UNIFIED APPROACH TO D-SETS IN TOPOLOGY

V. John Rajadurai^{#1}, O. Ravi^{*2}

 ¹Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
 ²Associate Professor of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
 Email: johnmakizhan2016@gmail.com¹ & siingam@yahoo.com²

Abstract

Page Number: 1919 – 1930	In this paper, a unified approach to the notion of D-sets in topological
Publication Issue:	spaces is given. In fact new types of D-sets can be defined by replacing
Vol 70 No. 2 (2021)	"open set" by a topological set. According to Tong, each pair (U,V) of
	open sets with $U \neq X$, contributes a D-set . Our aim is to introduce new
	types of D-sets by replacing either U or V by another type of topological
Article History	sets namely ω -open, pre-open, semi-open, α -open, β -open, b-open pre- ω -
Article Received:06 Sep 2021	open, semi- ω -open, α - ω -open, β - ω -open and b- ω -open sets
Revised: 10 Oct 2021 Accepted: 22 Nov 2021	2010 Mathematics Subject Classification: 54A05, 54A10
Publication: 26 Dec 2021	Key words and phrases. ωD -open sets, ωD -closed sets, αD -open sets and αD -closed sets

Introduction

Article Info

In this paper, a unified approach to the notion of D-sets in topological spaces is given. In fact new types of D-sets can be defined by replacing "open set" by a topological set. According to Tong, each pair (U,V) of open sets with U \neq X, contributes a D-set. Our aim is to introduce new types of D-sets by replacing either U or V by another type of topological sets namely ω -open, pre-open, semi-open, α -open, β -open pre- ω -open, semi- ω -open, α - ω -open, β - ω -open and b- ω -open sets. This paper is described with two sections. The notions of ω -D, pre-D, semi-D, α -D, β -D, b-D sets are introduced and studied in the first section by replacing V by a pre-open, semi-open, α -open, β -open, b-open sets that are defined by replacing V by pre- ω -open, semi- ω -D, β - ω -D, b- ω -D sets that are defined by replacing V by pre- ω -open, semi- ω -open, β - ω -open set respectively.

Throughout this paper, (X,τ) is a topological space, A and B are subsets of X. The following notations are used.

"A \subset B" means A is a proper subset of B.

"A \supset B" means A is a proper super set of B.

 \downarrow B = The down sets of B = The collection of all subsets of B = 2^B.

 $\mathbf{\uparrow}\mathbf{B}$ = The up sets of \mathbf{B} = The collection of all super sets of \mathbf{B} .

Clearly $B \in \downarrow B$ and $B \in \uparrow B$.

"A \subseteq B" means A \subset B or A=B and "A \supseteq B" means A \supset B or A=B

 $A \in \downarrow B \Leftrightarrow A \subseteq B$ and $A \in \uparrow B \Leftrightarrow A \supseteq B$.

FCount(X) = $\{A \subseteq X: A \text{ is finite or countable}\}.$

UnCount(X) = $\{A \subseteq X: A \text{ is uncountable}\}.$

$\eta\text{-}\text{D-SETS}$ where $\eta\!\in\!\!\{\,\omega,\,\text{semi, pre,}\,\alpha,\beta,b\,\}$

Let B be a D-set in (X,τ) , determined by an ordered pair (U,V) of open sets with $U\neq X$. By varying the first coordinate U over τ and varying V over $\omega O(X,\tau)$, the notion of ω -D-set is introduced. Throughout this section $\eta \in \{\omega, \text{ semi, pre, } \alpha, \beta, b\}$ unless otherwise specified.

Definition 2.1.1 If $A = U \setminus V$, $U \neq X$, $U \in \tau$ and $V \in \omega O(X, \tau)$, then A is called an ω -D-set.

Remark 2.1.2 An ω -D-set U\V is determined by an ordered pair (U,V) where U is open , U \neq X and V is ω -open.

Notations 2.1.3

- (i) $D(X,\tau)$ = the collection of all D-sets in (X,τ) .
- (ii) ω -D(X, τ) = the collection of all ω -D-sets in (X, τ).
- (iii) $L\omega C(X,\tau) =$ the collection of all locally ω -closed sets in (X,τ) .

Proposition 2.1.4

- (i) Every proper open set U is an ω -D-set.
- (ii) The whole set X is not $an\omega$ -D-set.
- (iii) Every D-set is an ω -D-set.
- (iv) Every ω -D-set is locally ω -closed.

(v) The class ω -D(X, τ) lies properly between τ and L ω C(X, τ).

Proof. Let $U \in \tau$ with $U \neq X$. Since $U = U \setminus \emptyset$ and since \emptyset is an ω -open set, it follows that U is an ω -D-set. This proves (i). As the whole set X can not be written as $X = U \setminus V$ with $U \neq X$, it is clear that X is not an ω -D-set. This proves (ii).

The set A is a D-set \Rightarrow A = U\V, U \neq X, U \in τ , V \in τ ,

 $\Rightarrow A = U \backslash V, \ U \neq X, U \in \tau, \ V \in \tau_{\omega},$

 \Rightarrow A is an ω -D-set. This proves (iii).

The set A is an ω -D-set \Rightarrow A = U\V, U \neq X, U \in τ , V \in τ_{ω} ,

 $\Rightarrow A = U {\cap} (X {\setminus} V), \ U {\neq} X, \ U {\in} \tau, \ V {\in} \tau_{\omega},$

 $\Rightarrow A = U \cap F, U \neq X, U \in \tau, F \text{ is } \omega \text{-closed},$

 \Rightarrow A is locally ω -closed. This proves (iv).

In any topological space (X,τ) , X is locally ω -closed but not an ω -D-set. This together with (i) and (iv) proves (v). This completes the proof of the proposition.

The above proposition is illustrated in the next example.

Example 2.1.5 Let $X = \mathbb{R}$ and $\tau = \{\emptyset, \mathbb{Q}, \mathbb{R}\}$ where \mathbb{R} is the set of all real numbers, \mathbb{Q} is the set of all rational numbers and \mathbb{Q}^{c} is the set of all irrational numbers.

The space $R(\mathbb{Q}) = (\mathbb{R}, \tau) = (\mathbb{R}, \{\emptyset, \mathbb{Q}, \mathbb{R}\})$. Let A be a subset of \mathbb{R} . The following results can be easily proved.

