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Abstract 

. The purpose of inverse problems is to identify the unknown causes or 

parameters based on observable effects or measurements in a variety of 

scientific and technical domains. To arrive at precise and trustworthy 

solutions, numerical algorithms for inverse problems must be designed 

and optimised. The creation and optimisation of numerical algorithms 

specifically created for solving inverse issues are presented in detail in this 

abstract.The formulation of inverse issues and the mathematical models 

that explain the underlying processes are the primary topics of the first 

part of this work. We examine many inverse issues, such as ill-posed, 

parameter estimation, and linear and nonlinear ones. Prior information and 

regularisation methods must be used to increase the stability and 

uniqueness of the answers.The creation and application of numerical 

algorithms for the solution of inverse problems is the focus of the second 

component. We study in depth a number of iterative techniques, including 

the conjugate gradient method, Levenberg-Marquardt algorithm, and 

Gauss-Newton method. There is also discussion of sophisticated methods 

such variational methods, Bayesian inference, and approaches based on 

optimisation.The third consideration focuses on optimising numerical 

techniques to raise their effectiveness and precision. To hasten 

convergence and lower computational costs, methods like adaptive mesh 

refinement, parallel processing, and model reduction are examined. 

Additionally, methods for handling noisy or missing data are looked at, as 

well as methods for choosing the right regularisation settings. 

 

Keywords: Inverse Problem, Optimise model, Bayesian inference, 

variational methods, adaptive mesh refinement, Density functional theory 

 

 

Introduction 

A very effective quantum many-body theory that is frequently used to model finite and periodic 

systems is density functional theory (DFT) [1]. Due to the accessibility of approximation 

exchange-correlation functionals used in the direct problem to calculate the ground-state 

electronic density, DFT is effective. In contrast, retrieving the correct exchange-correlation 

potential from a given electronic density is the goal of the Kohn-Sham (KS) DFT inverse issue. 

The inverse problem is referred to as density-to-potential inversion in this tutorial because it 

largely focuses on the ground-state form of KS DFT.The forward and inverse problems use the 

identical equations, but because the input and output variables differ greatly, they call for different 

approaches to solving them. The course focuses on the numerical techniques needed to resolve the 

density-to-potential inversion problem inside DFT as a result [2]. 
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The study of inverse issues related to distributed parameter systems and their numerical 

approximation with the finite element method are the main topics of this work. With regard to 

inverse identification and optimum control problems, we specifically discuss the estimation of 

convergence rates. In [3] many practical applications, inverse problems show nonlinearity and ill-

posedness, making it difficult to solve them numerically. These issues also typically have 

nonlinear parameter-to-observation mappings that are not invertible. As a result, we look into 

issues that have the following broad formulation: 

min F(u) + fiG(q); subjecttol_(q, u) = gin𝐻−1, ……………………………..(1) 

 

The goal is to identify the unknown parameters or controls related to the underlying distributed 

parameter system using observable data, often in the form of measurements or partial information. 

To do this, we discretize the issue and create a numerical approximation using mathematical 

models and the finite element approach. The discretization produces an equation system that can 

be iteratively solved using the right algorithms and optimisation methods.We examine the inverse 

identification and optimum control problem's convergence rates in order to gauge the precision 

and effectiveness of the numerical solution. Estimates of convergence offer important insights into 

how the numerical approximation behaves as discretization parameters like mesh size or time step 

are improved.  

 

I. Inverse Method and Direct method 

Although the Kohn-Sham (KS) equations are used in both the direct and inverse problems of 

density functional theory (DFT) [4], they display substantial differences that call for different 

techniques and convergence criteria. In this section, we give a brief summary of the numerical 

techniques that are frequently employed to address the direct DFT problem. Then, we go into 

great length to explain several inverse-problem techniques. For the sake of simplicity, we only 

explore one-dimensional systems in our examples, but the provided formulas can also be used to 

model multidimensional systems [5], which will speed up future research. Additionally, we 

concentrate on spin-compensated systems and typically skip the spin index from formulae. 

