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Abstract 

Through the use of mathematical and computer models, computational 

neuroscience is an interdisciplinary study that seeks to comprehend the 

principles and mechanisms underlying the functioning of the brain. These 

models are essential for understanding intricate neurological processes, 

giving information about the dynamics of the brain, and directing 

experimental research. The design and creation of mathematical models 

for computational neuroscience are presented in-depth in this study.The 

sections that follow explore several mathematical modelling strategies 

used in computational neuroscience. These include statistical models that 

analyse and infer associations from experimental data, biophysical models 

that explain the electrical properties of individual neurons and their 

connections, and network models that capture the connectivity and 

dynamics of brain circuits. Each modelling strategy is examined in terms 

of its mathematical foundation, underlying presuppositions, and potential 

limits, as well as instances of how it has been applied to certain areas of 

neuroscience study.The research also examines the model 

parameterization, validation, and refinement stages of the model creation 

process. It emphasises how the integration of experimental evidence, 

theoretical understanding, and computational simulations leads to iterative 

model refining. The difficulties and unanswered concerns associated with 

modelling complex neurological systems are also covered, emphasising 

the necessity of multi-scale and multi-modal methods to fully capture the 

complex dynamics of the brain.The paper ends with a prognosis for 

mathematical modeling's future in computational neuroscience. The 

development of virtual brain simulations for comprehending brain 

illnesses and planning therapeutic approaches are some of the rising trends 

that are highlighted in this article, along with the incorporation of machine 

learning techniques, anatomical and physiological restrictions, and the 

assimilation of these trends into models. 

 

Keywords: Theoretical neuroscience, neural modelling, neural data 

analysis, neural networks 

 

 

Introduction 

In order to better understand how the brain functions, computational neuroscience, a fast developing 

area, blends concepts from computer science, mathematics, and neuroscience. Researchers in 

computational neuroscience seek to comprehend the intricate dynamics of neural systems, 

comprehend how information is processed in the brain, and shed light on a variety of neurological 

illnesses. In this introduction, the construction and development of mathematical models used in 
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computational neuroscience are outlined, along with their significance in furthering our 

understanding of the brain.There are many different methods used in the design and development of 

mathematical models in computational neuroscience. Ion channels, membrane potentials, and 

synaptic connections are a few examples of the elements that biophysical models take into account 

when describing the electrical characteristics of individual neurons and their interactions. Network 

models provide a framework for comprehending how information is processed and conveyed inside 

the brain by capturing the connection patterns and dynamics of neural circuits [1]. Researchers can 

find hidden patterns and forecast neural activity using statistical models that analyse and infer links 

from experimental data.The human brain is a very intricate and adaptable structure, made up of 

billions of interconnected neurons. Its function must be understood by combining experimental 

findings with theoretical ideas and computational techniques. To close the gap between 

experimental evidence and theoretical understanding, mathematical models are effective tools. 

These models accurately represent the fundamental characteristics of neural networks, enabling 

scientists to derive testable hypotheses and gather knowledge that may not be immediately obvious 

from experimental data alone. 

Significant progress has [3]been made in the area of computational neuroscience recently. Deep 

neural networks and other machine learning approaches have made it possible to simulate complex 

neurological processes more precisely. Additionally, efforts are undertaken to make models more 

biologically realistic by adding anatomical and physiological limitations to them. Additionally, 

virtual brain simulations are being created to research brain illnesses and create specialised therapy 

approaches[4]. 

The[2] computational neuroscience advances our understanding of the brain significantly through 

the construction and development of mathematical models. These models assist researchers to 

understand the complexities of brain systems and contribute to the creation of novel treatments for 

neurological disorders by offering a framework for hypothesis formation, data analysis, and 

theoretical study.The parallel distributed processing (PDP) paradigm emerged as artificial neural 

networks acquired substantial traction as models of human cognition. Similar to their perceptron 

forerunners, PDP models are made up of multilayered networks of nodes. They do, however, have 

interaction or repetition, allowing for structured inhibition and excitation as well as bidirectional 

connections between nodes. Backpropagation is a kind of gradient descent that is used to train these 

models. Backpropagation entails iterative parameter adjustments by minimising an optimisation 

criterion like the sum of squared errors across numerous training cases. 

