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Abstract 

Modern industrial processes must now be designed and controlled with 

advanced robotic systems for manufacture and assembly to increase 

productivity, accuracy, and flexibility. The main factors involved in 

creating and overseeing these robotic systems are presented in detail in 

this work.In the design stage, manipulators, sensors, and end-effectors that 

are customised for the particular manufacturing or assembly task are 

chosen and integrated. To ensure accurate and efficient task execution, 

additional control algorithms and programming techniques are also 

developed. This covers adaptive control techniques, path optimisation, 

trajectory planning, and collision avoidance.The real-time monitoring, 

coordinating, and synchronisation of several robots and their interactions 

with the environment are the main goals of the control component. The 

integration of human operators with robotic systems is made possible by 

centralised or decentralised control frameworks, which promote secure 

and effective production and assembly procedures.The study also 

discusses how to improve robotic systems' abilities to handle complicated 

jobs and adapt to shifting production settings by integrating cutting-edge 

technologies like machine learning, computer vision, and augmented 

reality.The difficulties and possibilities posed by the application of 

sophisticated robotic systems for manufacturing and assembly are also 

covered. These include the dependability of the system, the ethical effects 

of automation in the workplace, the detection and recovery of faults, and 

human-robot collaboration.The ultimate goal of this work is to give 

readers a thorough grasp of the design and control principles required for 

creating advanced robotic systems for manufacturing and assembly, hence 

promoting higher levels of productivity, quality, and adaptability in 

industrial settings. 
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Introduction 

Although frequently utilised in automated manufacturing, industrial robotic arms lack the dexterity 

needed for delicate assembly operations like Ethernet connection assembly. It is difficult to set and 

programme robot trajectories using conventional approaches for such tasks. Robotic manufacturing 

has developed a collaborative environment where humans and robots may work together to 

overcome this. When compared to traditional teach pendants, collaborative robots that have force 

sensors in their joints may be trained by physically directing their movements. This makes them 

more user-friendly and versatile. Due to the difficulty of teaching assembly trajectories using 
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conventional techniques, this method has grown in favour. Teach pendants are difficult to use and 

useless for teaching these kinds of tasks. In summary, the adoption of collaborative robots with 

force sensors is a result of the rising demand for sensitive assembly activities.Collaborative robots 

are becoming more and more common, however their force sensors in the joints frequently miss the 

tool centre point (TCP) and the contact force applied to objects. Alternative teaching strategies 

using robotic arms have been created in response. The robot interface developed by Kronander and 

Billard [5] allows the instructor to modify the stiffness of the robot as it moves. A human motion 

capture system was used by Shin and Kim [6] to train robot mobility. While [8] created a visual-

haptic teleoperation system, Crainic and Preitl [7] presented an ergonomic operating interface 

employing a game-pad with joysticks. However, when it comes to assembling sensitive 

components, these methods have their limitations. Some techniques [7], [9], [10] do not capture 

force trajectories from demonstrators or force feedback data. 

This research describes a novel method for teaching assembly tasks quickly via human 

demonstration that blends machine learning and robot control. The suggested method employs a 

haptic device with a force sensor mounted at the end-effector of a robotic arm to solve real-world 

assembly challenges in the industrial setting. During robotic arm operations, operators receive 

tactile feedback that communicates the contact force between components and the surroundings. 

The force sensor records arm trajectories and force feedback while the haptic device is used to 

control the robot end-effector during the teaching process.A trajectory learning system is designed 

to guarantee the smoothness of teaching trajectories and minimise environmental disturbances that 

may result from manual haptic device operations. This method enables the creation of the best 

robotic arm trajectories by allowing users to repeatedly teach and record trajectories and force 

feedback[14]. 

The application of force sensing in a haptic device for training, the construction of a trajectory 

learning system to improve robotic arm trajectories, and the integration of machine learning and 

robot control for practical assembly jobs are the main contributions of this work. The suggested 

system intends to improve the effectiveness and adaptability of robotic assembly processes in 

industrial settings by utilising these developments.  