- No rational number is a condensation point of A.
- > If A is finite or countable , then no irrational number is a condensation point of A.
- > If A is finite or countable , then $Cond(A) = \emptyset$.
- $\blacktriangleright \qquad \text{If A is uncountable then Cond}(A) = \mathbb{Q}^{c}.$
- An uncountable set A is ω -closed $\Leftrightarrow A \supseteq \mathbb{Q}^{c}$.
- $\succ \qquad \omega C(\mathbb{R},\tau) = \{A: A \text{ is a finite or countable subset of } \mathbb{R} \} \cup \{B: B \supseteq \mathbb{Q}^{c} \}.$

={A \subseteq \mathbb{R} : A is a finite or countable} $\cup \cap \mathbb{Q}^{c}$.

 $\succ \qquad \omega O(\mathbb{R}, \tau) = \{A \subseteq \mathbb{R}: A \text{ is uncountable }, \mathbb{R} \setminus A \text{ is finite or countable}\} \cup 2\mathbb{Q}.$

= {A $\subseteq \mathbb{R}$: A is uncountable, R\A is finite or countable} $\cup \downarrow \mathbb{Q}$.

- $\succ \qquad \text{Clearly } \mathbb{Q} \text{ and } \mathbb{Q}^c \text{ are both } \omega \text{-open and } \omega \text{-closed.}$
- Any subset of \mathbb{Q} is both ω -open and ω -closed.
- Any super set of \mathbb{Q}^c is both ω -open and ω -closed.
- > {1, $\sqrt{2}$ } is ω -closed but not ω -open.
- \blacktriangleright $\mathbb{R} \setminus \{\sqrt{2}\}$ is ω -open but not ω -closed.

- > { $\sqrt{3}$ } is ω -closed but not ω -open.
- $\blacktriangleright \qquad D(\mathbb{R},\tau) = \{ U \setminus V: U \in \tau \setminus \{ \mathbb{R} \}, V \in \tau \} = \{ \emptyset, \mathbb{Q} \}$
- $\succ \qquad \omega \text{-} D(\mathbb{R}, \tau) = \{ U \setminus V : U \in \tau \setminus \{ \mathbb{R} \}, V \in \tau_{\omega} \}$

 $= \{ \emptyset, \mathbb{Q} \} \cup \{ \mathbb{Q} \setminus A: A \in \bigcup \mathbb{Q} \} \cup \{ \mathbb{Q} \setminus A: A \in Un \text{ Count}(\mathbb{R}, \tau), \mathbb{R} \setminus A \in F \text{ Count}(\mathbb{R}, \tau) \}$

 $\succ \qquad L\omega C(\mathbb{R},\tau) = \omega C(\mathbb{R},\tau) \cup \{ \mathbb{Q} \cap A : A \in F \operatorname{Count}(\mathbb{R},\tau) \cup \uparrow \mathbb{Q}^{c} \} \}$

Proposition 2.1.6 If σ and τ are topologies on X such that σ is coarser than τ then

 ω -D(X, σ) is coarser than ω -D(X, τ).

Proof. $B \in \omega$ - $D(X,\sigma) \Rightarrow B=U \setminus V$ where $U \in \sigma$, $V \in \sigma_{\omega}$ with $U \neq X$

 \Rightarrow B=U\V where U $\in \tau$, V $\in \tau_{\omega}$ with U \neq X

 $\Rightarrow B \in \omega - D(X, \tau).$

Proposition 2.1.7 If σ and τ are topologies on X such that σ is finer than τ_{ω} then $D(X,\tau) \subseteq \omega$ - $D(X,\tau) \subseteq D(X,\tau_{\omega}) \subseteq D(X,\sigma) \subseteq D(X,\sigma)$.

Proof. Let σ and τ be topologies on X such that σ is finer than τ_{ω} . Then $\tau \subseteq \tau_{\omega} \subseteq \sigma$.

By using Proposition 2.1.6 we have, ω -D(X, τ) $\subseteq \omega$ -D(X, τ_{ω}) (2.1.1)

Now using Proposition 2.1.4(iv) we have $D(X,\tau) \subseteq \omega - D(X,\tau)$ (2.1.2)

Now $A \in \omega - D(X, \tau_{\omega}) \Rightarrow A = U \setminus V$ where $U \in \tau_{\omega}$, $V \in (\tau_{\omega})_{\omega}$ with $U \neq X \Rightarrow A = U \setminus V$ where $U \in \tau_{\omega}$, $V \in \tau_{\omega}$ with $U \neq X \Rightarrow A \in D(X, \tau_{\omega})$. Therefore $\omega D(X, \tau_{\omega}) \subseteq D(X, \tau_{\omega})$ (2.1.3)

Again by using Proposition 2.1.6 and Proposition 2.1.4(iv) we have $D(X,\tau_{\omega}) \subseteq D(X,\sigma) \subseteq \omega$ - $D(X,\sigma)$ (2.1.4)

Combining (2.1.1), (2.1.2), (2.1.3) and (2.1.4) we have $D(X,\tau) \subseteq \omega - D(X,\tau) \subseteq \omega - D(X,\tau_{\omega}) \subseteq D(X,\tau_{\omega}) \subseteq D(X,\sigma) \subseteq \omega - D(X,\sigma)$.

This proves the proposition.

Proposition 2.1.8

(i) The intersection of two ω -D-sets is an ω -D-set.

(ii) The union of two ω -D-sets is not an ω -D-set

Proof. Let $A = U_1 \setminus V_1$ and $B = U_2 \setminus V_2$ where U_1 , U_2 are open and V_1 , V_2 are ω -open in (X,τ) . $A \cap B = (U_1 \setminus V_1) \cap (U_2 \setminus V_2)$

$$= (U_1 \cap (X \setminus V_1) \cap (U_2 \cap (X \setminus V_2))$$

= (U_1 \cap U_2) \cap (X \setminus V_1) \cap (X \setminus V_2)
= (U_1 \cap U_2) \circ (X \(V_1 \circ V_2)))
= (U_1 \cap U_2) \(V_1 \circ V_2).

Here $U_1 \cap U_2$ is open and $V_1 \cup V_2$ is ω -open in (X,τ) . This shows $A \cap B$ is an ω -D-set. This proves (i). The union of two ω -D-sets need not be an ω -D-set as shown below.

