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Abstract 

The present study introduce the notion of compatibility of maps in 

partially ordered metric spaces and use this perception to establish a 

tripled coincidence point result for mixed g-monotone mappings. Our 

effort extend the recent work of Borcut and Berinde [M. Borcut, V. 

Berinde, Tripled fixed point theorem for contractive type mappings in 

partially ordered metric spaces, Nonlinear Anal., Accepted (2011)] and 

refrences therein. We support the result by establishing an illustrative 

example.  

Keywords: Partially ordered set; Tripled coincidence point; Mixed 

monotone property; compatible mappings. 

 
 

Introduction 

           In recent years, the study of fixed point for mappings that possess monotonicity type 

properties, in the context of partially ordered metric spaces which combine method of contraction 

principle with method of monotone iterations and method of lower and upper solution has been the 

focus of vigorous research activity. In particular the approach to weaken the requirement of 

contraction by considering that the operator assumed is monotone was initiated by Ran and Ruering 

in [12] and it was refined and extended in [14, 15] and was applied to periodic boundary value 

problem. 

           Specifically, Bhaskar and Lakshmikanthan [3] established coupled fixed point for mixed 

monotone operator in partially ordered metric spaces. Afterward, Lakshmikanthan and Ciric [8] 

extended the results of [3] by furnishing coupled coincidence and coupled fixed point theorem for 

two commuting mappings having mixed g-monotone property. In a subsequent series, B. S. 

Choudhary and A. kundu [6] introduced the concept of compatibility and proved the result of [8] 

under different set of condition. Very recently Borcut and Berinde [18] introduce tripled fixed point 

theorem for contractive type mapping in partially ordered metric spaces.  

           The purpose of this work is to generalize results of [18] by introducing weaker variant as 

compatibility of mappings and using control φ-function. The result obtained can be applied to study 

of several nonlinear problems.  
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1. Preliminaries 

          In what follows, we collect some relevant definitions, results, examples for our further use.  

Let (X, ≤) be partially ordered set and F: X → X be a mapping from X to itself. The mapping F is 

said to be non-decreasing if for all x1, x2 ∈ X, x1≤ x2 implies F(x1) ≤ F(x2) and non-increasing, if for 

all x1, x2 ∈ X, x1≤ x2 implies F(x1) ≥ F(x2). 

Definition 1.1 ([3]). Let (X, ≤) be partially ordered set and the mapping F: X × X → X is said to 

have mixed monotone property if F is monotone non-decreasing in its fist argument and is 

monotone non-increasing in its second argument, that is, if for any x1, x2 ∈ X, x1≤ x2 implies F(x1, 

y) ≤ F(x2, y) for y ∈ X and for all y1, y2 ∈ X, y1≤ y2 implies F(x, y1) ≥ F(x, y2). 

Definition 1.2 (Mixed g-monotone property [8]) Let (X, ≤) be partially ordered set and F: X × X → 

X and g: X → X be two self mappings. F has mixed g-monotone property if F is monotone g-non-

decreasing in its fist argument and is monotone g-non-increasing in its second argument, that is, if 

for any x1, x2 ∈ X, gx1≤ gx2 implies F(x1, y) ≤ F(x2, y) for y ∈ X and for all y1, y2 ∈ X, gy1≤ gy2 

implies F(x, y1) ≥ F(x, y2). 

Definition 1.3 ([3]). An element (x, y) ∈ X × X, is called a coupled fixed point of mapping F: X × 

X → X if F(x, y) = g(x) and F(y, x) = y. 

Definition 1.4 ([3]). An element (x, y) ∈ X × X, is called a coupled coincident point of mapping F: 

X × X → X and g: X → X if F(x, y) = g(x) and F(y, x) = y. 

Definition 1.5 ([6]) The mappings F and g where F: X × X → X and g: X → X, are said to be 

compatible if 

                      lim
 n→∞

d(g(F(xn, yn)), F(g(xn), g(yn))) = 0 

and 

                      lim
 n→∞

d(g(F(yn, xn)), F(g(yn), g(xn))) = 0. 

whenever {xn} and {yn} are sequences in X, such that lim
 n→∞

F(xn, yn) = lim
 n→∞

g(xn) = x and lim
 n→∞

F(yn, 

xn) = lim
 n→∞

g(yn) = y, for all x, y ∈ X are satisfied.  

