Remarks On \star -g ω -Closed Sets

M. Nagadevi¹ O. Ravi²

¹Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India. sivasuper007@gmail.com
²Associate Professor, Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti, Madurai, Tamil Nadu, India. <siingam@yahoo.com>

Article Info	Abstract
Page Number: 1830-1838	In this paper, we introduce a new generalized class of sets called \star - $g\omega$ -
Publication Issue: Vol. 70 No. 2 (2021)	closed sets and further study is carried out using the established generalized classes. Apart from this, some new generalizations of ω -open sets and \star -g-closed sets are investigated.

Article History Article Received: 05 September 2021 Revised: 09 October 2021 Accepted: 22 November 2021 Publication: 26 December 2021

1. Introduction

In 1982, the notions of $\boldsymbol{\omega}$ -open sets, $\boldsymbol{\omega}$ -closed sets and $\boldsymbol{\omega}$ -closed mappings were introduced and investigated by Hdeib [2]. In 2005, Al-Zoubi [1] introduced and studied the concepts of $\boldsymbol{g}\boldsymbol{\omega}$ -closed sets, $\boldsymbol{g}\boldsymbol{\omega}$ -open sets and $\boldsymbol{g}\boldsymbol{\omega}$ -continuity in topological spaces. In 2009, Noiri et al [8] introduced some weaker forms of $\boldsymbol{\omega}$ -open sets and obtained some decompositions of continuity. In [7], Mandal and Mukherjee introduced and studied the notion of \star -g-closed sets in ideal topological spaces. In this paper, we introduce a new generalized class of sets called \star - $\boldsymbol{g}\boldsymbol{\omega}$ -closed sets and further study is carried out using the established generalized classes. Apart from this, some new generalizations of $\boldsymbol{\omega}$ -open sets and \star - \boldsymbol{g} -closed sets are investigated.

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{N} , \mathbb{Q} , $\mathbb{R} - \mathbb{Q}$) denotes the set of all real numbers (resp. the set of all natural numbers, the set of all rational numbers, the set of all irrational numbers).

By a space (X, τ) , we always mean a topological space (X, τ) with no separation axioms assumed. For a subset H of a space (X, τ) , cl(H) and int(H) denote the closure of H and the interior of H respectively.

Definition 2.1 [10] A subset H of a space (X, τ) is called regular open if H = int(cl(H)).

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54A10

Key words and phrases. ω -open sets, \star - $g\omega$ -closed sets, \star -g-closed sets and \star -g-open sets

The complement of a regular open set is regular closed.

Definition 2.2 [2] Let H be a subset of a space (X, τ) , a point p in X is called a condensation point of H if for each open set U containing p, U \cap H is uncountable.

Definition 2.3 [2] A subset H of a space (X, τ) is called ω -closed if it contains all its condensation points.

The complement of an ω -closed set is called ω -open. The family of all ω -closed sets is denoted by $\omega C(X)$. The family of all ω -open sets is denoted by $\omega O(X)$. It is well known that a subset W of a space (X, τ) is ω -open [2] if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by int_{ω} and cl_{ω} respectively.

Remark 2.4 [2] In a space (X, τ) , every closed set is ω -closed but not conversely.

Lemma 2.5 [9] Let H be a subset of a space (X, τ) . Then

- 1. H is $\boldsymbol{\omega}$ -closed in X if and only if H = $\boldsymbol{cl}_{\boldsymbol{\omega}}(H)$.
- 2. $cl_{\omega}(X \setminus H) = X \setminus int_{\omega}(H)$.
- 3. $cl_{\omega}(H)$ is ω -closed in H.
- 4. $x \in cl_{\omega}(H)$ if and only if $H \cap G \neq \phi$ for each ω -open set G containing x.
- 5. $cl_{\omega}(H) \subseteq cl(H)$.
- 6. $int(H) \subseteq int_{\omega}(H)$.

Definition 2.6 [1] A subset H of a space (X, τ) is called generalized ω -closed (briefly, $g\omega$ -closed) if $cl_{\omega}(H) \subseteq G$ whenever $H \subseteq G$ and $G \in \tau$.

The family of all $g\omega$ -closed sets is denoted by $G\omega C(X)$.

An ideal [6] \mathcal{I} on a nonempty set X is a nonempty collection of subsets of X which satisfies

- 1. $A \in \mathcal{J}$ and $B \subseteq A$ implies $B \in \mathcal{J}$ and
- 2. $A \in \mathcal{J}$ and $B \in \mathcal{J}$ implies $A \cup B \in \mathcal{J}$.