 

I. Background 

1. Learning Environment For Robotic Arm 

Using a teach pendant or a human-computer interface (HCI), [21] direct teaching techniques entail 

physically moving the robotic arm. Robot motions are manually directed by operators, who record 

the trajectories for later replay. The motions of the robot can be directly controlled by the user via 

teach pendants, which are portable devices having buttons, joysticks, and touchscreens. On the 

other hand, HCIs offer a graphical user interface (GUI) that enables users to communicate with the 

robot and set up its commands.On the other hand, indirect teaching techniques entail programming 

the robot's actions using complex commands or programming languages. These procedures usually 

involve less direct manipulation of the robot and are more abstract. Instead, operators instruct the 

robot to interpret and carry out the desired actions, sequences, or tasks. Programming by 

demonstration, wherein operators direct the robot through the desired motions while the system 

records and learns the actions, and offline programming, wherein operators define the robot's 
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actions using specialised software without having to interact with the robot directly, are two 

examples of indirect teaching techniques. 

For the purpose of training robotic arms, both direct and indirect teaching techniques are essential. 

While indirect methods allow for more advanced programming and automation, direct methods 

offer real-time control and fine-tuning capabilities. The particular application requirements, task 

complexity, operator preferences, and level of experience all influence the selection of the 

instructional methodology. 

 

2. Systems For Trajectory Learning 

Datasets for trajectory and force feedback [22] are produced after the teaching procedure. However, 

because human demonstrations are subject to vibrations and mistakes, the robotic arm may follow 

less-than-ideal trajectories. As a result, before using the instructional data in actual processes, it 

must be optimised and learned.A hidden Markov model (HMM) is used to find trajectory features 

in order to remedy this. On the basis of the instructional dataset, the[15] trajectory prediction model 

was created using the HMM. However, due to the nature of the HMM, a small number of states can 

result in inefficient trajectory learning, whereas a high number of states can slow down 

calculations.In contrast, [16] used Gaussian mixture regression (GMR) to examine the features of 

the instructional dataset and incorporate them into a trajectory. Important trajectory features are 

kept during trajectory learning by adding GMR. This study uses GMR to speed up robotic arm 

trajectory learning without losing the key elements of demonstration teaching data. Units of 

analysis are the data points along the trajectories. 

For robotic arms, controllers are frequently employed in conjunction with force sensors to reduce 

environmental disturbances. Popular options include PID (Proportional-Integral-Derivative) and 

compliance controllers [18]. The majority of external disturbances, however, are nonlinear, 

necessitating a variety of control reactions to adequately address varied situations. In contrast to 

neural networks (NNs), which allow for direct formulation of control models using training data, 

fuzzy control is frequently used in robotic arm control. Fuzzy control and NNs work together to 

create complex fuzzy control rule databases that are based on NNs, combining the benefits of both 

approaches. Robotic arm movement models have been trained using adaptive neuro-fuzzy inference 

systems (ANFIS), which have been used to overcome the inaccurate mathematical dynamic 

function inference brought on by persistent external disturbances.Compliance control can be 

passive or active, both of which require adjusting to external disturbances through contact with 

force feedback. While active compliance control makes use of controllers for more robustness, 

passive compliance control uses hardware components to react to outside stimuli. Extensive 

research has been done on compliance control techniques including hybrid motion control and 

impedance control. The problems associated with contact force have been addressed via hybrid 

impedance control[9]. 

 

3. Systems For Educating, Learning From Trajectories, And Controlling 

For this system to produce a collection of taught trajectories and force feedback data, various 

teaching processes had to be used. It was a force sensor and haptic device attached to the robotic 

arm's end. The force feedback data recorded by the force sensor was used to give the operator 

tactile feedback via the haptic device. This input improved the system's intuitiveness and usability 
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by removing vibration disruptions, weight inaccuracies, and coordinate transformations during the 

teaching process. After the teaching procedure, the data obtained for this work was represented with 

regard to the robot's base coordinate system. The system's various functions were each highlighted 

individually, emphasising their individual roles and functionalities. 