If A and B are the disjoint subsets of \mathbb{R} such that $A \cup B = \mathbb{R}$ then $\{\emptyset, A, B, \mathbb{R}\}$ is a topology on \mathbb{R} . Clearly A and B are ω -D-sets in $\tau = (\mathbb{R}, \{\emptyset, A, B, \mathbb{R}\})$ but $A \cup B = \mathbb{R}$ is not an ω -D-set. In particular, we take $A = \mathbb{R}$ and $B = \mathbb{R} \setminus \mathbb{Z}$. Then it can be verified that $\omega O(X,\tau) = \{\emptyset, A, B, \mathbb{R}\} \cup \bigcup \mathbb{Z} \cup \uparrow (\mathbb{R} \setminus \mathbb{Z}) \cup \{B; \mathbb{Q}c \subseteq B \subseteq \mathbb{R} \setminus \mathbb{Z}\}$.

Since $\mathbb{Z} = \mathbb{Z} \setminus \emptyset$ and $\mathbb{Q} \setminus \mathbb{Z} = (\mathbb{R} \setminus \mathbb{Z}) \setminus \mathbb{Q}c$, \mathbb{Z} and $\mathbb{Q} \setminus \mathbb{Z}$ are ω -D-sets but $\mathbb{Z} \cup (\mathbb{Q} \setminus \mathbb{Z}) = \mathbb{Q}$ is not an ω -D-set. This proves (ii).

Corollary 2.1.9 The intersection of a D-set with an ω -D-set is an ω -D-set.

Proof. Follows Proposition 2.1.8 and from the fact that every D-set is an ω -D-set.

The next proposition shows that the union of two ω -D-sets is an ω -D-set under some specialized conditions. **Proposition 2.1.10** If A and B are ω -D-sets, determined by the ordered pairs (U_1, V_1) and (U_2, V_2) respectively such that $U_1 \cup U_2 \neq X$ then $A \cup B$ is an ω -D-set.

Proof. Let $A = U_1 \setminus V_1$ and $B = U_2 \setminus V_2$ where U_1 , U_2 are open, $U_1 \cup U_2 \neq X$ and V_1 , V_2 are ω -open in (X, τ) . Then $A \cup B = (U_1 \setminus V_1) \cup (U_2 \setminus V_2) = (U_1 \cup U_2) \setminus V$ where $V = (U_1 \cap V_1 \cap V_2) \cup (U_2 \cap V_1 \cap V_2)$.

Now $U_1 \cup U_2$ is open. Since the intersection of an open set with an ω -open set is ω -open, V is ω -open in (X, τ). Then it follows that $A \cup B$ is an ω -D-set. This proves the proposition.

The next proposition shows that every element of an ω -open set contributes either a countable ω -D-set or a countable locally ω -closed set.

Proposition 2.1.11 Let V be an ω -open set in (X,τ) . Then for each x in V there is a countable ω -D-set B, determined by V, such that $x \notin B$ or X is the neighbourhood of x for which X\V is countable.

Proof. Let V be an ω -open set in (X,τ) and $x \in V$. Then there is an open set U such that $x \in U$ and U\V is countable. Then U $\subset X$ or U=X. If U≠X then B=U\V is a countable D-set with $x \notin B$. If U = X then U\V = X\V is a countable locally ω -closed set. This proves the proposition.

Let B be a D-set in (X,τ) , determined by a pair (U,V) of open sets with $U \neq X$. By varying the first coordinate U over τ and varying V over $\alpha O(X,\tau)$, $\beta O(X,\tau)$, $bO(X,\tau)$, $PO(X,\tau)$, $SO(X,\tau)$, the notions of α -D-set, β -D-set, pre-D-set and semi-D-set are introduced.

Definition 2.1.12 Let A be a subset of a topological space (X,τ) with $A = U \setminus V$, $U \neq X$, $U \in \tau$. Then A is called,

- (i) an α -D-set if V is α -open,
- (ii) a β -D-set if V is β -open,
- (iii) a b-D-set if V is b-open,
- (iv) a pre-D-set if V is pre-open,
- (v) a semi-D-set if V is semi-open.

Notations 2.1.13 η -D(X, τ) = the collection of all η -D-sets in (X, τ).

 $L\eta C(X,\tau)$ = the collection of all locallyη-closedsets in (X, τ).

Proposition 2.1.14 Let A be a subset of a topological space (X, τ) .

- (i) If A is an α -D-set then it is an α D-set.
- (ii) If A is a β -D-set then it is a β D-set.
- (iii) If A is a pre-D-set then it is a pD-set.
- (iv) If A is a semi-D-set then it is a sD-set.
- (v) If A is a b-D-set then it is a bD-set.

Proof. A is an α -D-set $\Rightarrow A = U \setminus V$ where $U \in \tau$ and $V \in \alpha O(X, \tau)$.

 \Rightarrow A = U\V where U $\in \alpha O(X, \tau)$ and V $\in \alpha O(X, \tau)$.

 \Rightarrow A is an α D-set.

A is a β -D-set $\Rightarrow A = U \setminus V$ where $U \in \tau$ and $V \in \beta O(X, \tau)$.

 $\Rightarrow A = U \backslash V \text{ where } U \! \in \! \beta O(X, \! \tau) \text{ and } V \! \in \! \beta O(X, \! \tau).$

 \Rightarrow A is a β D-set.

A is a pre-D-set $\Rightarrow A = U \setminus V$ where $U \in \tau$ and $V \in PO(X, \tau)$.

- \Rightarrow A = U\V where U \in PO(X, τ) and V \in PO(X, τ).
- \Rightarrow A is a pD-set.

A is a semi-D-set \Rightarrow A = U\V where U $\in \tau$ and V \in SO(X, τ).

 \Rightarrow A = U\V where U \in SO(X, τ) and V \in SO(X, τ).

 \Rightarrow A is a sD-set.

A is a b-D-set \Rightarrow A = U\V where U $\in \tau$ and V \in bO(X, τ).

 \Rightarrow A = U\V where U \in bO(X, τ) and V \in bO(X, τ).

 \Rightarrow A is a bD-set.

This proves the proposition.

The converses in the above proposition are not true as shown below.