If $A \subseteq X$, then $\mathcal{I} = \mathcal{P}(A)$ is an ideal on X and is called the principal ideal [13] on X generated by A. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)^*:\mathcal{P}(X) \to \mathcal{P}(X)$, called a local function [6] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X | U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$. We will make use of the basic facts about the local function [[4], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology or extension topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [12]. int^* is the interior operator in (X, τ^*) . When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. Clearly, A is τ^* -closed or *-closed, if $A^* \subseteq A$ [4]. If \mathcal{I} is an ideal on X, then the space (X, τ, \mathcal{I}) is called an ideal space or an ideal topological space. The complement of an *-closed set is called *-open.

Definition 2.7 [7] A subset *H* of an ideal space (X, τ, \mathcal{I}) is called \star -g-closed if $cl(H) \subseteq G$ whenever $H \subseteq G$ and *G* is \star -open.

The complement of an \star -g-closed set is called \star -g-open.

Remark 2.8 [9] In an ideal space (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\phi\}$ (resp. $\mathcal{P}(X)$) than $cl^*(A) = cl(A)$ (resp. A) for any subset A of X.

$3 \star -g\omega$ -closed sets

Definition 3.1 A subset H of an ideal space (X, τ, \mathcal{I}) is called \star - $g\omega$ -closed if $cl_{\omega}(H) \subseteq G$ whenever $H \subseteq G$ and G is \star -open.

The family of all \star - $g\omega$ -closed sets is denoted by $\star G\omega C(X)$.

Example 3.2 If τ is any topology on a countable set X, then each subset is ω -open and (X, τ_{ω}) is a discrete space. Consequently $\tau_{\omega} = \mathcal{P}(X) = \omega C(X)$ where $\mathcal{P}(X)$ is the power set of X. It is clear that if (X, τ, \mathcal{I}) is a countable ideal space, then $\mathcal{P}(X) = \omega C(X) = G\omega C(X) = \pi G\omega C(X)$.

Proposition 3.3 Every \star -*g*-closed set is \star -*g* ω -closed.

The proof follows immediately from the definitions. However the converse is not true as the following Example.

Example 3.4 In \mathbb{R} with usual topology τ_u and $\mathcal{I} = \{\phi\}$, $H = (0,1) \cap \mathbb{Q}$ is ω -closed, being a countable set having no condensation points. Thus if G is any *-open set such that $H \subseteq G$, then $cl_{\omega}(H) = H \subseteq G$. Hence H is *- $g\omega$ -closed. But $H \subseteq G = (0,1)$ where G is *-open and $cl(H) = [0,1] \not\subseteq G$. Thus H is not *-g-closed.

Example 3.5 In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$ and $\mathcal{I} = \{\phi\}$, the set $H = \mathbb{R} - \mathbb{Q}$ is neither \star - $g\omega$ -closed nor $g\omega$ -closed.

Solution: H is open and $H \subseteq H$. But $cl_{\omega}(H) = \mathbb{R} \not\subseteq H$. Hence H is not $g\omega$ -closed. Also H is *-open, being open and $H \subseteq H$. But $cl_{\omega}(H) = \mathbb{R} \not\subseteq H$. Hence H is not *- $g\omega$ -closed also. **Proposition 3.6** Every ω -closed set is *- $g\omega$ -closed.

The proof follows immediately from the definitions. However the converse is not true as the following Example shows.

Example 3.7 In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \{1\}\}$ and $\mathcal{I} = \{\phi\}$, the set $H = \mathbb{R} - \mathbb{Q}$ is \star -*g* ω -closed, since the only \star -open set containing *H* is \mathbb{R} . But *H* is not ω -closed, for 3 is a condensation point of *H* and $3 \notin H$.

Solution: If G is any *-open set containing H, then $H \subseteq G \Rightarrow cl(H) \subseteq cl(G)$. It implies $\mathbb{R} - \{1\} = cl(H) \subseteq cl(G)$. If $G \neq \phi$, then $cl(G) \neq \phi$. It means that $G = \mathbb{R}$ or $\{1\}$. If $G = \{1\}$, this is a contradiction. Hence $G = \mathbb{R}$.

Proposition 3.8 Every ω -closed set is $g\omega$ -closed.

The proof follows immediately from the definitions. However the converse is not true as the following Example shows.

Example 3.9 In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{R} - \{1\}\}\)$ and $\mathcal{I} = \{\phi\}\)$, the set $H = (\mathbb{R} - \mathbb{Q}) \cup \{1\}\)$ is $g\omega$ -closed since \mathbb{R} is the only open set containing H. But H is not ω -closed for 2 is a condensation point of H and $2 \notin H$.