Now, we are ready to prove our results which are of three folds: 

             (i) We use compatibility which is more general variant. 

             (ii) We proceed with φ-contraction which more general. 

             (iii) We use g-mixed monotone property which is more general mixed monotone property. 

2. MAIN RESULTS 
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    Let (X, ≤) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric 

space. Consider on the product X × X × X the following partial order: for (x, y, z), (u, v, w) ∈ X × 

X × X, 

                         (u, v, w) ≤ (x, y, z) ⟺ x ≥ u, y ≤ v, z ≥ w. 

Definition 2.1Let (X, ≤) be a partially ordered set and F: X × X × X → X and g: X → X. We say 

that F has the g-mixed monotone property if F(x, y, z) is monotone non decreasing in x and z, and is 

monotone non increasing in y, that is, for any x, y, z ∈ X, 

  

                         x1, x2 ∈ X,  g(x1) ≤ g(x2) ⇒ F(x1, y, z) ≤ F(x2, y, z), 

                         y1, y2 ∈ X, g(y1) ≤ g(y2) ⇒ F(x, y1, z) ≥ F(x, y2, z), 

and 

                          z1, z2 ∈ X, g(z1) ≤ g(z2) ⇒ F(x, y, z1) ≤ F(x, y, z2). 

        Now, we introduce the concept of compatible mapping for trivariate mapping F and self 

mapping g akin to compatible mapping as introduce by Choudhary and Kundu [6] for bivariate 

mapping F and self mapping g. 

Definition 2.1The mapping F and g where F: X × X × X → X and g: X → X are said to be 

compatible if 

                       lim
 n→∞

d(g(F(xn, yn, zn)), F(g(xn), g(yn), g(zn))) = 0, 

                       lim
 n→∞

d(g(F(yn, xn, zn)), F(g(yn), g(xn), g(zn))) = 0 

and                  lim
 n→∞

d(g(F(zn, yn, xn)), F(g(zn), g(yn), g(xn))) = 0 

whenever {xn},{yn} and {zn} are sequences in X, such that lim
 n→∞

F(xn, yn, zn) = lim
 n→∞

g(xn) = x, 

lim
 n→∞

F(yn, xn, zn) = lim
 n→∞

g(yn) = y and lim
 n→∞

F(zn, yn, xn) = lim
 n→∞

g(zn) = z  for all x, y, z ∈ X are satisfied.  

We establish the main result of this section. 

Theorem 2.1 Let (X, ≤) be partially ordered set and let there be a metric d on X such that (X, d) be 

a metric space. Let φ: [0, +∞) → [0, +∞) be such that φ(t) < t and lim
 r→t+

 φ(r) < t for all t > 0. Let F: X 

× X × X → X and g: X → X are such that F has mixed g-monotone property and satisfy 

(2.1)                 d(F(x, y, z), F(u, v, w)) ≤ φ(
d(gx,gu )+ d(gy,gv)+ d(gz,gw)

3
) 

for all x, y, z, u, v, w ∈ X, with gx ≤ gu, gy ≥ gv and gz ≤ gw. Let F(X × X × X) ⊆ g(X), g be 

continuous and monotone increasing and F and g be compatible mappings. Also suppose 

                         (a) F is continuous or  

                         (b) X has following properties 

                                       (i)  if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ≥ 0,   

                                       (ii) if a non-increasing sequence {yn} → y, then yn ≤ y for all n ≥ 0,  

                                       (iii) if a non-decreasing sequence {zn} → z, then zn ≤ z for all n ≥ 0. 