Example 2.1.15 Consider the space (\mathbb{R} , { \emptyset , \mathbb{Q} , \mathbb{R} }) where $X = \mathbb{R}$, $\tau = {\emptyset, \mathbb{Q}, \mathbb{R}}$. For any subset A of X we have the following equations.

$$IntA = \begin{cases} X & if A = X \\ Q & if Q \subseteq A \subset X, \text{ and } ClA = \begin{cases} \emptyset & if A = \emptyset, \\ X \setminus Q & if A \subseteq X \setminus Q, \\ R & otherwise, \end{cases}$$
(2.1.5)
$$Cl IntA = \begin{cases} X & if Q \subseteq A \subseteq X, \\ \emptyset & otherwise \end{cases} IntClA = \begin{cases} \emptyset & if A \subseteq X \setminus Q, \\ X & otherwise \end{cases}$$
(2.1.6)

 $IntClIntA = \begin{cases} X & if \ Q \subseteq A \subseteq X, \\ \emptyset & otherwise \end{cases} \text{ and } ClIntClA = \begin{cases} \emptyset & if \ A \subseteq X \setminus Q, \\ X & otherwise \end{cases}$ (2.1.7) From (2.1.6) we have $SO(X,\tau) = \uparrow \mathbb{Q} \cup \{\emptyset\}$ and $PO(X,\tau) = (2^X \setminus 2^{X \setminus Q}) \cup \{\emptyset\} = bO(X,\tau).$ From (2.1.7) we have $\alpha O(X,\tau) = \uparrow \mathbb{Q} \cup \{\emptyset\}$ and $\beta O(X,\tau) = (2^X \setminus 2^{X \setminus Q}) \cup \{\emptyset\} = bO(X,\tau).$ Therefore $\alpha - D(X,\tau) = \{ U \setminus V: U \in \tau \setminus \{X\}, V \in \alpha O(X,\tau) \} = \{\emptyset, \mathbb{Q}\} \cup \{\mathbb{Q} \setminus V: V \in \uparrow \mathbb{Q}\}.$ $= \{\emptyset, \mathbb{Q}\} \cup \{\mathbb{Q} \setminus V: V \in \uparrow \mathbb{Q}\}.$ $= \{\emptyset, \mathbb{Q}\} \cup \{\emptyset\} = \{\emptyset, \mathbb{Q}\} = semi - D(X,\tau).$ $\alpha D(X,\tau) = \{ U \setminus V: U \in \alpha O(X,\tau) \setminus \{X\}, V \in \alpha O(X,\tau)\}.$ $= \{\emptyset\} \cup (\uparrow \mathbb{Q} \setminus \{X\}) \cup \{ U \setminus V: U \in \uparrow \mathbb{Q} \setminus \{X\}, V \in \uparrow \mathbb{Q}\}.$ $= sD(X,\tau).$

Therefore semi-D(X, τ) is properly contained in sD(X, τ) and α -D(X, τ) is properly contained in α D(X, τ). Similarly we can prove that pre-D(X, τ) is properly contained in pD(X, τ), b-D(X, τ) is properly contained in bD(X, τ) and β -D(X, τ) is properly contained in β D(X, τ). In particular, $\mathbb{Q} \cup \{\sqrt{2}\}$ is both an α D-set and a sD-set but it is neither an α -D-set nor a semi-D-set. Also $\mathbb{Q}^{c} \cup \{2\}$ is a pD-set, a bD-set and a β D-set. But it is not a pre-D-set, not a b-D-set and not a β -D-set.

Example 2.1.16 Let X = {a,b,c,d} and τ = { \emptyset , {d}, {a,b}, {a,b, d},X}. Then the following can be proved. (i) semi-D(X, τ) = { { \emptyset , {d}, {a,b}, {a,b, d}} and sD(X, τ) = { \emptyset , {c}, {d}, {c, d}, {a,b}, {a,b,c}, {a,b, d}}.

Therefore the sets {c}, {d}, {c, d} and {a,b,c} are sD-sets but not semi-D-sets.

(ii) pre-D(X, τ) = { { \emptyset , {a}, {b}, {d}, {a,b}, {a,d}, {b,d}}= b-D(X, τ) = β -D(X, τ) and pD(X, τ) = $2^X \setminus \{X\} = bD(X,\tau) = \beta D(X,\tau)$.

This shows that $\{c\}$, $\{a,c\}$, $\{b,c\}$, $\{c,d\}$, $\{a,b,c\}$, $\{a,c,d\}$ and $\{b,c,d\}$ are all pD-sets, bD-sets and β D-sets but none of them is a pre-D-set, a b-D-set and a β -D-set.

Proposition 2.1.17

- (i) Every proper open set U is an α -D-set.
- (ii) The whole set X is not an α -D-set.
- (iii) Every D-set is an α -D-set.
- (iv) Every α -D-set is locally α -closed.

(v) The class α -D(X, τ) properly lies between τ and L α C(X, τ).

Proof. Let $U \in \tau$ with $U \neq X$. Since $U = U \setminus \emptyset$ and since \emptyset is an α -open set, it follows that U is an α -D-set. This proves (i). As the whole set X can not be written as $X = U \setminus V$ with $U \neq X$, it is clear that X is not an α -D-set. This proves (ii).

- A is a D-set $\Rightarrow~A=U\backslash V$ where $~U\!\in\!\tau$, $U\!\neq\!X$ and $~V\!\in\!\tau$
- $\Rightarrow A = U \backslash V \text{ where } U \in \tau \text{ and } V \in \alpha O(X, \tau)$
- \Rightarrow A is an α -D-set. This proves (iii).
- A is an α -D-set $\Rightarrow A = U \setminus V$ where $U \in \tau$, $U \neq X$ and $V \in \alpha O(X, \tau)$
- $\Rightarrow A = U \cap (X \setminus V) \text{ where } U \in \tau \text{ and } X \setminus V \in \alpha C(X, \tau)$
- \Rightarrow A is locally α -closed.

This proves (iv). The assertion (v) follows from (i) and (iv).

Proposition 2.1.18 (i) Every proper open set U is a pre-D-set.

- (ii) The whole set X is not a pre-D-set.
- (iii) Every α -D-set is a pre-D-set.
- (iv) Every pre-D-set is locally pre-closed.
- (v) The class pre-D(X, τ) lies between τ and LpreC(X, τ).
- **Proof.** The assertions (i) and (ii) follow easily.
- A is an α -D-set \Rightarrow A = U\V where U $\in \tau$, U \neq X and V $\in \alpha O(X, \tau)$
- \Rightarrow A = U\V where U $\in \tau$ and V \in PO(X, τ)
- \Rightarrow A is a pre-D-set. This proves (iii).

A is a pre-D-set \Rightarrow A = U\V where U $\in \tau$, U \neq X and V \in PO(X, τ)

- $\Rightarrow A = U \cap (X \setminus V) \text{ where } U \in \tau \text{ and } X \setminus V \in PC(X, \tau)$
- \Rightarrow A is locally pre-closed.

This proves (iv). The assertion (v) follows from (i) and (iv).

Proposition 2.1.19 (i) Every proper open set U is a semi-D-set.