 

 
Figure 1: Learning System for Trajectory learning mechanism 

 

The system enabled the extension of the scale, allowing the control of the robotic arm to do large-

scale actions through small-scale motions of the haptic device, to produce a rough trajectory. On the 

other hand, the size might be reduced for exact trajectories, making precise arm movements 

possible. Therefore, a scaling parameter has to be multiplied by the relative position of the haptic 

device (H Hold -). This scaling parameter allowed the haptic device's movements to be scaled to the 

appropriate degree of control and accuracy for the robotic arm. 

The system was created specifically to repeatedly process the force feedback and trajectory data 

from the training system. The control system would use the reference trajectory and the related 

predicted force that were produced through this iterative process to execute the motion. The 

dynamic time warping (DTW) technique was used to align the dynamic time of all teaching data in 

order to maintain time consistency.By preserving the key curve characteristics of the trajectories, 

Gaussian Mixture Regression (GMR) was used to determine the best reference trajectories and 

predicted force. In order to ensure the safety of the reference trajectories during execution, a three-

dimensional force field was also created to simulate them. Figure 1 shows a diagram displaying the 

trajectory learning system. 

 

4. (Smmd-Dtw) Slide Multiple Multi-Dimensional Time Warping 

The generated instructional data had a variety of trajectories when the teaching procedure was 

finished. Each element of the trajectory teaching process took a different amount of time to 

complete because of the manual labour and repetitions necessary. Therefore, Dynamic Time 

Warping (DTW) is required for the instructional data.The purpose of conventional DTW techniques 

is to handle a single set of input data in a single dimension. The taught trajectories in this work have 

numerous dimensions and datasets, therefore a more effective strategy is needed to shorten the 

calculation time. A method known as Slide Multiple Multidimensional Dynamic Time Warping 
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(SMMD-DTW) was suggested [20] to address this.The input data is divided into several segments 

by SMMD-DTW, which then executes multidimensional DTW. The calculation time is decreased 

by segmenting the data, enabling more effective processing of multidimensional trajectories. 

Through the alignment of trajectories in several dimensions, this method makes it easier to compare 

and analyse the instructional data. 

 
Figure 2: Slide Multiple Multi-Dimensional Time Warping (a) Original Input (b) After 

SMMDTW 

The K-means clustering technique was used to segment the data. Six initial trajectories are 

displayed in Figure 2(a) to represent various activities. The outcomes of employing SMMD-DTW 

are shown in Figure 2(b). The same cluster contains all of the phases of the taught acts, each of 

which is represented by a trajectory of the same colour.The time discrepancies in each phase 

resulting from variations in operation speed for timeline adjustment in the DTW process are made 

clear by using K-means clustering and SMMD-DTW. The analysis and comprehension of the 

changes in completion times for the various phases of the taught acts are aided by this segmentation 

and grouping approach. 

 

5. Gaussian Mixture Regression (Gmr) 

Gaussian Mixture Regression (GMR) was used to generate the ideal reference trajectories and 

predicted force while keeping the crucial curve features after applying DTW to synchronise the 

timelines of all the teaching data. GMR's input data may include data from numerous dimensions. 

One of these dimensions is referred to as the continuous time domain, and the other dimensions are 

called space domains. The relative chronological relationship between the several space domains is 

represented by the time domain.The timeline is divided into several continuous points using GMR, 

and the central point and covariance matrix are produced for each segmentation point using the 

associated GMM (Gaussian Mixture Model) parameters. The final reference trajectory is created by 

connecting these core spots. 

The K number of Gaussian component segments, abbreviated as GMR, is predefined. This specifies 

how many points there are in the reference trajectory. Let t stand for the segmentation point on the 

continuous timeline, and let s stand for the space domain that corresponds to it as determined by 
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GMR. The GMR parameters and can be represented as follows because the GMR model separates 

the time and space domains:  

μ =  [μ1, μ2, … , μK]    (1) 

Σ =  [Σ1, Σ2, … , ΣK]    (2) 

The mean vector and covariance matrix,  μ and Σ respectively, are represented by and in these 

equations. The subscripts 1 to K represent various Gaussian segments or components. 