 

I. Review of Literature 

The integrate and fire (IF) neuron model can be found at a higher level of abstraction. By ignoring 

voltage-dependent currents and expressing the action potential as a simple, stereotyped waveform, 

this model streamlines the kinetics of brain activity. By modelling the neuron as a membrane 

capacitance with a parallel leakage conductance that is charged or discharged by synaptic currents, 

it focuses on the underlying events occurring below the action potential threshold. The voltage 

potential integrates the incoming current until it hits the threshold, at which time it emits a spike 

and is reset, essentially acting as a leaky integrator.This model can be modified by changing the 

threshold to take the absolute and refractory periods into account. It's crucial to remember that this 

kind of model has a rich history that dates back to the early 1990s, when Lapicque first proposed it 
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[3], before Hodgkin-Huxley formalism was created. The outputs of the IF model, in contrast to 

Hodgkin-Huxley models, which reflect overall voltage potential waves with realistic shapes, are the 

times when the neuron fires because the individual spikes have stereotyped features [6]. 

ρi(t) = Σkδ(t - tki)  

A function that depends on time (t) and is indexed by i is represented in this equation by the symbol 

i(t). The Dirac delta function (t - tki) is defined as the sum () across all indices k of the function i(t). 

An impulse or spike that happens at a particular time tki is represented by the Dirac delta function, 

which is (t - tki). According to the equation, the value of i(t) is the total of all spikes or impulses at 

the appropriate moments tki. 

The emergence of parallel distributed processing (PDP) models in the 1980s was a significant 

turning point in the development of mathematical models for computational neuroscience. 

Researchers were able to mimic and examine the behaviour of intricate neurological systems using 

these models, which were based on artificial neural networks [7]. PDP models revealed the ability 

to replicate a variety of cognitive events and gave a framework for studying information processing 

in the brain with their hierarchical networks of interaction nodes. 

The integrate-and-fire (IF) neuron model is a significant subset of computational neuroscience 

models. The dynamics of neuronal activity are simplified in this model by concentrating on events 

that take place below the action potential threshold. The IF model sheds light on how neurons 

integrate and fire by ignoring voltage-dependent currents and depicting the action potential as a 

stereotyped waveform. It has been applied to research population dynamics, spike timing, and 

synaptic integration, among other things. 

Deep learning [8], a kind of machine learning, and its use in computational neuroscience have seen 

a rise in interest in recent years. In applications like image identification and natural language 

processing, deep learning models, such as deep neural networks, have demonstrated astounding 

skills. These methods are now being used by researchers to examine neural data and comprehend 

how the brain works. To decode neural activity, forecast cognitive states, and investigate the 

structure of brain networks, deep learning models have been deployed. 

Experimental research and the creation of mathematical models are interwoven in computational 

neuroscience. These [9] models have been improved and validated through the integration of data 

from neurophysiological recordings, imaging techniques, and behavioural investigations. The 

discipline has also benefited from improvements in computer capability and simulation 

methodologies, which have made it possible to build more intricate and biologically accurate 

models [10].Our understanding of the brain has significantly benefited from mathematical 

modelling, yet there are still many problems and unanswered concerns. Research continues to be 

conducted in the fields of modelling the complex multi-scale dynamics of the brain, taking into 

account anatomical and physiological restrictions, and integrating models across several levels of 

organisation. 

We frequently generalise when talking about neurons or brains, but it's crucial to understand that 

the characteristics being researched might change depending on a number of different conditions. 

These variables include the particular organism being studied, the area of the nervous system being 

examined, and the study's overall context. A vast variety of creatures, including worms, mollusks, 

insects, fish, birds, rodents, nonhuman primates, and humans, are studied in neuroscience 

research.The brain, spinal cord, and peripheral nervous system make up the nervous system in 
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vertebrates. The cerebral cortex and subcortical regions of the brain each have a specific role. 