Proposition 3.10 Every \star -*g* ω -closed set is *g* ω -closed.

The proof follows immediately from the definitions. However the converse is not true as the following Example shows.

Example 3.11 Let X be an uncountable set and let A, B, C and D be subsets of X such that each of them is uncountable and the family $\{A, B, C, D\}$ is a partition of X. We defined the topology $\tau = \{\phi, X, \{D\}, \{A, C\}, \{A, C, D\}\}$ where X is identified with $\{A, B, C, D\}$ and $J = \{\phi, \{A\}, \{D\}, \{A, D\}\}$. Take $H = \{B, C\}$. Since the only open superset of H is X, H is $g\omega$ -closed. On the other hand, $H \subseteq H$ and H is \star -open. But $cl_{\omega}(H) = X$. Hence H is not \star -g ω -

closed.

Example 3.12 In \mathbb{R} with usual topology τ_u and $\mathcal{I} = \{\phi\}$, (-1,1) and (1, 3) are open sets and $G = (-1,1) \cup (1,3)$ is open and hence *-open such that $K = [0,1) \cup (1,2] \subseteq G$, but $cl_{\omega}(K) = [0,2] \not\subseteq G$ for $1 \notin G$. This shows that K is not *- $g\omega$ -closed.

Proposition 3.13 If $\mathcal{A} = \{A_{\alpha} : \alpha \in I\}$ is a locally finite collection of \star - $g\omega$ -closed sets of an ideal space (X, τ, \mathcal{I}) , then $A = \bigcup_{\alpha \in I} A_{\alpha}$ is \star - $g\omega$ -closed (in particular, a finite union of \star - $g\omega$ -closed sets is \star - $g\omega$ -closed).

Proof. Let *H* be an *-open subset of (X, τ, \mathcal{I}) such that $A \subseteq H$. Since $A_{\alpha} \in \star G\omega C(X)$ and $A_{\alpha} \subseteq H$ for each $\alpha \in I$, $cl_{\omega}(A_{\alpha}) \subseteq H$. As τ_{ω} is a topology on *X* finer than τ , \mathcal{A} is locally finite in (X, τ_{ω}) . Therefore $cl_{\omega}(A) = cl_{\omega}(\bigcup_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} cl_{\omega}(A_{\alpha}) \subseteq H$. Thus, *A* is \star -gw-closed in (X, τ, \mathcal{I}) .

Remark 3.14 The following Example shows that a countable union of \star - $g\omega$ -closed sets need not be \star - $g\omega$ -closed.

Example 3.15 Consider $X = \mathbb{R}$ with the usual topology τ_u and $\mathcal{I} = \{\phi\}$. For each $n \in \mathbb{N}$ (the set of all natural numbers), put $A_n = [\frac{1}{n}, 1]$ and $A = \bigcup_{n \in \mathbb{N}}^{\infty} A_n = (0,1]$. Then A is a countable union of \star -g ω -closed sets but A is not \star -g ω -closed since H = (0,2) is \star -open, $A \subseteq H$ and $cl_{\omega}(A) = [0,1] \nsubseteq H$.

Theorem 3.16 Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is \star - $g\omega$ -closed if and only if every \star -open set is ω -closed.

Proof. Suppose every subset of X is \star - $g\omega$ -closed. If U is \star -open, U is \star - $g\omega$ -closed implies $cl_{\omega}(U) \subseteq U$. Hence $cl_{\omega}(U) = U$ implies U is ω -closed. Conversely, suppose that every \star -open set is ω -closed. If $H \subseteq X$ and W is an \star -open set such that $H \subseteq W$, then $cl_{\omega}(H) \subseteq cl_{\omega}(W) = W$ and so H is \star - $g\omega$ -closed.

Proposition 3.17 Let *H* be an \star -*g* ω -closed subset of an ideal space (X, τ, \mathcal{I}) and $G \subseteq X$. Then the following hold.

(a) $cl_{\omega}(H) - H$ contains no non-empty *-closed set.

(b) If $H \subseteq G \subseteq cl_{\omega}(H)$, then $G \in \star G\omega C(X)$.

Proof. (a) If $cl_{\omega}(H) - H$ contains an *-closed set C then $H \subseteq X - C$ and X - C is *-open in (X, τ, J) . Then $cl_{\omega}(H) \subseteq X - C$ or equivalently, $C \subseteq X - cl_{\omega}(H)$. Therefore, $C \subseteq (X - cl_{\omega}(H)) \cap (cl_{\omega}(H) - H) = (X - cl_{\omega}(H)) \cap cl_{\omega}(H) \cap (X - H) = \phi$.

