STRONG FORMS OF CONTRA (1,2)*-g*-CONTINUITY

M. Jegadeesan ^{#1}, G.Ramkumar ^{*2}

¹Headmaster, Parasakthi Hr. Sec. School, S. Kottaipatti-625 527, Sedapatti, Madurai Dt, Tamil Nadu, India. Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai - 21, Tamil Nadu, India.
²Assistant Professor, Department of Mathematics, Arul Anandar College, Karumathur- 625 514, Madurai District, Tamil Nadu, India.

e-mail: jegadeesansakthi@yahoo.com

Abstract

Page Number: 2015-2020 This paper devotes to introduce and investigate a new class of maps called **Publication Issue:** contra- $(1,2)^*$ -g*-continuous maps which are weaker than contra- $(1,2)^*$ -Vol 71 No. 3 (2022) continuity and stronger than contra- $(1,2)^*$ -g-continuity, contra- $(1,2)^*$ - α gcontinuity, contra-(1,2)*-gs-continuity, contra-(1,2)*-gsp-continuity, contra-(1,2)*-gp-continuity, contra-(1,2)*-rg-continuity, contra-(1,2)*-Article History α^{**} g-continuity and contra-(1,2)*-gpr-continuity. The main results of the Article Received: 15 Apr 2022 paper are that several properties concerning $contra-(1,2)^*$ -g*-continuous *Accepted:* 28 May 2022 maps. Furthermore, the relationships between the contra-(1,2)*-g*-Publication: 20 July 2022 continuity and some bitopological maps as well as separation axioms are also investigated Keywords: - contra-(1,2)*-g*-continuous maps; contra-(1,2)*-gs-

bitopological maps.

Introduction

Article Info

In the literature there are many types of continuities introduced by various authors. Quite recently, Noiri et.al [2,4,5,6,7] introduced and investigated the notions of contra-precontinuity, contra- α -continuity, contra-g-continuity and contra-super-continuity as a continuation of research done by Dontchev [3], and Dontchev and Noiri [4] on the interesting notions of contra-continuity and contra-semi-continuity.

This paper devotes to introduce and investigate a new class of maps called contra- $(1,2)^*$ -g*-continuous maps which are weaker than contra- $(1,2)^*$ -continuity and stronger than contra- $(1,2)^*$ -g-continuity, contra- $(1,2)^*$ - α -continuity, contra- $(1,2)^*$ -gs-continuity, contra- $(1,2)^*$ -gs-continuity, contra- $(1,2)^*$ -gs-continuity, contra- $(1,2)^*$ -gs-continuity, contra- $(1,2)^*$ -gs-continuity. The main results of the paper are that several properties concerning contra- $(1,2)^*$ -g*-continuous maps. Furthermore, the relationships between the contra- $(1,2)^*$ -g*-continuity and some bitopological maps as well as separation axioms are also investigated.

Throughout this paper, (X, τ_1 , τ_2), (Y, σ_1 , σ_2) and (Z, η_1 , η_2) (briefly, X, Y and Z) will denote bitopological spaces.

We recall the following definitions which are useful in the sequel.

Definition 1.1

Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [11] if S = A \cup B where A $\in \tau_1$ and B $\in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 1.2 [11]

Let S be a subset of a bitopological space X. Then

(1) the τ_{12} -closure of S, denoted by τ_{12} -cl(S), is defined as \cap {F : S \subset F and F is τ_{12} -closed }.

(2)the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as \cup {F : F \subseteq S and F is $\tau_{1,2}$ -open }.

Definition 1.3

A subset A of a bitopological space X is called

 $(1,2)^*$ - α -open [11] if A $\subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))); (i)

(ii) $(1,2)^*$ - β -open [8] if A $\subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A));

(iii) $(1,2)^*$ -preopen [11] if A $\subset \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A).

The complements of the above mentioned open sets are called their respective closed sets.

The intersection of all $(1,2)^*$ -pre-closed (resp. $(1,2)^*$ - β -closed and $(1,2)^*$ - α -closed) sets containing a subset A of X is called the $(1,2)^*$ -preclosure (resp. $(1,2)^*-\beta$ -closure and $(1,2)^*-\alpha$ -closure) of A and is denoted by $(1,2)^*$ -pcl(A)(resp. $(1,2)^*$ -spcl(A) and $(1,2)^*$ - α cl(A)).

PROPERTIES OF CONTRA (1,2)*-g*-CONTINUOUS MAPS

We introduce the following definition.