Although neuroscience textbooks employ a variety of organisational frameworks, frequent subjects 

include the molecular physiology of neurons, sensory systems, the motor system, and the systems 

responsible for higher-order processes. 

Researchers frequently concentrate on sensory systems when examining the computing capabilities 

of the nervous system. These systems are easier to examine experimentally since it is possible to 

manipulate their inputs depending on external stimuli and because analysing their response 

characteristics is not too difficult. Due to its significance in higher-order cognitive activities, the 

cerebral cortex has also received a lot of attention in research. 

The variety of species and brain components investigated in neuroscience, as well as the varied 

degrees of complexity and specialisation that exist within the subject, must all be recognised. 

Researchers get a more thorough grasp of the principles underpinning brain function and behaviour 

by studying many creatures and neural systems. 

 

II. Computational Neuroscience Modeling 

1. Single-neuron point process regression models of activity 

A homogeneous Poisson process is the most straightforward mathematical representation of an 

irregular spike train. The likelihood of a spike happening for brief time intervals (t, t + t]) can be 

written as: 

P(spike in (t, t +  t]) ≈  λt…………………………. (1) 

Where, 

λ - is the neuron's firing rate and independent spiking occurs at discontinuous intervals. 

Spike trains are modelled by more broad point processes to capture different physiological effects. 

The idea that neurons respond to inputs or participate in actions by raising their firing rates is one of 

the fundamental concepts underlying point process modelling.A neuron's firing rate is determined 

by counting the spikes that occur within a certain time period and dividing that number by the time 

period's length, which is commonly measured in seconds (resulting in spikes per second or Hz). The 

theoretical instantaneous firing rate, which is the anticipated value of the spike count ratio as the 

duration of the time interval approaches zero, comes into focus in the point process framework. 

The intensity function must change over time and be dependent on numerous elements in order to 

effectively represent the spiking behaviour of a neuron. These variables may include altering 

experimental parameters and inputs, the neuron's recent history of spiking, the activity of nearby 

neurons, and local field potentials. The intensity function, which is time-varying and frequently 

referred to as a conditional intensity function, shows the neuron's dynamic behaviour. 

The conditional intensity function can be mathematically stated as follows: 

λ(t|xt) = lim t → 0 E(N(t, t + t]|Xt =  xt)t ………………………..(2) 

where the limit as t approaches zero captures the instantaneous firing rate, (t|xt) represents the 

conditional intensity function, N(t,t+t) is the number of spikes within the time interval (t, t+t), Xt 

represents the time-varying factors influencing the neuron's spiking behaviour, and xt represents a 

specific value of the time-varying factors. 

The conditional intensity function may occasionally be deterministic, but generally speaking, it is a 

random function because Xt is random. It is known as a doubly stochastic process if Xt contains 

unobserved random variables. Even though it may result in an inhibition of firing rate rather than an 
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excitation, the process is frequently referred to be self-exciting when the conditional intensity 

depends on the history Ht. The dimension of the vector Xt may be very high.The Hawkes process is 

a mathematically tractable special example that permits the modelling of intensity contributions 

from prior spikes. The conditional intensity function in this procedure uses an additive term with a 

fixed kernel function to take the effects of earlier spikes into account. Mathematical equation 

written as:   

P(spike in (t, t +  t]|Xt =  xt)  ≈  λ(t|xt)t…………………….(3) 

Since very nonlinear functions are frequently involved in GLMs, the label "linear" might be 

deceptive. For instance, the functions g0 and g1 in Equation 2 are often nonlinear. These models 

might additionally be known as point process regression models. However, the GLM neuron 

moniker also applies to various point process regression models, like the one stated in Equation 2. 