(b) Let U be *-open and $G \subseteq U$. Then $H \subseteq G \subseteq U$. Since $H \in \star G\omega C(X)$, $cl_{\omega}(H) \subseteq U$. But $cl_{\omega}(G) \subseteq cl_{\omega}(cl_{\omega}(H)) = cl_{\omega}(H) \subseteq U$ and the result follows.

Lemma 3.18 If H is an \star -open and \star - $g\omega$ -closed subset of an ideal space (X, τ , \mathcal{I}), then H is ω -closed in X.

The proof is obvious.

Theorem 3.19 Let H be an \star - $g\omega$ -closed subset of (X, τ, J) . Then $H = cl_{\omega}(int_{\omega}(H))$ if and only if $cl_{\omega}(int_{\omega}(H)) - H$ is \star -closed.

Proof. If $H = cl_{\omega}(int_{\omega}(H))$, then $cl_{\omega}(int_{\omega}(H)) - H = \phi$ and hence $cl_{\omega}(int_{\omega}(H)) - H$ is \star closed. Conversely, let $cl_{\omega}(int_{\omega}(H)) - H$ be \star -closed, since $cl_{\omega}(H) - H$ contains the \star closed set $cl_{\omega}(int_{\omega}(H)) - H$. By Proposition 3.17 (a), $cl_{\omega}(int_{\omega}(H)) - H = \phi$ and hence $H = cl_{\omega}(int_{\omega}(H))$.

Theorem 3.20 Every \star - $g\omega$ -closed set and \star -g-closed set are $g\omega$ -closed.

The proof is obvious.

Corollary 3.21 Let (X, τ, \mathcal{I}) be an ideal space and H be an \star - $g\omega$ -closed set. The following are equivalent.

- (a) H is an ω -closed set.
- (b) $cl_{\omega}(H) H$ is an \star -closed set.

Proof. (a) \Rightarrow (b) If H is ω -closed, then $cl_{\omega}(H) - H = \phi$ and so $cl_{\omega}(H) - H$ is \star -closed.

(b) \Rightarrow (a) since $cl_{\omega}(H) - H$ is \star -closed and H is \star -g ω -closed by assumption, using Proposition 3.17 (a) we have $cl_{\omega}(H) - H = \phi$ and so H is ω -closed.

Theorem 3.22 Let (X, τ, \mathcal{I}) be an ideal space and $H \subseteq X$. If H is \star - $g\omega$ -closed then H = G - N where G is ω -closed and N contains no nonempty \star -closed set.

Proof. If H is \star -g ω -closed, then by Proposition 3.17 (a), $cl_{\omega}(H) - H = N$ (say) contains no nonempty \star -closed set. If G = $cl_{\omega}(H)$, then G is ω -closed such that $G - N = cl_{\omega}(H) - (cl_{\omega}(H) - H) = H$.

Theorem 3.23 If K and L are \star - $g\omega$ -closed sets, then K \cup L is \star - $g\omega$ -closed.

Proof. Suppose that $K \cup L \subseteq U$, where U is \star -open. Then $K \subseteq U$ and $L \subseteq U$. Since K and L are \star -g ω -closed sets, $cl_{\omega}(K) \subseteq U$ and $cl_{\omega}(L) \subseteq U$. Now $cl_{\omega}(K \cup L) = cl_{\omega}(K) \cup cl_{\omega}(L) \subseteq U$. It shows $K \cup L$ is \star -g ω -closed.

Theorem 3.24 Let K and L be subsets of an ideal space (X, τ, \mathcal{I}) such that $K \subseteq L \subseteq cl_{\omega}(K)$ and K is an \star - $g\omega$ -closed set. Then L is also \star - $g\omega$ -closed.

Proof. Let $L \subseteq U$, where U is *-open. Then $K \subseteq L \subseteq U$ and K is *- $g\omega$ -closed implies that $cl_{\omega}(K) \subseteq U \Rightarrow cl_{\omega}(L) \subseteq cl_{\omega}(cl_{\omega}(K)) = cl_{\omega}(K) \subseteq U$. Therefore L is *- $g\omega$ -closed.

Definition 3.25 An ideal space (X, τ, J) is called $\star -g\omega - T_{\frac{1}{2}}$ if every $\star -g\omega$ -closed set in

 (X, τ, \mathcal{I}) is ω -closed in (X, τ, \mathcal{I}) .