 

…………………………(1) 

Finding the ground-state electronic density by resolving the KS equations is the direct DFT 

problem. For this purpose, self-consistent field (SCF) iteration schemes, such as the well-known 

Hohenberg-Kohn-Sham approach, are frequently used in numerical methods. The KS equations 

are iteratively solved in SCF using an initial estimate of the electronic density until self-

consistency is reached. The density is often compared between iterations until a predetermined 

tolerance is met as part of the convergence criteria. 

 

…………………………(2) 

To recover the exchange-correlation potential from a given electronic density is the goal of the 

DFT inverse problem. To meet this challenge, a number of inverse-problem techniques have been 

created. One of these is the linear response approach, which updates the potential by linearizing 



Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

DOI: https://doi.org/10.17762/msea.v70i1.2512 

 
589 

 
Vol. 70 No. 1 (2021) 

http://philstat.org.ph 

 

and solving the KS equations repeatedly until the necessary precision is attained. The 

optimization-based method [7] is an alternative strategy that formulates an optimisation problem 

to reduce the difference between the calculated and given densities by modifying the potential. 

This optimisation problem is frequently solved using iterative methods like gradient descent or 

conjugate gradient methods. 

 

The orbitals[6] are commonly chosen in the density functional theory (DFT) inverse problem so 

that the set of lowest possible eigenvalues is formed by the related eigenvalues. The Kohn-Sham 

(KS) equations are effectively met by making this decision. The KS equations can be recast as 

follows for the inverse problem: 

………………………….. (3) 

…………………………….. (4) 

…………………………….. (5) 

 

The KS potential [7] demonstrates density dependence in the setting of the density functional 

theory (DFT) inverse issue, which results in a nonlinear eigenvalue problem. Equation 4 

represents a linear eigenvalue issue, in comparison. Equation 5 illustrates how the definition of the 

density leads to the nonlinearity in the inverse issue. The eigenvalue problem in the inverse 

problem cannot be solved using the mixing strategies that are frequently used in numerical 

approaches for the direct problem because of the subtle difference in nonlinearity. 

 

Numerous [8] [9] numerical techniques for resolving the Kohn-Sham (KS) equations can be 

divided into three basic categories: plane waves and grid approaches, localised atomic-(like) 

orbitals, and atomic sphere techniques. As in the Octopus time-dependent density functional 

theory (TDDFT) code, we apply the finite difference grid method for our calculations. The finite 

difference method has the advantage of being able to capture crisp features that could be difficult 

to get using other conventional basis sets for electronic structures. The finite difference 

formulation of density functional theory (DFT), which is essential for resolving the direct problem 

and also pertinent to several techniques used in the inverse problem, is briefly described in this 

section. 

 

The grid-based [11]discretization of the domain of interest and finite difference approximations of 

derivatives are the foundations of the finite difference approach. The differential operators found 

in the KS equations can be represented simply using this method. The differential equations are 

transformed into a set of algebraic equations that can be solved numerically by discretizing the 

spatial coordinates. The finite difference method's grid-based design makes it possible to tackle 

systems with intricate geometries and distinct features, giving it an edge over alternative basis sets 

in some situations [10]. 
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Similar to the Octopus TDDFT code [14], we solve the KS equations using the finite difference 

grid technique. Sharp features can be captured using this method, which may be difficult with 

conventional electronic-structure basis sets. We give a general overview of the finite difference 

DFT formulation, which is crucial for resolving the direct problem and has application to 

particular techniques used to solve the inverse problem. 

 

 
Figure 1: Density of the harmonic oscillator in comparison to an approximation using 

numbers 

 

A typical [16]density functional theory (DFT) computation for an interacting system requires 

numerous eigenvalue solutions inside the context of the self-consistent field (SCF) approach, in 

contrast to the previous example of a noninteracting system, which only required solving a single 

eigenvalue problem. 
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II. Inverse-problem methods 

We discuss existing density-to-potential algorithms in this context and describe two new inversion 

techniques. These techniques are defined in terms of the finite-difference method, and it might be 

essential to make some modifications to algorithms created for basis-set techniques. 

 

1. Two electrons, one and two: One-orbital formula 

The review covers well-known density-to-potential methods and discusses the benefits and 

drawbacks of each. In addition, we present two fresh inversion approaches that add to the arsenal 

of methods already available for dealing with the DFT inverse problem. Notably, the finite-

difference method is used in all of the examples, enabling the explicit treatment of spatial 

derivatives and making it easier to include sharp features in the potential. 