If there exist x0, y0, z0 ∈ X, such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, z0) and g(z0) ≤ F(z0, y0, 

x0), there exist x, y, z ∈ X such that g(x) = F(x, y, z), g(y) = F(y, x, z) and g(z) = F(z, y, x), that is, F 

and g have coupled coincidence point in X. 
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Proof:  Let x0, y0, z0 ∈ X, be such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, z0) and g(z0) ≤ F(z0, y0, 

x0). Since F(X × X × X) ⊆ g(X), we can define x1, y1, z1 ∈ X such that g(x1) = F(x0, y0, z0), g(y1) = 

F(y0, x0, z0) and g(z1) = F(z0, y0, x0) . In the same way, we construct g(x2) = F(x1, y1, z1), g(y2) = 

F(y1, x1, z1) and g(z2) = F(z1, y1, x1). Continuing like this, we construct three sequences {xn}, {yn} 

and {zn} in X such that for all n ≥ 0 

(2.2)           g(xn+1) = F(xn, yn, zn), g(yn+1) = F(yn, xn, zn), g(zn+1) = F(zn, yn, xn). 

Now, it is obvious by mathematical induction that for all n ≥ 0, 

(2.3)            g(xn) ≤ g(xn+1), g(yn) ≥ g(yn+1) and g(zn) ≤ g(zn+1). 

            Let, δn = d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1). 

Next we prove that 

(2.4)            δn = 3φ(
δn−1 

3
). 

Since for all n ≥ 0, g(xn -1) ≤ g(xn), g(yn - 1) ≥ g(yn) and g(zn -1) ≤ g(zn), using (2.1), (2.2) and (2.5), 

we have       d(gxn, gxn+1) = d(F(xn - 1, yn -1, zn -1), F(xn, yn, zn)) 

                                       ≤ φ(
d(gxn−1,gxn)+ d(gyn−1,gyn)+ d(gzn−1,gzn)

3
)  

                                 = φ(
δn−1 

3
). 

               Similarly, we have from (2.1) and (2.2), 

(2.6)             d(gyn, gyn+1) ≤ φ(
δn−1 

3
), d(gzn, gzn+1) ≤ φ(

δn−1 

3
).  

Combining (2.5) and (2.6), we obtain (2.4). 

     Since φ(t) < t for t > 0, it follows from (2.4) that the sequence {δn} is a monotone decreasing 

sequence of non-negative real numbers. Hence there exist δ ≥ 0 such that lim
 n→∞

δn = δ. If possible, let 

δ >0, Taking the limit as n → ∞ in (2.4) and using lim
 r→t+

 φ(r) < t for all t > 0. 

                     δ = lim
 n→∞

δn ≤ 3 lim
 n→∞

 φ(
δn−1 

3
) = 3 lim

 δn−1→δ+
φ (

δn−1 

3
) < 3 

δ

3
 = δ, 

which is a contradiction. Thus δ = 0. Hence we have 

(2.7)             lim
 n→∞

[d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1)] = lim
 n→∞

 dn= 0. 

Thus, 

(2.8)               lim
 n→∞

d(gxn+1, gxn) = lim
 n→∞

d(gyn+1, gyn) = lim
 n→∞

d(gzn+1, gzn) = 0. 

Next we show that {gxn}, {gyn} and {zn} are Cauchy sequences. Let at least one of {gxn}, {gyn} 

and {zn} be not a Cauchy sequence. Then there exist ε> 0 and the sequence of natural numbers 

{m(k)} and {l(k)}  such that for every natural number k 

                   m(k) > l(k) ≥ k 

and  

(2.9)           dk = d(g(xl(k)), g(xm(k)) + d(g(yl(k)), g(ym(k)) + d(g(zl(k)), g(zm(k)) ≥ ε. 

Now corresponding to l(k) we can choose m(k) to be smallest positive integer for which (2.9) holds. 

Then,  

(2.10)         d(g(xl(k)), g(xm(k) - 1) + d(g(yl(k)), g(ym(k) - 1) + d(g(zl(k)), g(zm(k) - 1) < ε. 
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Further from (2.9), (2.10) and triangle inequality, for all k ≥ 0, we have 

                  ε ≤ dk ≤ d(g(xl(k)), g(xm(k) - 1)) + d(g(xm(k) - 1), g(xm(k))) + d(g(yl(k)), g(ym(k) - 1))                       

                              + d(g(ym(k) - 1), g(ym(k) - 1)) + d(g(zl(k)), g(zm(k) - 1)) + d(g(zm(k) - 1), g(zm(k)))        

                              = d(g(xl(k)), g(xm(k) - 1)) + d(g(yl(k)), g(ym(k) - 1)) + d(g(zl(k)), g(zm(k) - 1)) +  dm(k) - 1     

                                              < ε + dm(k) – 1. 

