ISSN: 2094-0343

On Micro Continuous Function via μĝπ -closed Set

¹R.Vijayalakshmi, ²V.Thiripurasundari

1 Research Scholar, Sri S.Ramasamy Naidu Memorial College(Autonomous),

Sattur, Affiliated to Madurai Kamaraj University, Madurai

2 Assistant Professor, Department of Mathematics, Sri S.Ramasamy Naidu

Memorial College(Autonomous), Sattur, Affiliated to Madurai Kamaraj

University, Madurai.

¹vijayalakshmir218@gmail.com ²thiripurasund@gmail.com

Article Info Abstract

Page Number: 1905-1909 **Publication Issue:** Vol. 72 No. 1 (2023)

Recently we introduced $\mu \hat{g} \pi$ -closed set in Micro topological spaces. The aim of this paper is to introduce a new class of Micro continuous function called $\mu \hat{g} \pi$ -continuous function in Micro topological spaces and also

discussedtheir properties.

irresolute function

Article History

Article Received: 15 November 2022

Keywords: $\mu \hat{g} \pi$ -closed set, $\mu \hat{g} \pi$ - open set, $\mu \hat{g} \pi$ -continuous, $\mu \hat{g} \pi$ -

Revised: 24 December 2022

Accepted: 18 January 2023 1 Introduction

The concept of rough set theory was studied by Pawlak [7] and he introduced the idea of lower approximation, upper approximation and boundary region of a subset of the universe. Carmel Richard and et al. [6] presented the concept of Nano topology in this year 2013. The Micro topology was introduced by Sakkraiveeranan Chandrasekar [8] and he also studied the concepts of Micro pre open and Micro semi-open sets. Ibrahim [4,5] introduced Micro -open sets and Micro -closed sets in Micro topological spaces. Recently Anandhi and Balamani [1] initiated the concept of Micro -generalized closed sets in Micro topological spaces and also they have studied the properties of Micro separation axioms related to Micro -generalized

closed sets in Micro topological spaces.

In this paper we introduce a new class of function called $\mu \hat{g} \pi$ –continuous function and study some of their properties.

2. Preliminaries

In this paper, $(\Omega, \mathcal{N}, \mathcal{M})$ denote the Micro topological spaces, where $= \tau_R(X)$, $\mathcal{M} = \mu_R(X)$ and MTS denote micro and micro topological space respectively. For a subset P of a space, $cl_{\mathfrak{u}}(P)$ and $int_{\mathfrak{u}}(P)$ denote the closure of P and the interior of P respectively.

Definition 2.1.[8] Let $(U, \tau_R(X))$ be a Nano topological space. Then $\mu_R(X) = \{N \cup P\}$ $(N' \cap \mu)$: N, N' $\in \tau_R(X)$ and $\mu \neq \tau_R(X)$ and $\mu_R(X)$ is called the Micro topology on U with respect to X. The triplet $(U, \tau_R(X), \mu_R(X))$ is Micro topological space and Micro open sets

2326-9865

termed as the elements of $\mu_R(X)$ and Micro closed set termed as complement of a Micro open set.

Definition 2.2. Let Micro topological space $(\Omega, \mathcal{N}, \mathcal{M})$. A subset of A is

- i. Micro-g-closed, if $cl_{II}(A) \subseteq L$, $A \subseteq L$ and L is Micro-open in U.[5]
- ii. Micro- αg -closed, if $\alpha cl_{II}(A) \subseteq L$, $A \subseteq L$ and L is Micro-open in U.[3]
- iii. Micro-g α -closed, if $\alpha cl_{\mu}(A) \subseteq L$, $A \subseteq L$ and L is Micro- α open in U.[3]
- iv. Micro-sg-closed, if $scl_u(A) \subseteq L$, $A \subseteq L$ and L is Micro-s-open in U.[2]
- v. icro-gs-closed, if $scl_{u}(A) \subseteq L$, $A \subseteq L$ and L is Micro-open in U.[2]
- vi. Micro-g*-closed, if $cl_{\mu}(A) \subseteq L$, $A \subseteq L$ and L is Micro-g-open in U.[9]

Definition 2.3.[10] Let $(X, \tau_R(A), \mu_R(A))$ and $(Y, \tau'_R(A), \mu'_R(A))$ be two Micro topological spaces. A function $f: X \to Y$ is called Micro-generalized continuous function if $f^{-1}(B)$ is Micro g-closed set in X for every Micro-closed set B in Y.