 

Although the algorithms given here are mostly developed in the context of the finite-difference 

approach, certain adjustments could be necessary when switching from basis-set methods. The 

finite-difference framework's algorithms are compatible and effective thanks to these 

improvements.Numerous [15] numerical techniques are available for the DFT inverse problem, 

each with advantages and drawbacks of their own. We offer two innovative inversion techniques 

and give a thorough analysis of density-to-potential procedures. The presentation is based on the 

finite-difference approach, however algorithms created for basis-set methods may need some 

minor adaptations. 

………………………………. (6) 

By setting the energy to zero and solving for the potential in terms of the ground state density, 

represented as n0, it is possible to derive the KS potential from Equation 1. This strategy is 

appropriate because the potential can only be calculated up to a constant. In the scenarios of a 

single electron or two electrons with opposing spins occupying the same orbital, the resulting 

formula is precise. The bosonic potential or one-electron potential are typical names for it. 

The equation determining the KS potential  [17] can be explicitly solved by setting the energy to 

zero, resulting in a formula that directly connects the potential to the ground state density. For 

systems with one electron or two electrons occupying the same space with opposite spins, this 

connection is perfect. 

 ……………………. (7) 

Approximations of the potential values close to the boundaries can sometimes be obtained when 

the density is artificially set to zero at the boundaries. By applying the boundary requirements, 

discontinuous behaviour was introduced, which is where these approximations come from. The 

potential, however, is accurate everywhere, including at and near the boundaries, as it fulfils the 

Dirac delta and Heaviside functions when the approximate boundary requirements are not 

imposed. 

 

We explore the ground state density of a particle-in-a-box system to demonstrate the idea of 

smoothing. 

…………………. (8) 
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Correspond to 

 ………………………(9) 

We can use a small bit of weighted noise produced by the common normal distribution to add a 

small amount of noise to the precise ground-state density. This is how the procedure might be 

summed up: 

……………………………(10) 

 

In contrast to the potential obtained without any scaling prior to smoothing, Figure 2 clearly 

shows that the potential generated by applying logarithmic scaling before fitting exhibits much 

increased accuracy in the asymptotic area. 

 

 
 

Figure 2: Weighted randomly distributed noise contaminates the harmonic oscillator's 

density. 

 

III. Example of inversion Method 

More realistic cases in practical DFT inversions contain interacting densities, and Equation 4 is 

used to separate the exchange-correlation potential from the retrieved KS potential. Unless 

otherwise stated, we use the one-orbital approximation as the first assumption for the unknown 

potential throughout our examples. In Appendix B, the gradients used for the PDE-constrained 

optimisations are listed. Table 1 lists the abbreviations used in this section to distinguish between 

the various inversion techniques covered.To demonstrate the inversion techniques, we use well-

known noninteracting quantum systems. We may concentrate on the numerical features of each 

inversion approach because the recovered KS potentials for these systems match the known 

external potentials. Interacting densities and Equation 4's extraction of the exchange-correlation 
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potential from the recovered KS potential are necessary for realistic DFT inversions. The one-

orbital approximation is frequently used in the examples as the initial estimation of the potential, 

and Table 1 lists the abbreviations used to distinguish between the various inversion techniques. 

 

Table 1: DFT inversion technique using labels 

Method used a Inversion Lables 

Constraint Optimization 

(PDF) 

PDF 

Wu & Yang WY 

Constraint Variation CV 

Van LeeuwanBaerends vLB 

 

We use scaling, several finite difference approximations, and the DCBC approach in the PDE and 

CV routines of the examples supplied. Our decision-making is influenced by our familiarity with 

these methods and the way they are currently implemented in our code. The vLB and WY 

techniques can also be altered to include comparable features, guaranteeing that all 

implementations show comparable error patterns in asymptotic regions. To permit easier 

comparisons and to emphasise differences, the mistake patterns in the examples have been 

purposefully changed. 