- (ii) The whole set X is not a semi-D-set.
- (iii) Every α -D-set is a semi-D-set.
- (iv) Every semi-D-set is locally semi-closed.
- (v) The class semi-D(X, τ) lies between τ and LsemiC(X, τ).

Proof. Analogous to Proposition 2.1.18.

Proposition 2.1.20 (i) Every proper open set U is a b-D-set.

- (ii) The whole set X is not a b-D-set.
- (iii) Every pre-D-set is a b-D-set.
- (iv) Every semi-D-set is a b-D-set.
- (v) Every b-D-set is locally b-closed.
- (vi) The class b-D(X, τ) lies between τ and LbC(X, τ).

Proof. The assertions (i) and (ii) follow easily.

A is a pre-D-set or semi-D-set \Rightarrow A = U\V where U $\in \tau$, U \neq X and V \in PO(X, τ) \cup SO(X, τ)

 \Rightarrow A = U\V where U $\in \tau$ and V $\in bO(X, \tau)$

 \Rightarrow A is a b-D-set. This proves (iii).and (iv)

A is a b-D-set \Rightarrow A = U\V where U $\in \tau$, U \neq X and V \in bO(X, τ)

- $\Rightarrow A = U \cap (X \setminus V) \text{ where } U \in \tau \text{ and } X \setminus V \in bC(X, \tau)$
- \Rightarrow A is locally b-closed . This proves (v).
- The assertion (vi) follows from (i) and (v).

Proposition 2.1.21 (i) Every proper open set U is a β -D-set.

- (ii) The whole set X is not $a\beta$ -D-set.
- (iii) Every b-D-set is a β -D-set.
- (iv) Every β -D-set is locally β -closed.

(v) The class β -D(X, τ) lies between τ and L β C(X, τ)..

Proof. The assertions (i) and (ii) follow easily.

```
A is a b-D-set \Rightarrow A = U\V where U \in \tau, U\neqX and V \in bO(X,\tau)
```

- $\Rightarrow A = U \setminus V \text{ where } U \in \tau \text{ and } V \in \beta O(X, \tau)$
- \Rightarrow A is a β -D-set. This proves (iii).

```
A is a \beta-D-set \Rightarrow A = U\V where U \in \tau, U\neqX and V \in \beta O(X, \tau)
```

- $\Rightarrow A = U \cap (X \setminus V) \text{ where } U \in \tau \text{ and } X \setminus V \in \beta C(X, \tau)$
- \Rightarrow A is locally β -closed . This proves (iv).
- The assertion (v) follows from (i) and (iv).

Remark 2.1.22 (i) The null set \emptyset is an η -D-set in every topological space.

- (ii) The null set \emptyset is the only η -D-set in the indiscrete space.
- (iii) Every proper subset of the discrete space is an η -D-set.
- (iv) The whole set can never be an η -D-set in any topological space.

The discussion about D-sets in this section leads to following implications on various types of difference sets.

```
Diagram 2.1.23

D(X,\tau)

\downarrow

\alpha-D(X,\tau)

pre-D(X,\tau), \downarrow \downarrow semi-D(X,\tau)

\searrow \checkmark

b-D(X,\tau)

\downarrow
```

```
Vol. 70 No. 2 (2021)
http://philstat.org.ph
```

 β -D(X, τ)

Proposition 2.1.24 The intersection of two η -D-sets is an η -D-set

Proof. Let $A = U_1 \setminus V_1$ and $B = U_2 \setminus V_2$ where U_1 , U_2 are open and $V_1, V_2 \in \alpha O(X, \tau)$. $A \cap B = (U_1 \setminus V_1) \cap (U_2 \setminus V_2) = (U_1 \cap (X \setminus V_1) \cap (U_2 \cap (X \setminus V_2))$.

 $= (U_1 \cap U_2) \cap (X \setminus V_1) \cap (X \setminus V_2).$

 $= (U_1 \cap U_2) \cap (X \setminus (V_1 \cup V_2)).$

 $= (U_1 \cap U_2) \setminus (V_1 \cup V_2).$

Here $U_1 \cap U_2$ is open and $V_1 \cup V_2$ is α -open in (X,τ) . This shows $A \cap B$ is an α -D-set. This proves the proposition for the case $\eta = \alpha$. The proof for the rest is analogous.

Corollary 2.1.25 The intersection of a D-set with an η -D-set is an η -D-set.

Proof. Follows from Proposition 2.1.24 and Diagram 2.1.23.

Proposition 2.1.26 If A and B are α -D-sets, determined by the ordered pairs (U_1, V_1) and (U_2, V_2) respectively such that $U_1 \cup U_2 \neq X$ then $A \cup B$ is an α -D-set.

Proof. Let $A = U_1 \setminus V_1$ and $B = U_2 \setminus V_2$ where U_1 , U_2 are open, $U_1 \cup U_2 \neq X$ and V_1 , V_2 are α -open in (X, τ) . Then $A \cup B = (U_1 \setminus V_1) \cup (U_2 \setminus V_2) = (U_1 \cup U_2) \setminus V$ where $V = (U_1 \cap V_1 \cap V_2) \cup (U_2 \cap V_1 \cap V_2)$.

Since $\alpha O(X, \tau)$ is a topology and since every open set is α -open, V is α -open. Also since $U_1 \cup U_2$ is open, $U_1 \cup U_2 \neq X$ and V is α -open in (X, τ) , it follows that $A \cup B$ is an α -D-set. This proves the proposition.

Proposition 2.1.27 If A and B are D-set and b-D-set, determined by the ordered pairs (U_1, V_1) and (U_2, V_2) respectively such that $U_1 \cup U_2 \neq X$ then $A \cup B$ is a b-D-set.

Proof. Since the intersection of an open set with a b-open set is b-open, the proof is analogous to Proposition 2.1.26.

The union of two η -D-sets, determined by a same η -open set is a η -D-set where $\eta \in \{\beta, \text{ pre, semi }, b\}$ as shown in the next proposition.

Proposition 2.1.28 If A and B are η -D-sets, determined by the ordered pairs (U_1, V) and (U_2, V) respectively such that $U_1 \cup U_2 \neq X$ then $A \cup B$ is an η -D-set where $\eta \in \{\beta, b, \text{ pre, semi }\}$.

Proof. Let $A = U_1 \setminus V$ and $B = U_2 \setminus V$ where U_1 , U_2 are open and V is η -open in (X, τ) .