3 Micro μĝπ -continuous

Definition 3.1. Let (Ω, N, M) and (Ψ, N', M') be two MTS's. Then a mapping $f : \Omega \to \Psi$ is $\mu g \pi$ -continuous if the inverse image of every Micro closed set in Ψ is closed in Ω .

Example 3.2. Let $\Omega = \{p_1, p_2, p_3, p_4\}$ with $/R = \{\{p_1\}, \{p_3\}, \{p_2p_4\}\}$. Let $X = \{p_1, p_2\} \subseteq \Omega$, then $\tau_R(X) = \{U, \phi, \{p_1\}, \{p_1, p_2, p_4\}, \{p_2, p_4\}\}$. If $= \{p_3\}$, then the micro topology $\mu_R(X) = \{\Omega, \phi, \{p_1\}, \{p_3\}, \{p_1, p_3\}, \{p_2, p_4\}, \{p_2, p_3, p_4\}, \{p_1, p_2, p_4\}$. Let $\Psi = \{q_1, q_2, q_3, q_4\}$ with $\Psi/R = \{\{q_1\}, \{q_3\}, \{q_2q_4\}\}$. Let $X' = \{q_1, q_2\} \subseteq \Psi$, then $\tau'_R(X) = \{\Psi, \phi, \{q_1\}, \{q_1, q_2, q_4\}, \{q_2, q_4\}\}$. If $\mu' = \{q_3\}$, then $\mu'_R(X) = \{\Omega, \phi, \{q_1\}, \{q_3\}, \{q_1, q_3\}, \{q_2, q_4\}, \{q_2, q_3, q_4\}, \{q_1, q_2, q_4\}$. Let $f : \Omega \to \Psi$ be a function define as: $f(p_1) = q_1$, $f(p_2) = q_2$, $f(p_3) = q_3$, $f(p_4) = q_4$ is $\mu \hat{g} \pi$ -continuous.

Theorem 3.3. Every Micro- π -continuous is $\mu \hat{g} \pi$ -continuous but not conversely.

Proof. Let $f: \Omega \to \Psi$ is Micro- π -continuous. let V be Micro-closed in Ψ. Then $f^{-1}(V)$ is Micro- π -closed in Ω and therefore $f^{-1}(V)$ is $\mu \hat{g} \pi$ -closed in Ω. Hence f is $\mu \hat{g} \pi$ -continuous.

Example 3.4. In Example 3.2, Let $f: \Omega \to \Psi$ be a function define as: $f(p_1) = q_1$, $f(p_2) = q_2$, $f(p_3) = q_3$, $f(p_4) = q_4$ is $\mu \widehat{g} \pi$ –continuous not Micro π - continuous because $f^{-1}\{q_1,q_3,q_4\} = \{p_1,p_3,p_4\}$ not in Ω .

Theorem 3.5. Every $\mu \hat{g} \pi$ -continuous is Micro- g -continuous but not conversely.

Proof. Let $f: \Omega \to \Psi$ is $\mu \hat{g}\pi$ -continuous. let V be closed in Ψ . Then $f^{-1}(V)$ is $\mu \hat{g}\pi$ -closed in Ω and therefore $f^{-1}(V)$ is Micro- g-closed in Ω . Hence f is Micro- g-continuous.

Example 3.6. In Example 3.2, Let $f: \Omega \to \Psi$ be a function define as: $f(p_1) = q_1$, $f(p_2) = q_2$, $f(p_3) = q_3$, $f(p_4) = q_4$ is Micro-g-continuous not $\mu \hat{g} \pi$ –continuous because $f^{-1}\{q_1,q_2\} = \{p_1,p_2\}$ not in Ω .

Theorem 3.7. : A function $f: \Omega \to \Psi$ is $\mu \hat{g} \pi$ —continuous if and only if the inverse image of every Micro-closed set in Ψ is $\mu \hat{g} \pi$ -closed in Ω .