 

1. Harmonic potential inversion 

In our first inversion example, we assume a non-interacting system with six electrons that is 

subjected to a harmonic potential. The target density is created by taking into account the system's 

lowest three orbitals. 

……………………. (11) 

 ……………………… (12) 

 ………………………… (13) 

 

In this illustration, the target density is created by taking into account the lowest three doubly 

occupied orbitals of a noninteracting system, as stated in Equation 1. We study the inversion of 

this density using a variety of techniques, and Figure 3 shows the related recovered potentials. We 

also plot the discrepancies between the recovered potentials and the precise potential because the 

potential is only unique up to a constant. A stronger potential recovery is indicated by larger 

constant differences. 
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Figure 3: Recovered Potential for inversion density techniques 

 

2. Morse potential inversion 

We consider a non-interacting system made up of six electrons in the Morse potential for our 

second inversion example. When modelling diatomic molecules and performing molecular 

spectroscopy, the Morse potential is a frequently utilised potential function. 

…………………….. (14) 

 

The non-interacting system with the Morse potential and the parameters a = 1/2, De = 10, and re = 

3 is the subject of the second inversion example. Reference 19 has the analytical answers for the 

wave functions of this system, and Equation 1b uses these wave functions as input to create the 

target density. 

 

The Morse potential governs a non-interacting system in the second inversion scenario. Figure 4 

uses a grid with 51 evenly spaced points in the range of 1 to 9 to display the potentials that are 

recovered from the target density, which is created using analytical wave functions. 
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Figure 4:Potentials that are recovered from the target density 

 

This inversion illustration demonstrates different mathematical difficulties. The precise 

representation of the kinetic energy operator on the selected grid is a major problem. In this case, 

the Laplacian is approximated by a fourth-order approximation in the PDE and CV methods and 

by a second-order approximation in the other methods. The WY and vLB potentials oscillate as a 

result of this accuracy disparity because the inversion methods are able to account for the flaws in 

the Laplacian approximation, especially on a coarse grid.Additionally, the scaled PDE-constrained 

optimization's initial estimation of a one-orbital approximation for the real potential is 

insufficiently precise. As a result, the optimizer is unable to find the right potential and becomes 

stuck in a local minimum. The shallowness of the potential makes this situation worse by making 

the scaled density overly high close to the right boundary. 

The inversion example illustrates the numerical difficulties involved in appropriately modelling 

the kinetic energy operator on a grid. The WY and vLB potentials oscillate due to the mismatch 

between the fourth-order and second-order Laplacian estimates. Additionally, the scaled PDE-
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constrained optimization's ability to find the proper potential is hampered by using the one-orbital 

approximation as an initial guess, in part because right boundary. 

 

IV. Conclusion 

Numerous scientific and engineering applications depend heavily on the invention and 

optimisation of numerical methods for tackling inverse issues. Due to their intrinsic ill-posedness 

and nonlinearity, inverse problems, which are encountered while trying to recover unknown 

parameters or functions from observable data or measurements, sometimes provide difficult 

obstacles.In this paper, we have focused on the inverse problem of Kohn-Sham (KS) DFT and 

investigated the unique context of inverse problems in the field of density functional theory 

(DFT). The distinctions between the direct and inverse DFT problems have been examined, with 

an emphasis on the necessity of specific methods and convergence standards for each 

problem.The direct problem of the DFT has been studied using a variety of numerical techniques, 

including as the plane wave and grid methods, localised atomic orbitals, and atomic sphere 

techniques. We have also investigated the numerical techniques used to solve the DFT inverse 

problem, emphasising density-to-potential inversion procedures and presenting novel inversion 

techniques. Our study has demonstrated the importance of elements like scaling, finite difference 

approximations, and boundary conditions in obtaining precise and trustworthy answers to inverse 

issues. We have also seen how various decisions and approximations affect the inversion 

algorithms' accuracy and convergence behaviour.A thorough grasp of the underlying 

mathematical models, problem-specific restrictions, and the interaction between the forward and 

inverse processes are necessary for the creation and optimisation of numerical methods for 

addressing inverse issues. We can improve our capacity to precisely reconstruct unknown 

characteristics and make contributions to developments across a range of scientific and 

engineering disciplines by creating efficient numerical algorithms. 
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