Definition 2.1

A subset A of a bitopological space X is called

- $(1,2)^*$ -g-closed [9] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X; (i)
- $(1,2)^*$ -gs-closed if $(1,2)^*$ -scl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X; (ii)
- (iii) $(1,2)^*$ - α g-closed if $(1,2)^*$ - α cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X;
- $(1,2)^*-\alpha^{**}$ g-closed if $(1,2)^*-\alpha cl(A) \subset \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (U)) whenever $A \subset U$ and U is $\tau_{1,2}$ -open in X; (iv)
- $(1,2)^*$ -gsp-closed if $(1,2)^*$ -spcl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X; (v)
- $(1,2)^*$ -rg-closed [8] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is regular $(1,2)^*$ -open in X; (vi)
- $(1,2)^*$ -gp-closed if $(1,2)^*$ -pcl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X; (vii)
- (viii) $(1,2)^*$ -gpr-closed if $(1,2)^*$ -pcl(A) \subseteq U whenever A \subseteq U and U is regular $(1,2)^*$ -open in X and

 $(1,2)^*$ -g^{*}-closed if $\tau_{1,2}$ -cl(A) \subset U whenever A \subset U and U is $(1,2)^*$ -g-open in X. (ix)

The complements of the above mentioned closed sets are called their respective open sets.

Remark 2.2

Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -g^{*}-closed. (i)

Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -g-closed and hence an $(1,2)^*$ -ag-closed, $(1,2)^*$ -gs-closed, (ii) $(1,2)^*$ -gsp-closed, $(1,2)^*$ -gp-closed, $(1,2)^*$ -gpr-closed, $(1,2)^*$ - α^{**} g-closed and $(1,2)^*$ -rg-closed.

Definition 2.3

A bitopological space X is called

- a $(1,2)^*$ -T_{1/2}*space if every $(1,2)^*$ -g*-closed set in it is $\tau_{1,2}$ -closed. (i)
- a $(1,2)^{*}$ -*T_{1/2} space if every $(1,2)^{*}$ -g-closed set in it is $(1,2)^{*}$ -g^{*}-closed. (ii)
- a $(1,2)^*$ -Tc space if every $(1,2)^*$ -gs-closed set in it is $(1,2)^*$ -g^{*}-closed. (iii)
- an $(1,2)^*-\alpha Tc$ space if every $(1,2)^*-\alpha g$ -closed set in it is $(1,2)^*-g^*$ -closed. (iv)
- $(1,2)^*$ locally indiscrete if each $\tau_{1,2}$ -open subset of X is $\tau_{1,2}$ -(v)

closed in X.

Definition 2.4

A map f: $X \rightarrow Y$ is called

- contra-(1,2)*-g-continuous if $f^{-1}(V)$ is (1,2)*-g-closed set of X for every $\sigma_{1,2}$ -open set V of Y; (i)
- contra- $(1,2)^*$ - α g-continuous if f¹(V) is $(1,2)^*$ - α g-closed set of X for every $\sigma_{1,2}$ -open set V of Y; (ii)
- (iii)
- contra-(1,2)*-gs-continuous if $f^{-1}(V)$ is (1,2)*-gs-closed set of X for every $\sigma_{1,2}$ -open set V of Y; contra-(1,2)*-rg-continuous if $f^{-1}(V)$ is (1,2)*-rg-closed set of X for every $\sigma_{1,2}$ -open set V of Y; (iv)
- contra-(1,2)*-gp-continuous if $f^{-1}(V)$ is (1,2)*-gp-closed set of X for every $\sigma_{1,2}$ -open set V of Y; (v)
- contra- $(1,2)^*$ -gpr-continuous if $f^{-1}(V)$ is $(1,2)^*$ -gpr-closed set of X for every $\sigma_{1,2}$ -open set V of Y; (vi)
- $(1,2)^*$ -g^{*}-continuous if f⁻¹(V) is $(1,2)^*$ -g^{*}-closed set of X for every $\sigma_{1,2}$ -closed set V of Y; (vii)

- (viii) $(1,2)^*-g^*$ -irresolute if $f^{-1}(V)$ is $(1,2)^*-g^*$ -closed set of X for every $(1,2)^*-g^*$ -closed set V of Y;
- (ix) pre $(1,2)^*$ -g^{*}-closed if f(A) is a $(1,2)^*$ -g^{*}-closed set of Y for every $(1,2)^*$ -g^{*}-closed set of X and

(x) $(1,2)^*$ -preclosed if f(V) is $(1,2)^*$ -preclosed in Y for every $\tau_{1,2}$ -closed set V of X.