Taking the limit as k → ∞, we have by (2.8), 

(2.11)         lim
 n→∞

dk = ε. 

Again, for all k ≥ 0 

                   dk = d(g(xl(k)), g(xm(k))) + d(g(yl(k)), g(ym(k))) + d(g(zl(k)), g(zm(k)))   

                       ≤ d(g(xl(k)), g(xl(k) + 1)) + d(g(xl(k) + 1), g(xm(k) + 1)) + d(g(xm(k) + 1), g(xm(k))) 

                       + d(g(yl(k)), g(yl (k) + 1)) + d(g(yl(k) + 1), g(ym(k) + 1)) + d(g(ym(k) + 1), g(ym(k))) 

                       + d(g(zl(k)), g(zl (k) + 1)) + d(g(zl(k) + 1), g(zm(k) + 1)) + d(g(zm(k) + 1), g(zm(k))) 

                       = d(g(xl(k)), g(xl(k) + 1)) + d(g(yl(k)), g(yl (k) + 1)) + d(g(zl(k)), g(zl (k) + 1))  

                       + d(g(xl(k) + 1), g(xm(k) + 1)) + d(g(yl(k) + 1), g(ym(k) + 1)) + d(g(zl(k) + 1), g(zm(k) + 1))  

                       + d(g(xm(k) + 1), g(xm(k))) + d(g(xm(k) + 1), g(xm(k))) + d(g(zm(k) + 1), g(zm(k)))  

           Hence, for all k ≥ 0 

(2.12)         dk = dl(k) + dm(k) +  d(g(xl(k) + 1), g(xm(k) + 1))  

                       + d(g(yl(k) + 1), g(ym(k) + 1)) + d(g(zm(k) + 1), g(zm(k)))  

From (2.1)-(2.3) and (2.9), for all k ≥ 0, we obtain 

(2.13)         d(g(xl(k) + 1), g(xm(k) + 1)) = d(F(xl(k), yl(k), zl(k)), F(xm(k), ym(k), zm(k))) 

                                                          ≤ φ(
d(gxl(k),gxm(k))+ d(gyl(k),gym(k))+ d(gzl(k),gzm(k))

3
)  

                                                 = φ(
𝑑𝑘 

3
)  

      Similarly, from (2.1) – (2.3) and (2.9), for all k ≥ 0, we get 

(2.14)         d(g(yl(k) + 1), g(ym(k) + 1)) = φ(
𝑑𝑘 

3
) and d(g(zl(k) + 1), g(zm(k) + 1)) = φ(

𝑑𝑘 

3
). 

Putting (2.13) and (2.14) in (2.12), for all k ≥ 0, we obtain dk = dl(k) + dm(k) + 3 φ(
𝑑𝑘 

3
). 

       Letting n → ∞ in the above inequality and using (2.8) - (2.11), we have 

                   ε ≤ 3 lim
 k→∞

 φ(
𝑑𝑘 

3
) = 3 lim

 dk→ε+
φ(

𝑑𝑘 

3
) < 3 

ε

3
 = 3, 

which is a contradiction. Therefore, {gxn}, {gyn} and {zn} are Cauchy sequence in X and hence 

they are convergent in the complete metric space (X, d). Let 

 (2.15)      lim 
n→∞

 F(xn, yn, zn) = gxn = x, lim 
n→∞

 F(yn, xn, zn) = gyn = y,  lim 
n→∞

 F(zn, yn, xn) = gzn = z. 

Since F and g are compatible mappings, we have by (2.15) 

(2.16)       lim
 n→∞

d(g(F(xn, yn, zn)), F(gxn, gyn, gzn)) = 0, 
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(2.17)        lim
 n→∞

d(g(F(yn, xn, zn)), F(gyn, gxn, gzn)) = 0, 

(2.18)        lim
 n→∞

d(g(F(zn, yn, xn)), F(gzn, gyn, gxn)) = 0. 

Next we prove that gx = F(x, y, z), gy = F(y, x, z) and gz = F(z, y, x). 

       Let (a) holds. 

