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Abstract 

In a variety of disciplines, from biology and physics to computer science 

and the social sciences, computational topology has become a potent tool 

for data analysis and visualisation. This study explores computational 

topology's uses in data analysis and visualisation, showing its potential for 

revealing hidden structures and patterns in large, complicated datasets.The 

paper starts out by giving a general introduction of computational 

topology and outlining its core ideas and methods. The use of it for 

extracting important information from big, high-dimensional datasets is 

then explored in relation to data analysis. Computational topology allows 

for the discovery of topological properties such as holes, voids, and 

connection patterns by modelling data as topological structures, such as 

simplicial complexes or persistent homology diagrams.The study also 

explores the function of computational topology in data visualisation, 

highlighting its capacity to offer clear and insightful visual representations 

of challenging datasets. Computational topology enables the construction 

of simpler and aesthetically pleasing representations while preserving the 

fundamental topological properties of the data through methods like 

topological simplification and dimensionality reduction.The usefulness of 

computational topology in several application domains, such as genomics, 

image analysis, and network analysis, is demonstrated through a number 

of case studies. These instances show how computational topology can 

improve activities like data exploration, clustering, classification, and 

anomaly detection, resulting in fresh perceptions and learnings.This study 

emphasises the enormous potential of computational topology for 

applications in data processing and visualisation. Computational topology 

provides a new perspective that complements current approaches by 

utilising the inherent geometric and topological properties of data. This 

allows researchers and practitioners to better understand complex datasets 

and make decisions based on the knowledge gleaned from them. 

 

Keywords: Topology in computation, data evaluation, Visualization, 

structural topologies, voluminous datasets 

 

 

Introduction 

Computational topology techniques have attracted increasing attention in the field of data analysis 

and visualisation in recent years as a means of overcoming the difficulties presented by complicated 

and high-dimensional datasets. Researchers and practitioners can find hidden patterns, extract 

valuable information, and gain deeper insights into the underlying data by using the mathematical 

framework that computational topology provides to explore the topological features and structures 
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of data.In order to comprehend and analyse data, traditional data analysis methods frequently rely 

on statistical methodologies and geometrical approaches. When dealing with complicated and noisy 

datasets that have complex structures and non-linear correlations, these methods could, 

nevertheless, fall short. Beyond statistical summaries and geometric representations, computational 

topology offers a novel viewpoint by exploring the inherent topological and geometric properties of 

data.The core principle of computational topology is to describe data as topological structures, such 

as persistent homology diagrams or simplicial complexes. A potent [1]vlens for analysing and 

visualising complicated datasets, these representations highlight the connectedness, shape, and 

higher-dimensional features present in the data. Computational topology makes use of ideas like 

homology, persistent homology, and topological invariants to detect topological phenomena like 

holes, voids, and connection patterns that might not be immediately noticeable when using 

conventional methods [2][3]. 

Computational topology also provides intriguing directions for data visualisation. It is now possible 

to simplify and [4]visually intuitively portray complicated information while maintaining crucial 

topological qualities by using techniques like dimensionality reduction and topological 

simplification. This makes it easier to explore, interpret, andcommunicate complicated. In-depth 

research into computational topology's uses in data processing and visualisation is the main goal of 

this article. We will examine the core ideas, methods, and algorithms of computational topology, 

emphasising how they can be used to overcome the difficulties associated with analysing and 

[5]visualising complicated datasets. In order to demonstrate the efficiency of computational 

topology in revealing hidden structures, clustering, classification, and anomaly detection tasks, case 

studies from a variety of application fields, including genomics, image analysis, and network 

analysis, will be examined[7][8]. 

Computational topology [10] offers a complementary approach to conventional data analysis and 

visualisation methods by utilising the geometric and topological features of data. It gives us a way 

to draw important conclusions from large datasets and improves our comprehension of the 

underlying patterns and relationships. 

 

I. Related Work 

Related work by Doraiswamy et al. [16] established the idea of topological saliency, which 

quantifies the importance of key points in a scalar field by calculating how they are distributed 

spatially. While this method ranks persistence pairs and produces saliency curves for various 

smoothing radii, it does not reveal anything about the nesting habits of these pairs. As a result, it is 

unable to discern between spatial rearrangements, such as bringing peaks closer together, that retain 

persistence values and relative distances. 