 
Figure 3: Gaussian Mixture Regression (GMR) result representation 

 

The reference trajectory obtained using GMR is shown in Figure 3. It is produced using 12 navy 

blue-marked Gaussian components. Additionally, each time segmentation point's covariance level is 

displayed and is indicated by light blue markers.The segmentation points show a greater degree of 

convergence as they get closer to the Ethernet connector (Z 25 mm), as seen in Figure 3. This 

suggests that the trajectory becomes less variable and more constant there, indicating a more steady 

and reliable motion pattern close to the Ethernet connector. 

 

II. Controlling System 

The system structure developed for this study's final component was designed to accomplish instant 

control of the robotic arm and guarantee secure operations even in the event of outside disturbances 

or fixture displacement while following the reference trajectory. The arm was controlled by 

observing and making use of the discrepancies between the present force feedback values and the 

expected force in this control system, which was based on admittance control principles 

[12].Additionally, the controlling system used force feedback to continuously assess the many kinds 

of environmental disturbances. Based on this evaluation, it swiftly changed the entry weight, 

enabling the system to quickly alter and efficiently react to changing external circumstances. The 

robotic arm was able to retain stability and improve operational performance thanks to this dynamic 

modification of the entry weight. 

 

1. Control of admission 

The main goal of the controller was to produce the intended or anticipated force, which the 

trajectory learning system created simultaneously with the reference trajectory. The following 

equation represents the admittance control of the trajectory's X-axis: 

Fdesired =  Kadm ∗  (Xdesired − Xcurrent) +  Fexpected   (3) 
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F_expected is the anticipated force derived by the trajectory learning system, K_adm is the 

admittance gain or weight, X_desired and X_current are the desired and current positions of the 

robotic arm along the X-axis, respectively, and K_adm is the admittance gain or weight in this 

equation. The intended force needed to drive the robotic arm along the X-axis is generated by the 

admittance control algorithm using the difference between the desired and actual positions as well 

as the expected force. 

𝐹_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =  𝐹_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +  𝐾_𝑥 ∗  (𝛥𝑋 −  𝛥𝑋_𝑜𝑙𝑑)  +  𝐷_𝑥 ∗  𝛥𝑋_𝑑𝑜𝑡 (4) 

• F_current represents the current force feedback value (N). 

• ΔX represents the translation of the robotic arm in the X direction (m). 

• ΔX_dot represents the change in the speed of the arm in the X direction (m/s). 

• K_x represents the stiffness in the X direction (N/m), indicating the relationship between 

stress and force feedback. 

• D_x represents the damping coefficient of the X-axis (Ns/m), indicating the relationship 

between speed and force feedback. 

• ΔX is calculated as the difference between the current position X_old and the position at the 

next time point X_new. 

• ΔX_dot is calculated as the change in speed from the previous time point X_dot_old to the 

subsequent time point X_dot_new. 

• Δt represents the change in time. 

 
Figure 5: Robotic arm executing the translation through the simulation's admission control 

 

2. Evaluating the admissions situation 

The following method was used to assess if the current disturbance is due to vibration or simple 

translation and to calculate the vibration's amplitude. The predicted force, F_exp, was established as 

a broad band range, designated as B. Based on the mean of the continuous force feedback values, 

the present state of the force feedback, indicated as S, was established. It was also taken into 

account how many changes, H (zero crossing rate, ZCR), there were throughout the states. 

The force feedback state, S, was classified into three types: 

• Positive state: When the mean of the current continuous force feedback values was larger 

than F_B+ (upper bound of the range B), S was considered positive. 
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• Negative state: When the mean was smaller than F_B- (lower bound of the range B), S was 

considered negative. 

• Middle state: When the mean was within the range of B, S was considered middle. 

It was possible to identify changes in the force feedback behaviour by contrasting the current state 

with the previous state. This method made it possible to discern between vibration and translational 

disturbances and to calculate the vibration's amplitude. Additionally, the robotic arm's operation 

was stopped for safety reasons if the vibration amplitude was too high. 

 

III. Result and Discussion 

The experiment's goal was to use a robotic arm control system to complete an assembly task while 

employing a reference trajectory learned from teaching and trajectory learning systems. During the 

assembling process, it was intended to lessen force feedback while still producing the desired force. 

An Ethernet connection [20] was used as the component in the experiment.As seen in Figure 6, the 

Ethernet connector was made up of a black plastic component and an aluminium shell with a latch. 