Definition 2.5

A map f: $X \to Y$ is called contra- $(1,2)^*$ -g^{*}-continuous if f⁻¹(V) is a $(1,2)^*$ -g^{*}-closed set of X for every $\sigma_{1,2}$ -open set V of Y.

Theorem 2.6

Every contra- $(1,2)^*$ -continuous map is contra $(1,2)^*$ -g^{*}-continuous.

The following example supports that the converse of the above theorem is not true in general.

Example 2.7

Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}\}, \sigma_1 \{\phi, Y, \{b\}\} \text{ and } \sigma_2 = \{\phi, Y, \{b\}, \{a, b\}, \{b, c\}\}$. Define f: $X \rightarrow Y$ as the identity map. Then f is contra- $(1,2)^*$ -g^{*}-continuous map but it is not contra- $(1,2)^*$ -continuous.

Definition 2.8

A map f: $X \rightarrow Y$ is called

(i) contra $(1,2)^*-\alpha^{**}$ g-continuous if $f^1(V)$ is $(1,2)^*-\alpha^{**}$ g-closed set of X for every $\sigma_{1,2}$ -open set V of Y. (ii) contra- $(1,2)^*$ -gsp-continuous if $f^1(V)$ is $(1,2)^*$ -gsp-closed set of X for every $\sigma_{1,2}$ -open set V of Y. **Theorem 2.9**

Every contra- $(1,2)^*$ -g^{*}-continuous map is contra- $(1,2)^*$ -g-continuous and hence contra- $(1,2)^*$ - α g-continuous, contra- $(1,2)^*$ -gs-continuous, contr

The following example shows that the converse of the above theorem is not true in general.

Example 2.10

Let $X = Y = \{a,b,c\}$. Let $\tau_1 = \{\phi, X, \{a\}, \{b,c\}\}, \tau_2 = \{\phi, X, \{a\}\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Define f: $X \rightarrow Y$ as the identity map. Then f is contra- $(1,2)^*$ -g-continuous map and hence contra- $(1,2)^*$ - α - α -continuous map, contra- $(1,2)^*$ -g-continuous map, contra- $(1,2)^*$ -g-continuous map, contra- $(1,2)^*$ -g-continuous map, contra- $(1,2)^*$ -g-continuous map and contra- $(1,2)^*$ -g-continuous map, contra- $(1,2)^*$ -g-continuous map and contra- $(1,2)^*$ -g-continuous map.

The following example supports that the composition of two contra- $(1,2)^*$ -g^{*}-continuous maps need not be a contra- $(1,2)^*$ -g^{*}-continuous map.

Example 2.11

Let $X = Y = Z = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}\}, \sigma_1 = \{\phi, Y\}, \sigma_2 = \{\phi, Y, \{b\}\}, \eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, Z, \{a, c\}\}$. Let f: $X \rightarrow Y$ be the identity map and g: $Y \rightarrow Z$ be the identity map. Then f is contra- $(1,2)^*$ -g^{*}-continuous map and g is contra- $(1,2)^*$ -g^{*}-continuous map. But their composition g o f is not contra- $(1,2)^*$ -g^{*}-continuous.

Theorem 2.12

Let f: $X \rightarrow Y$ be a map. Then the following statements are equivalent.

- (i) f is contra- $(1,2)^*$ -g^{*}-continuous.
- (ii) The inverse image of each $\sigma_{1,2}$ -open set of Y is $(1,2)^*$ -g^{*}-closed in X.
- (iii) The inverse image of each $\sigma_{1,2}$ -closed set of Y is $(1,2)^*$ -g^{*}-open in X.

Proof

(i) \Rightarrow (ii): Let V be any $\sigma_{1,2}$ -open set in Y. By the assumption of (i), $f^{-1}(V)$ is $(1,2)^*-g^*$ -closed in X. (ii) \Rightarrow (iii): Let V be a $\sigma_{1,2}$ -closed set in Y. Then Y–V is $\sigma_{1,2}$ -open in Y. By the assumption of (ii), $f^{-1}(V-V) = X - f^{-1}(V)$ is $(1,2)^*-g^*$ -closed in X. Thus, $f^{-1}(V)$ is $(1,2)^*-g^*$ -open in X.