       For all n ≥ 0, we have 

                   d(gx, F(gxn, gyn, gzn)) ≤ d(gx, g(F(xn, yn, zn)) + d(g(F(xn, yn, zn), F(gxn, gyn, gzn)). 

Taking the limit as n → ∞, using (2. 3), (2.15) and (2.16) and the fact that F and g are continuous, 

we have d(gx, F(x, y, z)) = 0. 

       Similarly, from (2. 3), (2.15) and (2.16) and continuity of F and g, we have d(gy, F(y, x, z)) = 0 

and d(gz, F(z, y, x)) = 0.  

Combining the above three result we get g(x) = F(x, y, z), g(y) = F(y, x, z) and g(z) = F(z, y, x). 

Next we suppose that (b) holds. 

       By (2.3), (2.15) and (2.16), we have {gxn}, {gzn} are non-decreasing sequence, gxn → x, gzn → 

z respectively and {gyn} is non-increasing sequence, gyn → y as n → ∞. The by (i), (ii) and (iii) of 

(b), we have for n ≥ 0, 

(2.19)        gxn ≤ x, gyn ≥ y and g(zn) ≤ z. 

Since, F and g are compatible mappings and g is continuous, by (2.16) – (2.18) we obtain 

(2.20)       lim
 n→∞

 g(gxn) = gx = lim
 n→∞

 g(F(xn, yn, zn)) = lim
 n→∞

 F(gxn, gyn, gzn) 

(2.21)       lim
 n→∞

 g(gyn) = gy = lim
 n→∞

 g(F(yn, xn, zn)) = lim
 n→∞

 F(gyn, gxn, gzn) 

(2.22)       lim
 n→∞

 g(gzn) = gz = lim
 n→∞

 g(F(zn, yn, xn)) = lim
 n→∞

 F(gzn, gyn, gxn). 

Now, we have using triangle inequality 

                  d(gx, F(x, y, z)) ≤ d(gx, g(gxn + 1)) + d(g(gxn + 1), F(x, y, z)). 

Taking the limit as n → ∞, in the above inequality and using (2.2) and (2.20) we have, 

                  d(gx, F(x, y, z)) ≤ lim
 n→∞

 d(gx, g(gxn + 1)) + lim
 n→∞

 d(g(F(xn, yn, zn)), F(x, y, z)) 

                                            = lim
 n→∞

 d(F(gxn, gyn, gzn), F(x, y, z)) 

Since the mapping g is monotone increasing, by (2.1). (2.19) and the above inequality, we have n ≥ 

0, 

                   d(gx, F(x, y, z)) ≤ lim
 n→∞

 φ (
d(g(g xn),gx)+ d(g(g yn),gy)+ d(g(g zn),gz) 

3
) 

Using (3.20) and the property of φ-function we obtain, d(gx, F(x, y, z)) ≤ 0. 

       Thus is 

            gx = F(x, y, z) 

and similarly by virtue of (2.1), (2.21) and (2.22) we obtain 

            gy = F(y, z, x) and gz = F(z, y, x). 

Thus we have proved that F and g have coupled coincidence point in X. 



Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

 

 
1958 

 
Vol. 70 No. 2 (2021) 

http://philstat.org.ph 

 

 

Remark 2.2 The results of [3], [6] and [8] are deduced from the results discussed here, by the 

following choice. Set F(x, y, z) = F1(x, y) and F(y, z, x) = F1(y, x). Also by further setting F1(x, y) = 

fx and F1(y, x) = fy the result of [10], [11] and references there in.    

Corollary 2.3 Let (X, ≤) be partially ordered set and let there be a metric d on X such that (X, d) be 

a metric space. Let F: X × X × X → X and g: X → X are such that F has mixed g-monotone 

property and for p ∈ [0, 1) satisfy 

(2.23)          d(F(x, y, z), F(u, v, w)) ≤  
p

3
 (d(gx, gu) + d(gy, gv) + d(gz, gv)) 

for all x, y, z, u, v, w ∈ X, with gx ≤ gu, gy ≥ gv and gz ≤ gw. Let F(X × X × X) ⊆ g(X), g be 

continuous and monotone increasing and F and g be compatible mappings. Also suppose 

                             (a) F is continuous or  

                             (b) X has following properties 

                                       (i)  if a non-decreasing sequence {xn} → x, then xn ≤ x for all n ≥ 0,   

                                       (ii) if a non-increasing sequence {yn} → y, then yn ≥ y for all n ≥ 0,  

                                       (iii) if a non-decreasing sequence {zn} → z, then zn ≤ z for all n ≥ 0. 