 

 
Figure 1: Indicates the contribution made by the current firing rate to the firing rate 

 

2. Using leaky integrate-and-fire models and point process regression 

The distribution of the interval between spikes (ISI), a measure of waiting periods for a threshold 

crossing, has been found to follow an inverse Gaussian distribution when taking into account a LIF 

(Leaky Integrate-and-Fire) neuron with excitatory and inhibitory Poisson process inputs. When 

neurons are in a stable state, like when they are isolated in vitro and spontaneous activity is 

investigated, this distribution frequently offers a good fit to experimental results.Within a 

biologically acceptable range of coefficients of variation (CVs), the inverse Gaussian distribution 

shows qualitative similarities to ISI distributions produced by the mechanisms described in 

Equation 2. Furthermore, GLM-type models can successfully match spike trains produced by LIF 

models, providing additional evidence for the similarity between the observed neuronal firing and 

the inverse Gaussian distribution.This result highlights the possibility of capturing the statistical 

characteristics of spike trains produced by LIF neurons with excitatory and inhibitory inputs using 

GLM-type models. Particularly when neurons are in a steady state, the inverse Gaussian distribution 

provides an appropriate representation of the durations between subsequent spikes. These 

revelations advance our comprehension of brain dynamics and offer a framework for deciphering 

and simulating neuronal activity in experimental situations. 
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log λ(t|xt) = log λ(t|Ht, It)

=  ∫ g0

∞

0

(s)I(t −  s)ds + log g1(t −  s ∗ (t)) … … … … … … … … … … (4) 

The LIF (Leaky Integrate-and-Fire) model can be expressed in integral form as follows: 

V(t) =  V0 +  ∫
0

ᵗ g1(t −  s)I(s)ds 

−  ∫
0

ᵗ g2(t −  s)V(s)ds … … … … … … … … … … … … . . (5) 

where: 

• V(t) represents the membrane potential of the neuron at time t. 

• V₀ is the resting membrane potential of the neuron. 

• g₁(t - s) is a function that describes the influence of the input current I(s) on the membrane 

potential at time t - s. It is often referred to as the input kernel. 

• g₂(t - s) is a function that describes the influence of the membrane potential V(s) on the 

membrane potential at time t - s. It is often referred to as the membrane kernel. 

• I(s) represents the input current to the neuron at time s. 

The dynamics of a LIF neuron's membrane potential are explained by this integral equation. The 

input kernel and membrane kernel, which serve as placeholders for the effects of the input current 

and the history of the membrane potential, respectively, are taken into account. Insights into the 

neural response to external stimuli can be obtained by fitting this model to data and determining the 

stimulus filter (g0). The estimated g0, also known as the stimulus filter, is depicted in Figure 5 

within the context of the investigation. 

 

III. Small Networks Statistical Methods 

Basic binary models portray each neuron as either active (with a value of 1) or silent (with a value 

of 0) during a certain time step, simplifying the neural activity. These models, despite their 

simplicity, encapsulate key aspects of network behaviour and provide an explanation for network 

operations like associative memory. Effective rate equations, which are defined by nonlinear 

ordinary or stochastic differential equations, calculate the percentage of neurons that are actively 

firing at any given moment.In contrast to binary models, firing rate models take into account a 

continuous range of activity levels. These models are frequently used to explain a variety of 

dynamical phenomena in networks, such as the prediction of oscillations in networks with 

excitatory and inhibitory connections, the change in neural network dynamics from fixed-point to 

oscillatory or chaotic dynamics, improved selectivity to stimuli, and the formation of line attractors. 

In the state space, line attractors are stable solutions that emerge along a line and progressively 

gather and store input signals. 