(iii) \Rightarrow (i) : Let V be an $\sigma_{1,2}$ -open set in Y. Then Y–V is $\sigma_{1,2}$ -closed in Y. By the assumption of (iii), f⁻¹(Y–V) = X-f⁻¹(V) is (1,2)*-g^{*}-open in X. Therefore f⁻¹(V) is (1,2)*-g^{*}-closed in X. Hence f is contra-(1,2)*-g^{*}-continuous map.

SEPARATION AXIOMS

Theorem 3.1

Let f: X \rightarrow Y be a contra-(1,2)*-g^{*}-continuous map. If X is (1,2)*-T_{1/2}* space, then f is contra-(1,2)*-continuous map.

Proof

Let V be an $\sigma_{1,2}$ -open set in Y. Since f is contra- $(1,2)^*$ -g^{*}-continuous, f¹(V) is $(1,2)^*$ -g^{*}-closed in X. But X is $(1,2)^*$ -T^{*}_{1/2} space, f¹(V) is $\tau_{1,2}$ -closed in X. Therefore f is contra- $(1,2)^*$ -continuous map.

Theorem 3.2

Let f: X \rightarrow Y be contra-(1,2)*- α g-continuous map. If X is (1,2)*- α Tc space, then f is contra-(1,2)*- g^* - continuous map.

Proof

Let V be an $\sigma_{1,2}$ -open set in Y. Since f is contra- $(1,2)^*$ - α g-continuous, f¹(V) is $(1,2)^*$ - α g-closed in X. But X is $(1,2)^*$ - α Tc space, f¹(V) is $(1,2)^*$ -g^{*}-closed in X. Therefore f is contra- $(1,2)^*$ -g^{*}-continuous map. **Theorem 3.3**

Let f: X \rightarrow Y be contra-(1,2)*-g-continuous map. If X is (1,2)*-*T_{1/2} space, then f is contra-(1,2)*-g^{*}- continuous map.

Proof

Let V be an $\sigma_{1,2}$ -open set in Y. Since f is contra- $(1,2)^*$ -g-continuous, f⁻¹(V) is $(1,2)^*$ -g-closed in X. But X is $(1,2)^*$ - $^*T_{\frac{1}{2}}$ space, f⁻¹(V) is $(1,2)^*$ -g^{*}-closed in X. Therefore f is contra- $(1,2)^*$ -g^{*}-continuous map.

Theorem 3.4

Let f: X \rightarrow Y be contra-(1,2)*-gs-continuous map. If X is (1,2)*-Tc space, then f is contra-(1,2)*-g^{*}- continuous map.

Proof

Let V be an $\sigma_{1,2}$ -open set in Y. Since f is contra- $(1,2)^*$ -gs-continuous, f¹(V) is $(1,2)^*$ -gs-closed in X. But X is $(1,2)^*$ -Tc space, f¹(V) is $(1,2)^*$ -g^{*}-closed in X. Therefore f is contra- $(1,2)^*$ -g^{*}-continuous map.

Theorem 3.5

Let f: X \rightarrow Y be a surjective, (1,2)*-preclosed, contra-(1,2)*-g^{*}-continuous map and X be (1,2)*-T_{1/2}* space. Then Y is (1,2)*-locally indiscrete.

Proof

Suppose V is $\sigma_{1,2}$ -open set in Y. By hypothesis, f is contra- $(1,2)^*$ -g^{*}-continuous, f⁻¹(V) is $(1,2)^*$ -g^{*}-closed in X. Since X is $(1,2)^*$ -T_{1/2}* space, f⁻¹(V) is $\tau_{1,2}$ -closed in X. Since f is $(1,2)^*$ -preclosed, V is $(1,2)^*$ -preclosed in Y. Now we have $\sigma_{1,2}$ -cl(V) = $\sigma_{1,2}$ -cl($\sigma_{1,2}$ -int(V)) \subseteq V. This means that V is $\sigma_{1,2}$ -closed in Y. Thus, Y is $(1,2)^*$ -locally indiscrete.

Theorem 3.6

If f: X \rightarrow Y and g: Y \rightarrow Z are contra-(1,2)*-g^{*}-continuous maps with Y as a (1,2)*-T_{1/2}* space, then g o f: X \rightarrow Z is (1,2)*-g^{*}-continuous map.

Proof

Let G be an $\eta_{1,2}$ -open set in Z. Since g is contra- $(1,2)^*$ -g^{*}-continuous, g⁻¹(G) is $(1,2)^*$ -g^{*}-closed in Y. Since Y is $(1,2)^*$ -T_{1/2}* space, g⁻¹(G) is $\sigma_{1,2}$ -closed in Y. Since f is contra- $(1,2)^*$ -g^{*}-continuous, f⁻¹(g⁻¹(G)) = (g o f)⁻¹(G) is $(1,2)^*$ -g^{*}-open in X. Therefore g o f is $(1,2)^*$ -g^{*}-continuous map.