Example 3.26 Every countable ideal space is \star - $g\omega$ - $T_{\frac{1}{2}}$.

Example 3.27 In Example 3.7, the set $H = \mathbb{R} - \mathbb{Q}$ is an \star - $g\omega$ -closed set which is not ω -closed. Therefore $(\mathbb{R}, \tau, \mathcal{I})$ is not \star - $g\omega$ - $T_{\frac{1}{2}}$.

Theorem 3.28 For an ideal space (X, τ, J) , the following are equivalent. [(a)]

- (a) X is an \star - $g\omega$ - $T_{\frac{1}{2}}$ space.
- (b) Every singleton is either \star -closed or ω -open.

Proof. (a) \Rightarrow (b): Suppose $\{x\}$ is not an *-closed subset for some $x \in X$. Then $X - \{x\}$ is not *-open and hence X is the only *-open set containing $X - \{x\}$. Therefore $X - \{x\}$ is *-g ω -closed. Since (X, τ, \mathcal{I}) is an *-g ω - $T_{\frac{1}{2}}$ space, $X - \{x\}$ is ω -closed and thus $\{x\}$ is ω -open.

(b) \Rightarrow (a): Let H be an \star - $g\omega$ -closed subset of (X, τ, \mathcal{I}) and $x \in cl_{\omega}(H)$. We show that $x \in H$.

Case (i) If $\{x\}$ is *-closed and $x \notin H$, then $x \in (cl_{\omega}(H) - H)$. Thus $cl_{\omega}(H) - H$ contains a nonempty *-closed set $\{x\}$, a contradiction to Proposition 3.17 (a). So $x \in H$.

Case (ii) If $\{x\}$ is ω -open, since $x \in cl_{\omega}(H)$, then for every ω -open set U containing x, we have $U \cap H \neq \phi$. But $\{x\}$ is ω -open, then $\{x\} \cap H \neq \phi$. Hence $x \in H$.

So in both cases, we have $x \in H$. Therefore H is ω -closed.

4 **★-g***ω*-open sets

Definition 4.1 A subset *H* of an ideal space (X, τ, \mathcal{I}) is called \star - $g\omega$ -open if its complement X - H is \star - $g\omega$ -closed in (X, τ, \mathcal{I}) .

Theorem 4.2 Let (X, τ, \mathcal{I}) be an ideal space and $H \subseteq X$. Then H is \star - $g\omega$ -open if and only if $G \subseteq int_{\omega}(H)$ whenever G is \star -closed and $G \subseteq H$.

Proof. Suppose *H* is \star - $g\omega$ -open. If *G* is \star -closed and $G \subseteq H$, then $X - H \subseteq X - G$ and so $cl_{\omega}(X - H) \subseteq X - G$. Therefore $G \subseteq int_{\omega}(H)$. Conversely, Suppose the condition holds. Let U be an \star -open set such that $X - H \subseteq U$. Then $X - U \subseteq H$ and so by assumption $X - U \subseteq int_{\omega}(H)$ which implies that $cl_{\omega}(X - H) \subseteq U$. Therefore X - H is \star - $g\omega$ -closed and so *H* is \star - $g\omega$ -open.

Theorem 4.3 Let K and L be subsets of an ideal space (X, τ, \mathcal{I}) such that $int_{\omega}(K) \subseteq L \subseteq K$. If K is \star - $g\omega$ -open, then L is also \star - $g\omega$ -open.

The proof is similar to the proof of Theorem 3.24.

Theorem 4.4 If H is an \star - $g\omega$ -closed subset of (X, τ, \mathcal{I}) , then $cl_{\omega}(H) - H$ is \star - $g\omega$ -open.

Proof. Let H be an \star - $g\omega$ -closed subset of (X, τ, \mathcal{I}) and let U be an \star -closed subset such that $U \subseteq cl_{\omega}(H) - H$. By Proposition 3.17 (a), $U = \phi$ and thus $U \subseteq int_{\omega}(cl_{\omega}(H) - H)$. By Theorem 4.2 $cl_{\omega}(H) - H$ is \star - $g\omega$ -open.

Lemma 4.5 If every \star -open set is closed, then all subsets of (X, τ, \mathcal{I}) are \star - $g\omega$ -closed (and hence all are \star - $g\omega$ -open).

Proof. Let A be any subset of X such that $A \subseteq U$ and U is \star -open, then $cl_{\omega}(A) \subseteq cl_{\omega}(U) \subseteq cl(U) = U$. Therefore A is \star -g ω -closed.