Proof. Suppose that the function $f: \Omega \to \Psi$ is $\mu \hat{g}\pi$ -continuous. Let Q be a Micro-closed set in Ψ . Then the complement $\Psi - Q$ is Micro open set in Ψ . Since f is $\mu \hat{g}\pi$ -continuous, $f^{-1}(\Psi - Q)$ is $\mu \hat{g}\pi$ -open set in Ω . But $f^{-1}(\Psi - Q) = \Psi - f^{-1}(Q)$ is $\mu \hat{g}\pi$ -open set in Ω . So $f^{-1}(Q)$ is $\mu \hat{g}\pi$ -closed in Ω .

Conversely, assume that the inverse image of every Micro closed set in Ψ is $\mu \hat{g} \pi$ -closed in Ω . Consider a Micro open set P in Ψ . Then $\Psi - P$ is Micro closed set in Ψ . By hypothesis $f^{-1}(\Psi - P)$ is $\mu \hat{g} \pi$ -closed in Ω . But $f^{-1}(\Psi - P) = \Psi - f^{-1}(P)$ is $\mu \hat{g} \pi$ -closed in Ω . Therefore $f^{-1}(P)$ is $\mu \hat{g} \pi$ -open in Ω . Hence f is $\mu \hat{g} \pi$ -continuous function.

Theorem 3.8. Let (Ω, N, M) , (Ψ, N', M') and (Y, N'', M'') be three MTS. If $f: \Omega \to \Psi$ is a $\mu \hat{g} \pi$ -continuous function and $g: \Psi \to Y$ be a Micro continuous function then $g \circ f: \Omega \to Y$ is $\mu \hat{g} \pi$ -continuous function.

Proof. Let Q be a Micro closed set in Y. Since by g is Micro continuous function, then $g^{-1}(Q)$ is Micro closed set in Ψ . Since f is $\mu \widehat{g} \pi$ -continuous function, then $f^{-1}(g^{-1}(Q))$ is $\mu \widehat{g} \pi$ -closed set in Ω but $(g \circ f)^{-1}(Q) = (f^{-1} \circ g^{-1}(Q)) = f^{-1}(g^{-1}(Q))$. Thus $(g \circ f)^{-1}(Q)$ is $\mu \widehat{g} \pi$ closed set in Ω . Hence $g \circ f$ is $\mu \widehat{g} \pi$ continuous function.

Theorem 3.9. Let $f: \Omega \to \Psi$ be a $\mu \hat{g}\pi$ -continuous function, then for every subset P of Ω , $f(\mu \hat{g}\pi \operatorname{cl}(P)) \subseteq \operatorname{cl}(f(P))$.

Proof. Let $f:\Omega\to\Psi$ be a $\mu \widehat{g}\pi$ -continuous function and P be any subset of Ω . Then $cl_{\mu}(f(P))$ is a Micro closed set in Ψ . Since f is $\mu \widehat{g}\pi$ -continuous, $f^{-1}(cl_{\mu}(f(P)))$ is $\mu \widehat{g}\pi$ -closed in Ω . Since $f(P)\subseteq cl_{\mu}(f(P))$, then $P\subseteq f^{-1}(cl_{\mu}(f(P)))$. Therefore, $f^{-1}(cl_{\mu}(f(P)))$ is Micro closed set containing P. By the definition of $\mu \widehat{g}\pi$ -closure, $\mu \widehat{g}\pi \, cl_{\mu}(P)\subseteq f^{-1}(cl_{\mu}(f(P)))$ which implies that $f(\mu \widehat{g}\pi cl_{\mu}(P))\subseteq cl_{\mu}(f(P))$.

Definition 3.10. Let (Ω, N, M) and (Ψ, N', M') be two Micro-topological spaces. A function $f: \Omega \to \Psi$ is called $\mu \widehat{g} \pi$ -continuous at a point $p \in \Omega$ if for every Micro open set K containing f(p) in Ψ , there exist a $\mu \widehat{g} \pi$ -open set L containing p in Ψ , such that $f(K) \subseteq L$.

Theorem 3.11. $f: \Omega \to \Psi$ is $\mu \hat{g} \pi$ -continuous iff f is $\mu \hat{g} \pi$ continuous at each point of Ω .

