular table or

document.

2. Migration of Snapshot Data: In parallel, the migration thread reads data from the RDBMS

database's snapshot. Each document's data is processed separately, then copied into its

associated NoSQL database document. This guarantees precise and effective data migration

from each table.

3. Stream Processor: This component gets information from the change data capturer, which

keeps an eye on the RDBMS database log for any alterations to the database. The stream

processor extracts pertinent data for each individual database by grouping and filtering the

altered databases that the change data capturer sends to it.

4. Transfer of Filtered Data: The Change Data Document Producer component of the model

receives the filtered data that was acquired from the stream processor. This component runs

in parallel and generates data records for all data that is added, updated, or removed from

any NoSQL database document.

Model for Migration of Snapshot-Live Stream Database Algorithm

Using the snapshot and live stream data, the given algorithm starts the migration process from the

RDBMS to the NoSQL database. "startMigrationThread" and "startCDCThread," the two key

functions involved, are defined as follows:

Figure 3: Snapshot Database Migration Using Python

Each collection in the "listOfColls," which is a list of JSON files holding data for each NoSQL

collection (snapshot data), is iterated over by the algorithm itself. It uses the collection as a

parameter when calling the "startMigrationThread" method for each collection. This procedure

moves the temporary DB's modified and snapshot data to the appropriate NoSQL collection.

The algorithm then moves on to the "startCDCThread" function, which is not explicitly stated in the

supplied data, after processing all the collections. This function presumably manages the live stream

of updated data and updates the NoSQL database as necessary.

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1605

Vol. 70 No. 2 (2021)

http://philstat.org.ph

IV. Result Analysis

We performed tests utilising our academic department's outcome database, which acted as the relational

database, to assess the performance of the Snapshot-Live Stream Db Migration Model [10]. The

department's results database is made up of a number of tables, including master tables for students, subjects,

courses, and branches as well as extra tables like test marks and session management that record the results

information for each course the department offers. Our suggested model's performance was compared to that

of the mongify tool, the mongoimport command in serial mode, and the Sqoop HDFS map-reduce strategy.

The same database migration procedure was used to compare the various approaches while gradually

growing the database size. For evaluation purposes, two database sizes were taken into consideration. The

second size was significantly greater, with about 11 billion records, whereas the first size was quite modest,

with about 400,000 records. We wanted to evaluate the effectiveness and efficiency of our suggested

methodology in handling database migrations, particularly in scenarios with huge volumes of data, thus we

performed these performance comparisons. The evaluations' findings would shed light on the model's

scalability and performance potential.

Figure 4: System performance Analysis

We found that the Snapshot-Live Stream Db Migration Model performs better than other

approaches in terms of the time needed for migration after analysing the outcomes of various

database migration methodologies. Our suggested solution also successfully migrates the live

stream of modified data, which is a key benefit.

Furthermore, we discovered that the proposed model still performs better when big database sizes

are evaluated. It demonstrates its scalability and efficiency by handling the migration procedure for

databases with a significant amount of data.

These findings demonstrate the efficiency and dependability of the Snapshot-Live Stream Db

Migration Model, especially when compared to competing methods. It is a good option for database

migration operations because of its effectiveness in migrating both snapshot and live stream data, as

well as its performance even for huge database sizes.

V. Conclusion

It is a very difficult operation to move data from an RDBMS to a NoSQL database, especially when

dealing with data that is constantly changing and expanding quickly. The Snapshot-Live Stream Db

Migration Model (SLSDMM), which utilises both snapshot and live stream data migration

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1606

Vol. 70 No. 2 (2021)

http://philstat.org.ph

methodologies in simultaneously, is our solution to this problem. The migration thread, the stream

processor, and the altered data document producer are the three main parts of the SLSDMM model.

The snapshot data from the relational database and the live stream of collected updated data are its

two sources. This model effectively migrates both the live stream of modified data and the snapshot

data into the NoSQL database. Experimental findings show that the suggested model performs

better than current models. It successfully manages the migration of live data streams in addition to

achieving speedier migration. This demonstrates the SLSDMM model's usefulness and efficiency in

tackling the challenges of data transfer from RDBMS to NoSQL databases.

VI. Limitation and Future Direction

Although the snapshot-live stream migration method is a useful one for moving data from SQL to

NoSQL databases, there are still some drawbacks and room for further development. These

exclusions and potential future applications include:

1. Data Consistency: Maintaining data consistency during the migration procedure is one

restriction. It can be difficult to ensure consistent data across both sources while snapshot

and live stream data are transferred in tandem. The development of methods to address

issues with data consistency could be the main topic of future research.

2. Schema Transformation: The current method presumes that the SQL and NoSQL schemas

map one to the other. Complex data models, however, might call for more sophisticated

schema transformations. Techniques for managing complex schema alterations during

migration may be explored in further research.

3. Rollback and error handling: Handling problems or failures throughout the migration

process is essential. Robust error handling capabilities and the capacity to roll back or

recover from botched migrations could be added in the future to protect data integrity.

4. Database Compatibility: The present model is mostly focused on switching from SQL to

NoSQL databases. It would be beneficial to expand the model to facilitate migration

between various database types, such as graph databases or key-value stores.

5. Real-time Data Synchronisation: It would be advantageous to improve the live stream

migration capabilities in order to accomplish real-time data synchronisation between the

source and target databases. As a result, there would be a reduced chance of data loss or

inconsistencies during the migration process.