The aluminium shell, which was firmly set in a fixture before the experiment, was grasped by the 

robotic arm utilising the training system, and it was inserted into the aluminium component.  

 

a) Demonstrating and Learning the assembly procedures 

The teaching system was used to control the robotic arm while it carried out the component 

assembly procedure six times using the coordinate system. There were variances in the finished 

actions because the training procedure was carried out manually for each assembly step. As a result, 

the instructional data were subjected to many iterations of the trajectory learning process.The 

SMMD-DTW algorithm was used in the trajectory learning phase, with a cluster size of 10. The 

GMR trajectory learning procedure used 12 Gaussian components and the instruction data to 

produce the reference trajectory and anticipated force for the robotic arm to use.Figure 6(b) depicts 

the anticipated force generated following the six teaching processes, while Figure 6(a) displays the 

contact force generated throughout the six teaching processes. 

 

 
Figure 6: Schematic Representation (a) Force feedback that was taught (b) force that was 

anticipated after learning. 
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The average values of FX, FY, and FZ from four trials carried out at various vibration frequencies 

are shown in Table 1. Due to the installation of admittance control, the average FY values remained 

consistent despite the existence of disturbances along the Y direction. 

 

Table1: Vibration frequency analysis 

Frequency Ave. FX Ave. FY Ave. FZ 

0.5 Hz 0.053275 0.48565 -0.054575 

1.0 Hz 0.064925 0.50575 -0.04395 

1.5 Hz 0.052925 0.492675 -0.032875 

 

b) Vibration assembly 

Vibration assembly tests were carried out to evaluate the controller's responsiveness within the 

regulated range of vibration frequencies. No translation of the aluminium shell (Shift = 0) took 

place in these trials prior to the vibration phase. Based on the force input acquired during the 

vibration, the trajectory was calibrated.The finished product, an Ethernet connector, was made out 

of parts with minute gaps. The assembly process's 1 mm maximum acceptable error was 

established. If this mistake level was crossed, the excessive force feedback that followed would 

cause the system to automatically stop the assembly action. As a result, 1 mm was chosen as the 

experiment's vibration amplitude. 

 
(a)                                                                           (b) 

Figure 7: following admittance control (a) at frequency 0.5 Hz (b) frequency 1.5Hz 

 

The experiment's vibration frequency was kept below 2 Hz, and the admittance weight (Rc) was 

adjusted to 1. The force feedback data captured at vibration frequencies of 0.5 Hz and 1.5 Hz, 

respectively, are shown in Figures 7(a) and (b). The robotic arm underwent a noteworthy peak in 

stress as a result of the vibration's magnitude in the Y direction. The robotic arm's trajectory was 

tracked, and the findings are presented in Figure 7. This figure shows how the arm's trajectory 

significantly changed in reaction to the vibrations of the environment. 
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IV. Conclusion 

In order to increase productivity, efficiency, and safety in a variety of industrial applications, 

improved robotic system design and control are essential. Assembly processes can be made exact 

and reliable by combining teaching systems, trajectory learning, and cutting-edge control 

algorithms like admittance control.By utilising teaching systems, complex assembly jobs can be 

carried out by the robotic arm with less force feedback and greater precision. This is done by 

capturing and optimising reference trajectories. The performance of the robotic system is further 

improved by trajectory learning techniques like SMMD-DTW and GMR, which contribute to the 

production of ideal reference trajectories and predicted forces.Admittance-based control is used to 

ensure adaptation to environmental changes and outside disturbances throughout the assembly 

process. The system can dynamically respond to changing conditions and maintain stable and 

secure operations by continuously monitoring force feedback and modifying the admission 

weight.The installation of an Ethernet connector serves as an example of experimental results that 

indicate how effective the suggested strategy is. The robotic system successfully manages 

vibrations, precisely detects trajectories, and generates the appropriate force levels, resulting in 

successful and dependable assembly results.There is a lot of potential for enhancing automated 

processes, lowering the need for human labour, and raising overall productivity and quality in a 

variety of industries through the design and control of advanced robotic systems for production and 

assembly. The potential for improving manufacturing and assembly capabilities in this area is 

promising and warrants more research and development. 
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