Theorem 3.7

Let X and Z be any bitopological spaces and Y be a $(1,2)^*-T_{\frac{1}{2}}^*$ space. Then the composition g o f: X \rightarrow Z is contra- $(1,2)^*-g^*$ -continuous map if f: X \rightarrow Y is $(1,2)^*-g^*$ -continuous map and g: Y \rightarrow Z is contra- $(1,2)^*-g^*$ -continuous.

Proof

Let G be any $\eta_{1,2}$ -open set in Z. Since g is contra- $(1,2)^*$ -g^{*}-continuous, g⁻¹(G) is $(1,2)^*$ -g^{*}-closed in Y. But Y is a $(1,2)^*$ -T_{1/2}^{*} space, g⁻¹(G) is $\sigma_{1,2}$ -closed in Y. Since f is $(1,2)^*$ -g^{*}-continuous, f⁻¹(g⁻¹(G)) = (g o f)⁻¹(G) is $(1,2)^*$ -g^{*}-closed in X. Therefore g o f is contra $(1,2)^*$ -g^{*}-continuous map.

Theorem 3.8

Let X and Z be any bitopological spaces and Y be a $(1,2)^*-^*T_{\frac{1}{2}}$ space. Then g o f: X \rightarrow Z is contra- $(1,2)^*-^*g^*$ -continuous map if f: X \rightarrow Y is $(1,2)^*-^*g^*$ -irresolute map and g: Y \rightarrow Z is contra- $(1,2)^*-^*g$ -continuous map.

Proof

Let G be an $\eta_{1,2}$ -open set in Z. Since g is contra- $(1,2)^*$ -g-continuous, $g^{-1}(G)$ is $(1,2)^*$ -g-closed in Y. But Y is $(1,2)^*$ - $g^{-1}(G)$ is $(1,2)^*$ - $g^{-1}(G)$ is $(1,2)^*$ - g^* -closed in Y. Since f is $(1,2)^*$ - g^* -irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is $(1,2)^*$ - g^* -closed in X. Therefore g o f is contra- $(1,2)^*$ - g^* -continuous map.

Theorem 3.9

Let X and Z be any bitopological spaces and Y be a $(1,2)^*$ - $T_{\frac{1}{2}}^*$ space. Then g o f: X \rightarrow Z is contra- $(1,2)^*$ - g^* -continuous map and g: Y \rightarrow Z is $(1,2)^*$ - g^* -irresolute map.

Proof

Let G be any $\eta_{1,2}$ -closed set in Z. Then G is $(1,2)^*$ -g^{*}-closed in Z. Since g is $(1,2)^*$ -g^{*}-irresolute, g⁻¹(G) is $(1,2)^*$ -g^{*}-closed in Y. But Y is a $(1,2)^*$ -T_{1/2}*space, g⁻¹(G) is $\sigma_{1,2}$ -closed in Y. Since f is contra- $(1,2)^*$ -g^{*}-continuous, f⁻¹(g⁻¹(G)) = (g o f)⁻¹(G) is $(1,2)^*$ -g^{*}-open in X. Therefore g o f is contra- $(1,2)^*$ -g^{*}-continuous map.

RELATIONS WITH OTHER MAPS

Theorem 4.1

Let f: X \rightarrow Y and g: Y \rightarrow Z be any two maps. Then g o f is contra-(1,2)*-g*-continuous map if g is contra-(1,2)*-continuous map and f is (1,2)*-g*-continuous map.

Proof

Let V be an $\eta_{1,2}$ -open set in Z. Since g is contra- $(1,2)^*$ -continuous, $g^{-1}(V)$ is $\sigma_{1,2}$ -closed in Y. Since f is $(1,2)^*-g^*$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $(1,2)^*-g^*$ -closed in X. Therefore g o f is contra- $(1,2)^*-g^*$ -continuous map.

Theorem 4.2

Let f: X \rightarrow Y be surjective, (1,2)*-g^{*}-irresolute and pre (1,2)*-g^{*}-closed and g: Y \rightarrow Z be any map. Then g o f: X \rightarrow Z is contra-(1,2)*-g^{*}-continuous if and only if g is contra-(1,2)*-g^{*}-continuous. **Proof**

Let g o f: X \rightarrow Z be contra-(1,2)*-g*-continuous map. Let F be an $\eta_{1,2}$ -open subset of Z. Then (g o f)⁻¹(F) = f⁻¹(g⁻¹(F)) is a (1,2)*-g*-closed subset of X. Since f is pre (1,2)*-g*-closed, f(f⁻¹(g⁻¹(F))) = g⁻¹(F) is (1,2)*-g*-closed in Y. Thus g is contra-(1,2)*-g*-continuous map.