The regular persistence hierarchy, on the other hand, was created by Bauer [1] and is a 

combinatorial method that focuses on identifying cancellation sequences of important points on 

surfaces. However, as shown in this study, this hierarchy is unable to distinguish between certain 

nesting relations among persistence pairs.Therefore, by creating a hierarchy based on the 

topological characteristics of the data, our suggested approach seeks to address these restrictions. In 

addition to capturing the nesting behaviour of persistence pairs, this hierarchy offers a thorough and 

insightful description of their spatial configurations. Our method improves the persistence 

hierarchy's expressive capacity and discriminative skills by combining both topological and 
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geometric information.Traditional graph architectures like the Reeb graph [15], contour tree [11], 

merge tree, and split tree have received a lot of attention in scalar field research. These graphs 

establish connections between pivotal locations but do not help with persistence pair hierarchy 

calculation. This constraint will be demonstrated in this study using a straightforward one-

dimensional example. 

The goal of our work is to capture geographical distinctions within the domain, which is a motive 

shared by recent research in this field. For instance, even when two scalar fields have identical 

critical pairings, the merge tree, in contrast to conventional graph architectures, can preserve 

differences in sublevel set merging behaviour. In order to measure these differences, distance 

measures have been created for merge trees [3], Reeb graphs [2], and extremum graphs [22]. A 

hierarchical decomposition known as the branch decomposition, which connects the branches of a 

contour tree, was introduced by Pascucci et al. [23] to reduce the complexity of these tree 

topologies. Saikia et al. [25] used these graphs more recently as similarity metrics for the structural 

comparison of scalar data. 

 

II. Structural Topology in Continuity Hierarchies 

The determination of pairings between local minima and local maxima (or saddles in higher 

dimensions) based on the elder rule is necessary to calculate persistence in the setting of zero-

dimensional persistent homology, which focuses on related components in the sublevel sets of a 

function. Other topological properties and calculations[12] for superlevel set are left for further 

investigation, but zero-dimensional persistent homology and sublevel sets are specifically covered 

in this study. 

 

1. Regular Persistence Hierarchy 

In his work, Bauer [1] emphasises how a hierarchy of persistence pairs might naturally emerge as a 

result of the merger of two connected components. We specifically consider'to be the parent 

of'when given two connected components, and ', produced at local maxima and merging into'at a 

local maximum. Which pairs of crucial points in a Morse function cannot be cancelled without 

impacting other points is determined by this relationship, but it is not sufficient. The regular 

persistence hierarchy is another name for this structure, which is also referred to as a merge tree 

[11]. 

 

Sample and Restrictions: 

Unfortunately, there are restrictions on how specific connection interactions can be distinguished by 

the standard persistent hierarchy. This is seen in Figure 1 where we show the typical persistence 

hierarchy for two straightforward functions. We can observe that the hierarchy for both functions 

are the same despite their distinct connection behaviours. The two persistence pairs in the case of 

the red function are specifically coupled through two different branches of the function. In other 

words, as the threshold of the sublevel sets increases, it becomes impossible to attain both minima 

without first passing through a third minimum, which is the global minimum. 
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Figure 1: Diagrams for two functions that have different connection but the same persistence. 

Additionally, the standard persistence structure is shared by both functions. Functions (a). (a) 

A diagram of persistence. (c) Hierarchy 

 

Figure 1's example serves as a display of how little discriminative information the standard 

persistence hierarchy offers. The running example illustrates a fundamental finding that not all 

merges of connected components are topologically similar. A merging can either maintain the 

existing branches or result in a clear branching structure within the hierarchy. We suggest the 

interlevel set persistence hierarchy (ISPH), shown in Figure 2, to overcome this restriction. 

 

 
Figure 2: Example of TSPH 

 

 
 Figure 3: Snapshot of calculation of TPSH algorithm [7]  
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For examining and contrasting time-varying scalar fields, one computational topology-based 

method is the Time-Parameterized Surface Hierarchy (TPSH) algorithm. It attempts at capturing the 

evolution and changes in scalar fields' topology across time. To represent the time evolution of the 

scalar field, the TPSH method builds a hierarchy of topological features, such as critical points, 

persistence pairs, and interlevel sets. 

The TPSH algorithm runs through the following steps: 

• Regular Persistence Hierarchy Construction: The algorithm initially determines the regular 

persistence hierarchy for each timestep separately. This hierarchy captures the behaviour of related 

components in the scalar field's sublevel sets as they merge and split. 

• After that, the TPSH algorithm creates temporal pairings between related topological 

properties over various timesteps. These pairs are established using the scalar field's evolution, 

which shows how features change over time and can merge, split, or endure. 

• Interlevel Set Persistence Hierarchy: The TPSH algorithm creates the Interlevel Set 

Persistence Hierarchy (ISPH) using the temporal pairings. This hierarchy depicts the topological 

feature changes and temporal relationships over several timesteps. The topology of the scalar field's 

temporal evolution is compactly represented, and it captures the joining and separating of sublevel 

sets. 