Future Scope:

Future research can investigate clever algorithms or machine learning techniques to automatically

map SQL data models to the best NoSQL schema architectures. By doing this, manual work might

be reduced and data migration might be more effective. Automated Data Consistency Checks: It

would be beneficial to develop automated methods to verify data consistency between snapshot and

live stream data during migration. To find and fix any inconsistencies, this may utilise real-time

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1607

Vol. 70 No. 2 (2021)

http://philstat.org.ph

validation and verification procedures. Compatibility with Other Database Systems: Adding support

for migration between various database systems, such as graph databases or time-series databases,

to the scope of snapshot-live stream migration might create new opportunities for data transfer

across various contexts.

References:

[1] S. Ramzan, I. S. Bajwa, B. Ramzan, and W. Anwar, “Intelligent Data Engineering for Migration

to NoSQL Based Secure Environments,” IEEE Access, vol. 7, pp. 69042-69057, 2019.

[2] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-Tolerant Web Services,” Acm SigactNews, vol. 33, no. 2, pp. 51-59, 2002.

[3] G. Karnitis and G. Arnicans, “Migration of Relational Database to Document-Oriented Database

: Structure Denormalization and Data Transformation,” in 7th International Conference on

Computational Intelligence, Communication Systems and Networks, 2015, pp. 113- 118.

[4] S. Ramzan and I. S. Bajwa, “An Intelligent Approach for Handling Complexity by Migrating

from Conventional Databases to Big Data,” Symmetry (Basel)., vol. 10, 698, 2018

[5] W. Du and X. Zou, “Differential snapshot algorithms based on Hadoop MapReduce,” in

Proceedings o f the 2015 12th International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), 2015, pp. 1203-1208.

[6] P. Vassiliadis, “A Survey of Extract-Transform-Load A Survey of Extract - Transform - Load

Technology,” Int. J. Data Warehous. Min., vol. 5, no. 3, pp. 1-27, 2009.

[7] Y. Hu and W. Qu, “Efficiently Extracting Change Data from Column Oriented NoSQL

Databases,” Smart Innov. Syst. Technol., vol. 21, pp. 587-598, 2013.

[8] G. Karnitis and G. Arnicans, “Migration of Relational Database to Document-Oriented Database

: Structure Denormalization and Data Transformation,” in 7th International Conference on

Computational Intelligence, Communication Systems and Networks, 2015, pp. 113- 118.

[9] S. Ramzan and I. S. Bajwa, “An Intelligent Approach for Handling Complexity by Migrating

from Conventional Databases to Big Data,” Symmetry (Basel)., vol. 10, 698, 2018.

[10] B. Namdeo and U. Suman, “Performance Analysis of Schema Design approaches for migration

from RDBMS to NoSQL Databases,” in 2nd International Conference on Data & Information

Sciences, 2019.

[11] V. Varga, K. T. Janosi-Rancz, and B. Kalman, “Conceptual design of document NoSQL

database with formal concept analysis,” Acta Polytech. Hungarica, vol. 13, no. 2, pp. 229-248,

2016.

[12] C. Lee and Y. Zheng, “Automatic SQL-to-NoSQL Schema Transformation over the MySQL

and HBase Databases,” in IEEE International Conference on Consumer Electronics - Taiwan,

2015, pp. 426-427.

[13] W. Labio and H. Garcia-Molina, “Efficient Snapshot Differential Algorithms for Data

Warehousing,” Very Large Data Bases Conf., vol. 22, no. 1059, pp. 1-25, 1996.

[14] Y. Hu and S. Dessloch, “Extracting deltas from column oriented NoSQL databases for

different incremental applications and diverse data targets,” Data Knowl. Eng., vol. 93, pp. 42-

59, 2014.

[15] A. Khan, “Export to JSON from MySQL All Ready for MongoDB,” 2018

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

DOI: https://doi.org/10.17762/msea.v70i2.2450

1608

Vol. 70 No. 2 (2021)

http://philstat.org.ph

[16] “Maxwell’s daemon.” [Online]. Available: https://maxwellsdaemon.io/. [Accessed: 05-Feb-

2020].

[17] Avrilia Floratou, Nikhil Teletia, David J. DeWitt, Jignesh M. Patel and Donghui Zhang, "Can

the Elephants Handle the NoSQL Onslaught?", Proceedings of the VLDB Endowment, 2012.

[18] Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Jacobsen, Sergio G'omez Villamor, Victor

Munt'es Mulero and Serge Mankovskii, "Solving Big Data Challenges for Enterprise

Application Performance Management", The 38th International Conference on Very Large Data

Bases August 27th — 31st 2012 Istanbul Turkey. Proceedings of the VLDB Endowment, 2012.

[19] Laurie Butgereit, "Four NoSQLs in Four Fun Fortnights: Exploring NoSQLs in a Corporate in

a Corporate IT Environment", SAICSIT ‘16 Proceedings of the Annual Conference of the South

African Institute of Computer Scientists and Information Technologists, 2016.

[20] John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham and Chriisjan Master, "A

comparison between several NoSQL databases with comments and notes", PABS ‘15

Proceedings of the 1st Workshop on Performance Analysis of Big Data Systems, 2015.

[21] Jiri Schindler, "I/O performance of NoSQL Databases(VLDB)", SIGMETRICS ‘13

Proceedings of the ACM; SIGMETRICS/international conference on Measurement and

modelling of computer systems, 2013.