5 \star -**g** ω -normal spaces

Definition 5.1 An ideal space (X, τ, \mathcal{I}) is said to be \star -normal if for every pair of disjoint \star closed sets P and Q, there exist disjoint open sets K and L such that $P \subseteq K$ and $Q \subseteq L$.

Definition 5.2 An ideal space (X, τ, \mathcal{I}) is said to be \star - $g\omega$ -normal space if for every pair of disjoint \star -closed sets P and Q, there exist disjoint \star - $g\omega$ -open sets K and L such that $P \subseteq K$ and $Q \subseteq L$.

Remark 5.3 Every \star -normal space is \star - $g\omega$ -normal.

Proof. Since every open set is ω -open and every ω -open set is \star - $g\omega$ -open, every \star -normal space is \star - $g\omega$ -normal.

The following Example shows that a \star - $g\omega$ -normal space is not necessarily a \star -normal space. **Example 5.4** Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Then $\omega O(X) = \mathcal{P}(X)$. Here every open set is \star -closed and every \star -open set is ω -closed and so Theorem 3.16, every subset of X is \star - $g\omega$ -closed and hence every subset of X is \star - $g\omega$ -open. This implies (X, τ, \mathcal{I}) is \star - $g\omega$ -normal. $\{a\}$ and $\{c\}$ are disjoint \star -closed subsets of X which are not separated by disjoint open sets and so (X, τ, \mathcal{I}) is not \star -normal.

Theorem 5.5 Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent. [(a)]

- (a) X is \star - $g\omega$ -normal
- (b) For every pair of disjoint *-closed sets P and Q, there exist disjoint *- $g\omega$ -open sets K and L such that $P \subseteq K$ and $Q \subseteq L$.
- (c) For every \star -closed set P and an \star -open set M containing P, there exists an \star -g ω -open set N

such that $P \subseteq N \subseteq cl_{\omega}(N) \subseteq M$.

Proof. (a) \Rightarrow (b): The proof follows from the definition of \star - $g\omega$ -normal space.

(b) \Rightarrow (c): Let P be an *-closed set and M be an *-open set containing P. Since P and X - M are disjoint *-closed sets, there exist disjoint *- $g\omega$ -open sets N and W such that $P \subseteq N$ and $X - M \subseteq W$. Again N \cap W = ϕ implies that N $\cap int_{\omega}(W) = \phi$ and so $cl_{\omega}(N) \subseteq X - int_{\omega}(W)$. Since X - M is *-closed and W is *- $g\omega$ -open, $X - M \subseteq W$ implies that $X - M \subseteq int_{\omega}(W)$ and so $X - int_{\omega}(W) \subseteq M$. Thus we have $P \subseteq N \subseteq cl_{\omega}(N) \subseteq X - int_{\omega}(W) \subseteq M$ which proves (c).

(c) \Rightarrow (a): Let P and Q be two disjoint *-closed subsets of X. By hypothesis, there exists an *-g ω -open set K such that $P \subseteq K \subseteq cl_{\omega}(K) \subseteq X - Q$. If $L = X - cl_{\omega}(K)$, then K and L are the required disjoint *-g ω -open sets containing P and Q respectively. So (X, τ, \mathcal{I}) is *-g ω -normal.

Theorem 5.6 Let (X, τ, \mathcal{I}) be an \star - $g\omega$ -normal space. If F is \star -closed and A is an \star -g-closed set such that $A \cap F = \phi$, then there exist disjoint \star - $g\omega$ -open sets K and L such that $A \subseteq K$ and $F \subseteq L$.

Proof. Since $A \cap F = \phi$, $A \subseteq X - F$ where X - F is \star -open. Therefore, by hypothesis, $cl(A) \subseteq X - F$. Since $cl(A) \cap F = \phi$, cl(A) is \star -closed. Since X is \star -g ω -normal, there exist disjoint \star -g ω -open sets K and L such that $A \subseteq cl(A) \subseteq K$ and $F \subseteq L$.

Theorem 5.7 Let (X, τ, \mathcal{I}) be a space which is \star - $g\omega$ -normal. Then the following hold.

- (a) For every \star -closed set P and every \star -g-open set Q containing P, there exists an \star -g ω -open set U such that $P \subseteq int_{\omega}(U) \subseteq U \subseteq Q$.
- (b) For every \star -g-closed set P and every \star -open set Q containing P, there exists \star -g ω -closed set U such that $P \subseteq U \subseteq cl_{\omega}(U) \subseteq Q$.