• Dissimilarity Measure: Based on the ISPH, the TPSH algorithm proposes a dissimilarity 

measure. In order to compare and analyse the temporal variations in the scalar field, this measure 

measures the differences in the topological structures between pairs of timesteps. 

Researchers may learn more about the temporal behaviour of scalar fields, spot noteworthy 

topological changes, and compare the evolution of various datasets by utilising the TPSH 

algorithm. The TPSH algorithm has applications in many areas, including fluid dynamics, medical 

imaging, and climate analysis. It provides a computationally effective and expressive framework for 

analysing time-varying scalar fields. 

 

2. Calculating Ranks 

We can rank the topological characteristics of the directed acyclic graph (DAG) that represents the 

interlevel set persistence hierarchy (ISPH). If there is a directed path that connects two vertices u 

and v in the hierarchy H, we write u v. The number of vertices that may be reached from a vertex, 

such as u, is used to determine its rank in the hierarchy. 

rank(u) ∶=  card {v ∈  H | u ∼ v}    ……………………….(1) 

 

3. Measure of Dissimilarity 

Tree edit distance techniques can be used to determine an appropriate dissimilarity measure because 

the interlevel set persistence hierarchy (ISPH) is a directed tree [7]. Through three simple 

operations—relabeling a node, removing an existing node, and inserting a new node these 

algorithms seek to change one tree into another. 

• Given two nodes that correspond to minima-maxima pairs, (c1, d1) and (c2, d2), 

respectively, we define the cost of relabeling in the context of ISPH as follows: 

• When c1 and c2 are equal, there is no relabeling expense. 

• The relabeling cost is one if c1 and c2 are different but d1 and d2 are equal. 

• The relabeling cost is two if c1 and c2 differ and d1 and d2 both differ. 
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The dissimilarity between ISPH structures is measured using tree edit distance methods using these 

costs, which indicate the difference between the minima of the two nodes. 

cost1 = Max (|c1 −  c2|, |d1 −  d2|)  … … … … … … … … … … … … … … . (2) 

cost2 =  pers(c, d) =  |d −  c| … … … … … … … . . … … … … … … … … … … (3) 

 

4. Results and Discussion 

On a grid with 5000 cells, we created two synthetic datasets, and regardless of whether we 

computed the standard persistence hierarchy or the interlevel set persistence hierarchy (ISPH), each 

dataset took about 4.5 seconds to process. Our present implementation may still be performing 

better, though. The data and the resulting hierarchies for the two-dimensional equivalent of the data 

are shown in Figure 4. Red stands for high values and white for low values on a conventional 

colour map. It is remarkable that both datasets' normal persistence hierarchies and persistence 

diagrams are identical. 

 
Figure 4: Our hierarchy, in contrast to earlier methods, can tell the difference between two 

peaks that are connected by a higher third peak (a) and a "ridge" of peaks (b). 

 

 
Figure 5: Persistence diagrams that combine the colours for the ranks (upper part) and 

stability values (bottom portion). 

 

We used time-varying scalar field data from the German Climate Computing Centre (DKRZ) for 

our investigation. Due to the dataset's vastness, which included 18,422 places and 1462 timesteps, it 

presented difficulties for comparison. The dataset comprised of surface temperature observations. 

Figure 6 shows an example from the dataset and oscillatory behaviour associated with the day-night 

pattern seen in global temperature changes. The resolution of the data indicates that a whole day-

night cycle takes place over four timesteps. As a result, we predict that the topological dissimilarity 

between corresponding timesteps will be largely consistent, or more specifically. 
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Figure 6: Climate related dataset. (a), along with a few snippets (box) for later timesteps. We 

can observe that at t = 3 and t = 4, the temperature on the continent of Africa rises. 

  

(a) t = 0.0 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0 (e) t = 4.0 

We used pairwise comparisons between the first 36 timesteps of the dataset to compare the 

Wasserstein distance with the dissimilarity metric defined in to assess its efficacy. Each pair's 

Wasserstein distance calculation took about 2.1 minutes, making the total computation time for all 

38 pairings about 24 hours. In comparison, our hierarchy-based dissimilarity measure computed the 

dissimilarity for each timestep in just 2.33 seconds and for each pair in roughly 6.7 seconds. 

Consequently, it took about 1.6 hours to collect the entire distance matrix. 

 

 
Figure 7. Comparisons between the Wasserstein distance and our suggested ISPH distance, 

which can identify the oscillatory behaviour (minor diagonals) inherent in the data. 

Wasserstein distance, to start. (a) ISPH separation 
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