Conversely, let g: $Y \rightarrow Z$ be contra- $(1,2)^*$ -g^{*}-continuous. Let G be an $o\eta_{1,2}$ -pen subset of Z. Since g is contra- $(1,2)^*$ -g^{*}-continuous, g⁻¹(G) is $(1,2)^*$ -g^{*}-closed in Y. Since f is $(1,2)^*$ -g^{*}-irresolute, f¹(g⁻¹(G)) = (g o f)⁻¹(G) is $(1,2)^*$ -g^{*}-closed in X. Hence g o f is contra- $(1,2)^*$ -g^{*}-continuous map.

Theorem 4.3

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-g^{*}-continuous map.

Proof

Let F be an $\eta_{1,2}$ -open set in Z. Since g is contra- $(1,2)^*$ -g^{*}-continuous, g⁻¹(F) is $(1,2)^*$ -g^{*}-closed in Y. Since f is $(1,2)^*$ -g^{*}-irresolute, f¹(g⁻¹(F)) = (g o f)⁻¹(F) is $(1,2)^*$ -g^{*}-closed in X. Thus, g o f is contra- $(1,2)^*$ -g^{*}-continuous map.

Corollary 4.4

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-g-continuous map.

Corollary 4.5

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*- α g-continuous map.

Corollary 4.6

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-gs-continuous map.

Corollary 4.7

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-gsp-continuous map.

Corollary 4.8

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-gp-continuous map.

Corollary 4.9

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-gpr-continuous map.

Corollary 4.10

Let f: X \rightarrow Y be $(1,2)^*$ -g^{*}-irresolute map and g: Y \rightarrow Z be contra- $(1,2)^*$ -g^{*}-continuous map. Then g o f: X \rightarrow Z is contra- $(1,2)^*$ -a^{**}g-continuous map.

Corollary 4.11

Let f: X \rightarrow Y be (1,2)*-g^{*}-irresolute map and g: Y \rightarrow Z be contra-(1,2)*-g^{*}-continuous map. Then g o f: X \rightarrow Z is contra-(1,2)*-rg-continuous map.

REFERENCES

- [1] Abd El-Monsef, M.E., Pious Missier, P., Ravi, O., Thivagar, M. L. and Salai Parkunan, T.: Properties of (1,2)*-rg-continuous maps, Antarctica J. Math., 6(2) (2009), 187-203.
- [2] Caldas, M., Jafari, S., Noiri, T. and Simoes, M.: A new generalization of contra-continuity via Levine's g-closed sets, Chaos, Solitons and Fractals, 32 (2007), 1597-1603.
- [3] Dontchev, J.: Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. Math. Sci., 19 (2) (1996), 303-310.
- [4] Dontchev, J. and Noiri, T.: Contra semi-continuous functions, Math. Pannon., 10(2) (1999), 159-168.
- [5] Jafari, S. and Noiri, T.: Contra α-continuous functions between topological spaces, Iranian Int. J. Sci., 2(2) (2001), 153-167.
- [6] Jafari, S. and Noiri, T.: Contra-super-continuous functions, Ann. Univ. Sci. Buda pest Eotvos Sect. Math., 42 (1999), 27-34.
- [7] Jafari, S. and Noiri, T.: On contra-precontinuous functions, Bull. Malays. Math. Sci. Soc. (2) 25(2) (2002), 115-128.
- [8] Kayathri, K., Ravi, O., Thivagar, M. L. and Joseph Israel, M.: Decompositions of (1,2)*-rgcontinuous maps in bitopological spaces, Antarctica J. Math., 6(1) (2009), 13-23.
- [9] Ravi, O., Kayathri, K., Thivagar, M. and Joseph Israel, M.: Mildly (1,2)*-normal spaces and some bitopological spaces, Mathematica Bohemica, 135(1) (2010), 1-15.
- [10] Ravi, O. and Thivagar, M. L.: A bitopogical (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc. (2), 29(1) (2006), 79-88.
- [11] Ravi, O. and Thivagar, M. L.: On stronger forms of (1,2)* quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14(6) (2004), 481-492.