These firing rate models offer a more thorough explanation of neural network dynamics and their 

more general functional behaviours. They capture complicated occurrences better than binary 

models and are useful resources for comprehending and researching a variety of topics. 
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Figure 2: (a) Plots of spike trains from 1,000 excitatory neurons in a network with 1,000 

inhibitory LIF neurons and connections chosen by independent random variables with a 

success chance of 0.2; typically, K = 200 inputswithout synaptic dynamics, per neuron. Each 

neuron receives a static depolarizing input, and in the absence of connection, they all 

repeatedly fire. (i) Spike trains with poor coupling; the current is J > K 1. (ii) Spike trains 

with weak coupling and extra uncorrelated noise applied to every cell. Spike trains with 

strong coupling, J K 1 2, are example (iii). (b) The firing rate distribution within cells, and (c) 

The interspike interval (ISI) coefficient of variation distribution within cells 

 

Let's say we take into account a network of NE excitatory and NI inhibitory LIF neurons, where 

connections between the neurons are made at random. Utilising independent binary (Bernoulli) 

random variables, these correlations can be explained. A connection between two neurons is present 

in this scenario when the binary random variable has the value 1, signifying a connection, and is 

absent when the binary random variable has the value 0, signifying no connection.We may analyse 

and learn from this random connectivity pattern how spiking networks can produce irregular spike 

times, like those seen in cortical recordings from animals performing behaviour tasks (as illustrated 

in Figure 1). We can investigate the mechanisms and processes by taking into account the stochastic 

character of the connections and the dynamics of the LIF neurons. 

Let V_i stand in for the population's neuron i's membrane potential. The dynamics of membrane 

potential can be characterised by the following equation, accounting for both network connection 

and variations in external input: 

dVα_i / dt =  −Vα_i / τ_m +  ∑(Wαβ_ij ∗  Sβ_j)  +  Iα_i, … … … … … … … … … … … … . (6) 

The leakage current, which is represented by the first term on the right-hand side of the equation  (-

Vα_i / τ_m) , is what causes the membrane potential to passively degrade over time. The effect of 

synaptic connections between neurons is captured by the second phrase (∑(Wαβ_ij * Sβ_j)). W_ij 

is the synaptic weight, and S_j is the spike train of neuron j in population, and it reflects the total 

sum of all synaptic inputs to neuron i from population. This phrase describes how synaptic 

connections between different neurons might affect the membrane potential of neuron i. 

α ∗
dVαi

dt 
=  −Vαi +  μα0 +  √τα ∗  σα0

∗  ξαi(t) +  τα ∗  ∑ (JαE ∗  καEij ∗  δ(t −  tEjk)) − τα ∗

 ∑ (JαI ∗  καIij ∗  δ(t −  tIjk))………………………………………………………(7) 
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The dynamics of the membrane potential for neuron i in population are described by this equation. 

Terms for the baseline input, outside noise, recurrent excitation, and recurrent inhibition are 

included. The Dirac delta functions, which regulate the timing of presynaptic spikes, take into 

consideration the contributions from recurrent connections and external inputs. One can investigate 

the behaviour and activity patterns of neuronal populations in response to various inputs and 

network connection arrangements by resolving these equations. 

 

IV. Conclusion 

In order to better comprehend the brain and its intricate dynamics, mathematical models for 

computational neuroscience have been designed and developed. These models have given us 

invaluable insights into the processes that underlie information processing, cognitive development, 

and neural activity. 

 

Different forms of mathematical models, from straightforward binary models to more complex 

point process models and neural network models, have been used across this subject. Researchers 

have been able to mimic and examine the behaviour of single neurons, neural circuits, and even 

substantial brain networks thanks to these models. We have been able to research and forecast brain 

responses to various stimuli and perturbations thanks to these models, which capture the 

fundamental characteristics of neural systems.The investigation of neuroplasticity, learning, and 

memory formation has been made easier by mathematical models. They have offered a framework 

for comprehending the roles of network connectivity and synaptic plasticity principles in the storage 

and retrieval of information. Researchers have learned more about the brain underpinnings of 

learning and memory as well as the mechanisms behind cognitive activities like decision-making, 

attention, and perception by modelling these processes.Collaborations involving neuroscience, 

mathematics, and computer science have benefited from interdisciplinary efforts to construct 

mathematical models. Building more precise and realistic models of the brain has become possible 

thanks to the combination of experimental data, theoretical understandings, and computer 

techniques. It has made it easier to apply theoretical research to real-world issues like brain-

computer interfaces, neuroprosthetics, and personalised medicine. 
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