If there exist x0, y0, z0 ∈ X, such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, z0) and g(z0) ≤ F(z0, y0, 

x0), there exist x, y, z ∈ X such that g(x) = F(x, y, z), g(y) = F(y, x, z) and g(z) = F(z, y, x), that is, F 

and g have coupled coincidence point in X. 

Proof: By setting φ (t) = pt, the proof follows easily from theorem 2.1. 

Remark 2.4 If we put g(x) = x for all x ∈ X in corollary (2.1) it generalizes theorem 7 and 8 of [18] 

(By setting i = j = k = p / 3).  

Example 2.1 Let X = [0, 1] be endowed with Euclidean metric d(x, y) =│x - y│, for all x, y ∈ X. 

Then, (X, ≤) is a partial ordered set with natural ordering of real numbers. Let F: X × X × X → X 

and g: X → X defined as g(x) = x for all x ∈ X and  

                  F(x, y, z) ={(
x+z−y

3
)

2

,      if x, y, z ∈ [0, 1], x ≥ z ≥ y 

0,      if x < 𝑦 0𝑟 𝑧 < 𝑦             
, respectively. 

Clearly, F(X × X) ⊆ g(X), also F obeys mixed g-monotone property. 

Let φ: [0, +∞) → [0, +∞) be defined as φ(t) = 
2

3
t for t ∈ [0, +∞). 

We define the sequences {xn} =  
1

n
 , {yn} = 

1

n2  and {zn} = 
1

2n
 . 

Obviously the pair {F, g} is compatible. 

Also, x0 = 0, y0 = 2c, z = c ( > 0) are two point in X such that 

                    g(x0) = g(0) = 0 = F(0, 2c, c) = F(x0, y0, z0),  

                    g(y0) = g(2c) = 2c ≥ c2 = F(2c, c, 0) = F(y0, z0, x0)  

and              g(z0) = g(c) = c ≥ 0 = F(z0, y0, x0) 
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We next verify inequality (2.1) of theorem 2.1. We take x, y, u, v ∈ X such that x ≥ u, z ≥ w, y ≤ v 

or (x, y, w) ≥ (u, v, w). We have the following cases 

Case-I If (x, y, z) = (u, v, w) or (x, y, z) = (0, 0, 0), (u, v, w) = (0, 1, 1) or (x, y, z) = (1, 1, 1), (u, v, 

w) = (0, 1, 1), One can easily see 

                    d(F(x, y, z), F(u, v, w)) ≤ φ(
d(gx,gu,)+ d(gy,gv)+ d(gz,gw)

3
). Hence inequality (2.1) holds. 

Case-II If (x, y, z) = (1, 1, 0), (u, v, w) = (0, 0, 0), then 

                     d(F(x, y, z), F(u, v, w)) = d(F(1, 1, 0), F(0, 0, 0)) = 
4

9
 = φ(

2

3
)  

                                                                           = φ(
d(g1,g0 )+ d(g1,g0)+ d(g0,g0)

3
) 

Hence inequality (2.1) holds. 

Case-III If(x, y, z) = (1, 1, 0), (u, v, w) = (0, 1, 1), then, we obtain 

                      d(F(x, y, z), F(u, v, w)) = d(F(1, 1, 0), F(0, 1,1))) = 
4

9
  

                                                          = 
4

9
 = φ(

2

3
) = φ(

d(g1,g0 )+ d(g1,g1)+ d(g0,g1)

3
) 

 

Therefore, all the condition of theorem 2.1 is satisfied. Hence (0, 0, 0) is the coupled coincidence 

point of F and g. 

Remark 2.21It is obvious that results of papers [18] are not applicable to this example which 

proves the generality of our result. 

Remark 2.3 As an application of theorem 2.1, the existence and uniqueness of common solution of 

periodic boundary value problem can be established as in [1, 3, 8, 11, 12] and references therein.  
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