 $A \cup B = (U_1 \setminus V) \cup (U_2 \setminus V) = (U_1 \cap (X \setminus V) \cup (U_2 \cap (X \setminus V).$

 $= (U_1 \cup U_2) \cap (X \setminus V).$

 $= (U_1 \cup U_2) \setminus V$

Here $U_1 \cap U_2$ is open and $V_1 \cup V_2$ is η -open in (X, τ) . This shows $A \cup B$ is a η -D-set. This proves the proposition.

Proposition 2.1.29 Suppose $\beta O(X,\tau)$, $bO(X,\tau)$, $PO(X,\tau)$ and $SO(X,\tau)$ are topologies on X. If A and B are η -D-sets, determined by the ordered pairs (U_1, V_1) and (U_2, V_2) respectively such that $U_1 \cup U_2 \neq X$ then $A \cup B$ is an η -D-set where $\eta \in \{\beta, b, \text{ pre, semi}\}$.

Proof. Analogous to Proposition 2.1.26.

2.3 D- η -sets where $\eta \in \{\omega, \text{ semi, pre, } \alpha, \beta, b\}$

Let B be a D-set in (X,τ) , determined by a pair (U,V) of open sets with $U\neq X$. By varying the second coordinate V over τ and varying U over $\omega O(X)$, the notion of a D- ω -set is introduced. Throughout this section $\eta \in \{\omega, \text{ semi, pre, } \alpha, \beta, b\}$ unless otherwise specified.

Definition 2.3.1 Let A be a subset of a topological space (X,τ) with $A = U \setminus V$, $U \neq X$. Then A is called a D- ω -set if U is ω -open and V is open.

Notations 2.3.2 (i) $D-\omega(X,\tau)$ = the collection of all $D-\omega$ -sets in (X,τ) .

(ii) $\omega LC(X,\tau)$ = the collection of all ω -locally closed sets in (X,τ) .

Proposition 2.3.3 (i) Every proper ω -open set U is a D- ω -set.

- (ii) The whole set X is not a D- ω -set.
- (iii) Every D-set is a D- ω -set. .
- (iv) Every D- ω -set is ω -locally closed.

(v) The class $D-\omega(X,\tau)$ properly lies between τ_{ω} and $\omega LC(X,\tau)$.

Proof. The assertions (i) and (ii) can be proved easily.

The set A is a D-set \Rightarrow A=U\V where U \neq X, U $\in \tau$ and V $\in \tau$.

 \Rightarrow A= U\V where U \neq X, U $\in \omega O(X, \tau)$ and V $\in \tau$.

 \Rightarrow A= U\V where U \neq X, U $\in \omega$ O(X, τ) and V $\in \tau$.

 \Rightarrow A is a D- ω -set This proves (iii).

A is a D- ω -set \Rightarrow A=U\V where U \neq X, U $\in \omega O(X, \tau)$ and V $\in \tau$.

 $\Rightarrow A=U\cap (X\backslash V) \text{ where } U\neq X, U\in \omega O(X,\tau) \text{ and } X\backslash V \text{ is closed.}$

 \Rightarrow A is ω -locally closed. This proves (iv).

The assertion (v) follows from (i) and (iv).

Example 2.3.4 Consider the point inclusion topology on \mathbb{R} . The point may be taken as 2. Then [0, 2] is open and [-1, 1] is ω -open but not open. Therefore [-1, 1] [0, 2] = [-1, 0) is a D- ω -set but not a D-set.

Proposition 2.3.5 If σ and τ are topologies on X such that σ is coarser than τ then D- $\omega(X,\sigma)$ is coarser than D- $\omega(X,\tau)$.

Proof. $B \in D - \omega(X, \sigma) \Rightarrow B = U \setminus V$ where $U \in \sigma_{\omega}$, $V \in \sigma$ with $U \neq X$.

 \Rightarrow B=U\V where U $\in \! \tau_{\omega},$ V $\in \! \tau$ with U=X .

 \Rightarrow B \in D- $\omega(X,\tau)$.

Proposition 2.3.6 If σ and τ are topologies on X such that σ is finer than τ_{ω} then $D(X,\tau) \subseteq D - \omega(X,\tau) \subseteq D - \omega(X,\tau) \subseteq D - \omega(X,\sigma)$.

Proof. Let σ and τ be topologies on X such that σ is finer than τ_{ω} . Then $\tau \subseteq \tau_{\omega} \subseteq \sigma$.

By using Proposition 2.3.3 we have, $D-\omega(X,\tau) \subseteq D-\omega(X,\tau_{\omega}) = D(X,\tau_{\omega})$ that implies $D(X,\tau) \subseteq D-\omega(X,\tau) \subseteq D-\omega(X,\tau) \subseteq D-\omega(X,\tau) \subseteq D-\omega(X,\sigma)$.

Let B be a D-set in (X,τ) , determined by a pair (U, V) of open sets with $U \neq X$. By varying the second coordinate V over τ and varying U over $\alpha O(X,\tau)$, $\beta O(X,\tau)$, $bO(X,\tau)$, $PO(X,\tau)$, $SO(X,\tau)$ the notions of D- α -set, D- β -set, D-b-set, D-pre-set, D-semi-set are introduced.

Definition 2.3.7 Let A be a subset of a topological space (X, τ) with $A = U \setminus V$, $U \neq X$. Then A is called a D- η -set if U is η -open and $V \in \tau$ where $\eta \in \{\alpha, \beta, \text{ pre, semi, b}\}$

Notations 2.3.8 D- $\eta(X,\tau)$ = the collection of all D- η -sets in (X,τ) where $\eta \in \{\alpha, \beta, b, \text{ pre, semi}\}$ η -LC (X,τ) = the collection of all η -locally closed sets in (X,τ) .

Proposition 2.3.9 (i) Every proper α -open set U is a D- α -set.

(ii) The whole set X is not a D- α -set.

- (iii) Every D-set is a D- α -set.
- (iv) Every D- α -set is α -locally closed.

(v) The class of all D- α -sets properly les between $\alpha O(X,\tau)$ and α -LC(X, τ).

Proof. The first two assertions can be easily shown.

The set A is a D-set \Rightarrow A=U\V where U \neq X, U \in τ and V \in τ .

 \Rightarrow A= U\V where U \neq X, U $\in \alpha O(X, \tau)$ and V $\in \tau$.

 \Rightarrow A is a D- α -set . This proves (iii).

A is a D- α -set \Rightarrow A=U\V where U \neq X, U $\in \alpha O(X, \tau)$ and V $\in \tau$.

 \Rightarrow A= U \cap (X\V) where U \neq X, U $\in \alpha$ O(X, τ) and X\V is closed.

 \Rightarrow A is α -locally closed. This proves (iv).