Proof. (a) Let P be an *-closed set and Q be an *-g-open set containing P. Then $P \cap (X - Q) = \phi$, where P is *-closed and X - Q is *-g-closed. By Theorem 5.6, there exist disjoint *-g ω -open sets U and V such that $P \subseteq U$ and $X - Q \subseteq V$. Since $U \cap V = \phi$, we have $U \subseteq X - V$. By Theorem 4.2, $P \subseteq int_{\omega}(U)$. Therefore $P \subseteq int_{\omega}(U) \subseteq U \subseteq X - V \subseteq Q$. This proves (a).

(c) Let P be an *-g-closed set and Q be an *open set containing P. Then X - Q is an *-closed set contained in the *-gopen set X - P. By (a), there exists an *-g ω -open set V such that $X - Q \subseteq int_{\omega}(V) \subseteq V \subseteq X - P$. Therefore $P \subseteq X - V \subseteq cl_{\omega}(X - V) \subseteq Q$. If U = X - V, then $P \subseteq U \subseteq cl_{\omega}(U) \subseteq Q$ and so U is the required *-g ω -closed set.

(d)

6. Applications to Digital Topology

The digital line or so called the Khalimsky line is the set of integers \mathbb{Z} , equipped with the topology κ generated by $\{\{2m - 1, 2m, 2m + 1\}/m \in \mathbb{Z}\}$. The concept of the digital line (\mathbb{Z}, κ) is initiated by Khalimsky. In (\mathbb{Z}, κ) , each singleton $\{2n\}$ is closed and each singleton $\{2n + 1\}$ is open where $n \in \mathbb{Z}$. If U(x) is the smallest open set containing x, then U(2m) = $\{2m - 1, 2m, 2m + 1\}$ and $U(2m + 1) = \{2m + 1\}$ where $m \in \mathbb{Z}$. For a subset H of a digital line (\mathbb{Z}, κ) , $cl_{\kappa}(H)$ and $int_{\kappa}(H)$ denote the closure of H and the interior of H respectively. **Lemma 6.1** [3, 5, 11] Let H be a subset of **Z**. Then [(i)]

- i. H is open if and only if for every $x \in H$, the following holds:
- (x is odd) or (x is even with $x 1, x + 1 \in H$).
- ii. H is closed if and only if for every $x \in H$, the following holds: (x is even) or (x is odd with $x - 1, x + 1 \in H$).

Let $\mathfrak{N}(x)$ denote the smallest neighbourhood of *x* in (\mathbb{Z}, κ) . Then

$$\Re(x) = \begin{cases} \{x\} & \text{if } x \text{ is odd} \\ \{x - 1, x, x + 1\} & \text{if } x \text{ is even.} \end{cases}$$

Let $\mathfrak{C}(x)$ denote the smallest closed set containing *x* in (\mathbb{Z}, κ) . Then

$$\mathfrak{C}(x) = \begin{cases} \{x\} & \text{if } x \text{ is even} \\ \{x - 1, x, x + 1\} & \text{if } x \text{ is odd.} \end{cases}$$

The topology satisfying the properties in Lemma 6.1 is exactly the Khalimsky line topology on \mathbb{Z} . Based on the concepts of "open" and "closed" in Lemma 6.1, we obtain the topology on \mathbb{Z} , which is referred to as the Khalimsky line topology on \mathbb{Z} .

Remark 6.2 [11] Let $A = \{2n - 1, 2n, 2n + 1\}$ and $B = \{2m - 1, 2m, 2m + 1\}$ where m and n are integers. Then

$$A \cap B = \begin{cases} A & \text{if } n = m \\ \{2n+1\} & \text{if } n = m-1 \\ \{2n-1\} & \text{if } n = m+1 \\ \phi & \text{otherwise} \end{cases}$$

Example 6.3 In (\mathbb{Z}, κ) , (1) the set $H = \{0, 4, 7\}$ is neither regular open nor open since (1) $int_{\kappa}(cl_{\kappa}(H)) = int_{\kappa}(\{0, 4, 6, 7, 8\}) = \{7\} \neq H$ and (2) $int_{\kappa}(H) = \{7\} \neq H$.

(2) the set $H = \{1,2,3,4\}$ is neither open nor closed for $int_{\kappa}(H) = \{1,2,3\} \neq H$ and $cl_{\kappa}(H) = \{0,1,2,3,4\} \neq H$.

Remark 6.4 In $(\mathbb{Z}, \kappa, \mathcal{I})$, each singleton even is \star -closed.