The assertion (v) follows from (i), (ii) and (iv).

Example 2.3.10 Consider the topology $\tau = \{\emptyset, \{a\}, X\}$ where $X = \{a,b,c\}$. Then it can be verified that $\{a, b\}$ is a D- α -set but not a D-set.

Proposition 2.3.11 A set B is a D- α -set \Leftrightarrow it is an α D-set

Proof. The set B is a D- α -set \Rightarrow B= U\V where U \neq X, U $\in \alpha O(X, \tau)$ and V $\in \tau$.

 $\Rightarrow B=U \backslash V \text{ where } U \neq X, U \in \alpha O(X, \tau) \text{ and } V \in \alpha O(X, \tau).$

 \Rightarrow B is an α D-set.

Conversely let B be an α D-set. Then B=U\V where U \neq X, U $\in \alpha$ O(X, τ) and V $\in \alpha$ O(X, τ).

Since V is α -open, V \subseteq Int Cl Int V. We take W= Int Cl Int V. Therefore U\W is a D- α -set.

ClearlyU\W = U\ Int Cl Int V \subseteq U\V = B.

Now $B = U \setminus V = U \cap (X \setminus V)$. Since $X \setminus V$ is α -closed and since every α -closed set is semi-closed, we have $B = U \cap (X \setminus V) = U \cap Int \ Cl \ (X \setminus V) \subseteq U \cap Cl \ Int \ Cl \ (X \setminus V)$.

$$U \cap (X \setminus Int \ ClInt \ V).$$

 $= U \cap (X \setminus W) = U \setminus W.$

This proves that $B = U \setminus W$ which is a D- α -set.

Corollary 2.3.12 Every α -D-set is a D- α -set.

Proof. The set A is an α -D-set \Rightarrow A= U\V where U \neq X, U \in τ and V $\in \alpha O(X,\tau)$.

- \Rightarrow A= U\V where U \neq X, U $\in \alpha O(X, \tau)$ and V $\in \alpha O(X, \tau)$.
- \Rightarrow A is an α D-set.
- \Rightarrow A is a D- α -set, by using Proposition 2.3.11.

The converse of the above proposition is not true as $\{a, c\}$ is a D- α -set in (X, τ) but not an α -D-set where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$.

Proposition 2.3.13 (i) Every proper pre-open set U is a D-pre-set.

- (ii) The whole set X is not a D-pre-set.
- (iii) Every D-set is a D-pre-set.
- (iv) Every D-pre-set is a pD-set.
- (v) Every D- α -set is a D-pre-set.
- (vi) Every D-pre-set is pre-locally closed.
- (vii) The class of all D-pre-sets properly lies between $PO(X,\tau)$ and pre-LC(X,\tau).

Proof. The first two assertions can be easily shown.

The set A is a D-set \Rightarrow A=U\V where U \neq X, U $\in \tau$ and V $\in \tau$.

 \Rightarrow A= U\V where U \neq X, U \in PO(X, τ) and V \in τ .

 \Rightarrow A is a D-pre-set .This proves (iii).

The set A is a D-pre-set \Rightarrow A=U\V where U \neq X, U \in PO(X, τ) and V \in τ .

 \Rightarrow A= U\V where U \neq X, U \in PO(X, τ) and V \in PO(X, τ).

 \Rightarrow A is an pD-set. This proves (iv).

A is a D- α -set \Rightarrow A=U\V where U \neq X, U $\in \alpha O(X,\tau)$ and V $\in \tau$.

 \Rightarrow A= U\V where U \neq X, U \in PO(X, τ) and V \in τ .

 \Rightarrow A is a D-pre-set. This proves (v).

A is a D-pre-set \Rightarrow A=U\V where U \neq X, U \in PO(X, τ) and V \in τ .

- \Rightarrow A= U \cap (X\V) where U \neq X, U \in PO(X, τ) and X\V is closed.
- \Rightarrow A is pre-locally closed. This proves (vi).

The assertion (vii) follows from (i), (ii) and (vi).

Example 2.3.14 The set $\{a,d\}$ is a D-pre-set in (X,τ) but not a D-set where $X=\{a,b,c,d\}$ and $\tau=\{\emptyset, \{d\}, \{a,b\}, \{a,b,d\}, X\}$.

Proposition 2.3.15 (i) Every proper semi-open set U is a D-semi-set.

- (ii) The whole set X is not a D-semi-set.
- (iii) Every D-set is a D-semi-set.
- (iv) Every D-semi-set is a sD-set.
- (v) Every D- α -set is a D-semi-set.
- (vi) Every D-semi-set is semi-locally closed.
- (vii) The class of all D-semi-sets lies between $SO(X,\tau)$ and semi-LC(X, τ).

Proof. Analogous to Proposition 2.3.13.

Proposition 2.3.16 (i) Every proper b-open set U is a D-b-set.

- (ii) The whole set X is not a D-b-set.
- (iii) Every D-set is a D-b-set
- (iv) Every D-b-set is a bD-set.
- (v) Every D-pre-set or D-semi-set is a D-b-set.

Vol. 70 No. 2 (2021)

http://philstat.org.ph

- (vi) Every D-b-set is b-locally closed.
- (vii) The class of all D-b-sets properly lies between $bO(X,\tau)$ and $b-LC(X,\tau)$.
- **Proof.** The first two assertions can be easily shown.
- The set A is a D-set \Rightarrow A=U\V where U \neq X, U \in t and V \in t.
- \Rightarrow A= U\V where U \neq X, U \in bO(X, τ) and V \in τ .
- \Rightarrow A is a D-b-set . This proves (iii).
- The set A is a D-b-set \Rightarrow A=U\V where U \neq X, U \in bO(X, τ) and V \in τ .
- $\Rightarrow A=U \backslash V \text{ where } U \neq X, U \in bO(X, \tau) \text{ and } V \in bO(X, \tau).$
- \Rightarrow A is an bD-set .This proves (iv).
- A is a D-pre-set or D-semi-set \Rightarrow A=U\V where U \neq X, U \in PO(X, τ) \cup SO(X, τ)and V \in τ .
- \Rightarrow A= U\V where U \neq X, U \in bO(X, τ) and V \in τ .
- \Rightarrow A is a D-b -set. This proves (v).
- A is a D-b- set $\Rightarrow A=U\setminus V$ where $U\neq X$, $U\in bO(X,\tau)$ and $V\in\tau$
- \Rightarrow A= U \cap (X\V) where U \neq X, U \in bO(X, τ) and X\V is closed.
- \Rightarrow A is b-locally closed. This proves (vi). The assertion (vii) follows from (i), (ii) and (vi).
- **Proposition 2.3.17** (i) Every proper β -open set U is a D- β -set.
- (ii) The whole set X is not a D- β -set.
- (iii) Every D-set is a D- β -set
- (iv) Every D- β -set is a β D-set.
- (v) Every D-b-set is a D- β -set
- (vi) Every D- β -set is β -locally closed.
- (vii) The class of all D- β -sets properly lies between $\beta O(X,\tau)$ and β -LC(X, τ).
- **Proof.** The first two assertions can be easily shown.
- The set A is a D-set \Rightarrow A=U\V where U \neq X, U \in τ and V \in τ .
- \Rightarrow A= U\V where U \neq X, U $\in \beta O(X,\tau)$ and V $\in \tau$.
- \Rightarrow A is a D- β -set .This proves (iii).
- The set A is a D- β -set \Rightarrow A=U\V where U \neq X, U $\in \beta$ O(X, τ) and V $\in \tau$.
- $\Rightarrow A=U \backslash V \text{ where } U \neq X, U \in \beta O(X, \tau) \text{ and } V \in \beta O(X, \tau).$
- \Rightarrow A is an β D-set . This proves (iv).
- A is a D-b-set \Rightarrow A=U\V where U \neq X, U \in bO(X, τ) and V \in τ .
- \Rightarrow A= U\V where U \neq X, U $\in \beta O(X,\tau)$ and V $\in \tau$.
- \Rightarrow A is a D- β -set. This proves (v).
- A is a D- β set $\Rightarrow A = U \setminus V$ where $U \neq X$, $U \in \beta O(X, \tau)$ and $V \in \tau$.
- \Rightarrow A= U \cap (X\V) where U \neq X, U \in β O(X, τ) and X\V is closed.
- \Rightarrow A is β -locally closed. This proves (vi).
- The assertion (vii) follows from (i), (ii) and (vi).
- **Remark 2.3.18** (i) The null set \emptyset is a D- η -set in every topological space.
- (ii) The null set \emptyset is the only D- η -set in the indiscrete space.
- (iii) Every proper subset of the discrete space is a D- η -set.
- (iv) The whole set can never be a $D-\eta$ -set in any topological space.
- The discussion in this section leads to following implications on various types of difference sets **Diagram 2.3.19**

```
D-set
↓
D-β-set
D-pre-set↓ ↓D-semi-set
↓ ∠
D-b-set
```

↓ D-β-set

Proposition 2.3.20 Let $\eta \in \{\omega, \alpha, \beta, \text{ pre, semi, b}\}$.

(i) If $U \setminus V$ with $V \neq X$ is an η -D-set then $V \setminus U$ is a D- η -set.

(ii) If U\V with $V \neq X$ is a D- η -set then V\U is an η -D-set.

Proof. Let (U, V) be a pair of proper subsets of X.

Suppose $A=U\backslash V$ is an $\omega\text{-}D\text{-}set$. Then $U\!\in\!\tau\;$ and $V\!\in\!\omega O(X,\!\tau)$

Therefore $B = V \setminus U$ is D- ω -set. The converse is also true. This proves the proposition for the case $\eta = \omega$. The other cases can analogously discussed.

REFERENCES

- 1. Abd El-Monsef. M. E., El-Deeb. S. N. and Mahmoud. R. A., β-open sets and β-continuous mappings, *Bull. Fac. Sci. Assuit. Univ.*, 12(1983), 77-90.
- Ahmad Al-Omari. and Mohd Salmi Md Noorani., Decomposition of continuity via b-open set, *Bol. Soc. Paran. Mat.* (3s), (2008)(26), 53-64.
- 3. Al-Zoubi. K. and Al-Nasef B., Semi- ω -open sets, Abhath Al-yarmouk, 11(2002), 829-838.
- 4. Andrijevic. D., On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- 5. Caldas. M. and Jafari. S., On δD-sets and associated weak separation axioms, *Bull. Malaysian Math. Sci. Soc.* (second series), 25(2002), 173-185.
- 6. Ganster. M. and Steiner. M., On bt-closed sets, Appl. Gen. Topol., 8(2) (2007), 243-247.
- 7. Hdeib, H. Z., ω-closed mappings, Rev. Colomb. Mat., 16(1982), no.3-4, 65-78.
- 8. Keskin. A. and Noiri.T., On bD-sets and associated separation axioms, *Bulletin of the Iranian Math. Soc.*, 35(2009), 179 198.
- 9. Levine, N., Semiopen Sets and Semi Continuity in Topological Spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 10. Mashhour. A. S., Abd El-Monsef. M. E. and El-Deeb. S. N., On Pre-Continuous and Weak Pre-Continuous Functions, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- 11. Mashhour. A. S., Hasanein. I. A. and El-Deeb. S. N., On α-continuous and α-open mappings, *Acta Math. Hungar.*, 41(1983), 213-218.
- 12. Njastad. O., Some Classes of Nearly Open Sets, Pacific J.Math., 15(1965), 961-970.
- 13. Noiri. T., Al-Omari. A. and Noorani. M. S. M., Weak forms of ω-open sets and decompositions of continuity, *Eur. J. Pure Appl. Math.*, 2(1)(2009), 73-84.
- 14. Padma. P., Dhanabalan. A. P. and Udayakumar. S., Q*D-sets in Topological Space, Acta Ciencia Indica, 43(2)(2017), 135-140.
- 15. Takashi Noiri., Ahmad Al-Omari. and Mohd Salmi Md Noorani., Weak forms of ω-open sets and decomposition of continuity, *European Journal of Pure and Applied Mathematics*, 2(2009), no.1, 73-74.
- 16. Takashi Noiri., Ahmad Al-Omari. and Mohd Salmi Md. Noorani., On ωb-open sets and b-Lindelof spaces, *European Journal of Pure and Applied Mathematics*, 1(2008), no.3, 3-9.
- 17. Tong. J., A Separation Axiom between T₀ and T₁, Ann. Soc. Sci. Bruxelles. 96(1982), 85-90.
- 18. Vithya. N. and Thangavelu. P., b[#]D-sets and Associated Separation Axioms, *International Journal of Mathematical Engineering and Science*, 4(2015), no.2, 1-8.
- 19. Waqas Battal Jubair. and Haider Jebur Ali., New Types of separations axioms vis ωp-open sets, *Al-Mustansiriyah Journal of Science*, 33(2022), no. 3, 36-42.