Example 6.5 In $(\mathbb{Z}, \kappa, \mathcal{I})$, the set $H = \{2,3,4\}$ is regular closed since $cl_{\kappa}(int_{\kappa}(\{2,3,4\})) = cl_{\kappa}(\{3\}) = \{2,3,4\} = H$. Hence H is closed and \star -closed. Also the set $G = \{6,7,8\}$ is regular closed since $cl_{\kappa}(int_{\kappa}(\{6,7,8\})) = cl_{\kappa}(\{7\}) = \{6,7,8\} = G$. Hence G is closed and \star -closed. Since $H \cap G = \phi$, H and G are disjoint \star -closed sets. We know that $P = \{1,2,3,4,5\}$ is the smallest open set containing $H, Q = \{5,6,7,8,9\}$ is the smallest open set containing G and $P \cap Q \neq \phi$. Hence $(\mathbb{Z}, \kappa, \mathcal{I})$ is not \star -normal.

Example 6.6 In (\mathbb{Z}, κ) , since \mathbb{Z} is countable, every infinite subset of \mathbb{Z} is countable. Therefore \mathbb{Z} is ω -closed and every infinite subset of \mathbb{Z} is ω -closed.

Example 6.7 Let (\mathbb{Z}, κ) be the digital line. Then $(\mathbb{Z}, \kappa, \mathcal{I})$ is \star - $g\omega$ -normal but it is not \star -normal.

sReferences

- Al-Zoubi. K. Y: "On generalized ω-closed sets", Intern. J. Math. Math Sci., 13(2005), 2011-2021.
- [2] Hdeib. H. Z: " ω -closed mappings", Revista Colomb. De Matem., 16(1-2)(1982), 65-78.
- [3] Jafari. S and Selvakumar. A:"On some sets in digital topology", Poincare Journal of Analysis & Applications, 8(1-I)(2021), 1-8.
- [4] Kumbhkar, M., Shukla, P., Singh, Y., Sangia, R. A., & Dhabliya, D. (2023). Dimensional Reduction Method based on Big Data Techniques for Large Scale Data. 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS), 1– 7. IEEE.
- [5] Jankovic. D and Hamlett. T. R: "New topologies from old via ideals", Amer. Math. Monthly, 97(4)(1990), 295-310.
- [6] Khalimsky. E. D., Kopperman. R. and Meyer. P. R:"Computer graphics and connected topologies in finite ordered sets", Topology Appl. 36(1990), 1-17.
- [7] Kshirsagar, P. R., Reddy, D. H., Dhingra, M., Dhabliya, D., & Gupta, A. (2023). A Scalable Platform to Collect, Store, Visualize and Analyze Big Data in Real-Time. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM), 1–6. IEEE.
- [8] Kuratowski. K:"Topologie I", Warszawa, (1933).
- [9] Mandal. D and Mukherjee. M. N: "Certain new classes of generalized closed sets and their applications in ideal topological spaces", Filomat, 29(5)(2015), 1113-1120.
- [10] Noiri. T., Al-Omari. A. and Noorani. M. S. M: "Weak forms of ω-open sets and decompositions of continuity", Eur. J. Pure Appl. Math., 2(1)(2009), 73-84.
- [11] Paranjothi. M: "New generalized ω-closed sets and its ideal topological spaces", Ph. D., Thesis, Madurai Kamaraj University, Madurai, Tamilnadu, India, (2016).
- [12] Stone. M. H: "Applications of the theory of boolean rings to general topology", Trans. of the Amer. Math. Soc., 41(1937), 374-381.
- [13] Pareek, M., Gupta, S., Lanke, G. R., & Dhabliya, D. (2023). Anamoly Detection in Very Large Scale System using Big Data. SK Gupta, GR Lanke, M Pareek, M Mittal, D Dhabliya, T Venkatesh,.." Anamoly Detection in Very Large Scale System Using Big Data. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES).
- [14] Thangavelu. P: "On the subspace topologies of the khalimsky topology", The Egyptian Mathematical Society Cairo, (III)(2007), 157-168.
- [15] Kawale, S., Dhabliya, D., & Yenurkar, G. (2022). Analysis and Simulation of Sound Classification System Using Machine Learning Techniques. 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS), 407–412. IEEE.
- [16] Vaidyanathaswamy. R:"The Localization theory in set topology", Proc. Indian Acad. Sci., 20(1945), 51-61.
- [17] Vaidyanathaswamy. R: "Set Topology", Chelsea Publishing Company, New York, (1946).