Proof. Let $f: \Omega \to \Psi$ be $\mu \widehat{g} \pi$ continuous, $a \in \Omega$ and H be a Micro open set in Ω containing f(a). Since f is Micro-continuous, $f^{-1}(H)$ is Micro open in Ω containing a. Let $= f^{-1}(H)$, then $f(G) \subseteq H$ and $f(a) \subseteq G$. Hence f is continuous at a.

conversely, suppose that f is micro- continuous at each point of H . let H be a Micro-open in Ω , if $f^{-1}(H) = \phi$ then it is Micro-open. So let $f^{-1}(H) \neq \phi$. Take any $a \in f^{-1}(H)$, then $f(a) \subseteq H$. Since f is Micro-continuous at each point, then there exist a Micro-open set G_a containing a such that $f(G_a) \subseteq H$, let $G = (G_a : a \in f^{-1}(H))$. Claim : $G = f^{-1}(H)$ if $x \in f^{-1}(H)$ then $x \in G_x \subseteq G$. hence $G = f^{-1}(H)$. Since G_x is Micro-open, by definition

ISSN: 2094-0343

2326-9865

3.10., G is micro open and hence $G = f^{-1}(H)$ is micro-open for every Micro-open set H in Ω . Hence f is Micro-continuous.

4 Micro- μĝπ irresolute function

Definition 4.1. Let (Ω, N, M) and (Ψ, N', M') be two MTS's. Then mapping $f : \Omega \to \Psi$ is $\mu \hat{g}\pi$ - irresolute if the inverse image of every $\mu \hat{g}\pi$ -closed set in Ψ is $\mu \hat{g}\pi$ -closed in Ω .

Example 4.2. Let $\Omega=\{p_1,p_2,p_3,p_4\}$ with $/R=\{\{p_1\},\{p_2\},\{p_3p_4\}\}$. Let $X=\{p_1,p_3\}\subseteq\Omega$, then $\tau_R(X)=\{U,\phi,\{p_1\},\{p_1,p_3,p_4\},\{p_3,p_4\}\}$. If $=\{p_2\}$, then the micro topology $\mu_R(X)=\{\Omega,\phi,\{p_1\},\{p_2\},\{p_1,p_2\},\{p_3,p_4\},\{p_2,p_3,p_4\},\{p_1,p_3,p_4\}$. Let $\Psi=\{q_1,q_2,q_3,q_4\}$ with $\Psi/R=\{\{q_1\},\{q_3\},\{q_2q_4\}\}$. Let $X'=\{q_1,q_3\}\subseteq\Psi$, then $\tau'_R(X)=\{\Psi,\phi,\{q_1\},\{q_1,q_3,q_4\},\{q_3,q_4\}\}$. If $\mu'=\{q_2\}$, then $\mu'_R(X)=\{\Omega,\phi,\{q_1\},\{q_2\},\{q_1,q_2\},\{q_3,q_4\},\{q_2,q_3,q_4\},\{q_1,q_3,q_4\}$. Let $f:\Omega\to\Psi$ be a function define as: $f(p_1)=q_1$, $f(p_2)=q_2$, $f(p_3)=q_3$, $f(p_4)=q_4$ is $\mu \hat{g}\pi$ -irresolute function.

Theorem 4.3. Let $f: \Omega \to \Psi$ and $g: \Psi \to \Theta$ be two $\mu \hat{g} \pi$ –irresolute functions. Then their composition $g \circ f: \Omega \to \Theta$ is a $\mu \hat{g} \pi$ -irresolute function.

Proof. Follows from the definitions.

Theorem 4.4. Let $f: \Omega \to \Psi$ be a $\mu \hat{g}\pi$ -irresolute function and $g: \Psi \to \Theta$ be a $\mu \hat{g}\pi$ -continuous function. Then their composition $g \circ f: \Omega \to \Theta$ is a $\mu \hat{g}\pi$ -continuous function.

Proof. Let V be any closed set in Θ . Since g is $\mu \widehat{g} \pi$ -continuous, $g^{-1}(V)$ is $\mu \widehat{g} \pi$ -closed in Ψ . Since f is $\mu \widehat{g} \pi$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\mu \widehat{g} \pi$ -closed in Ω . Hence $g \circ f \colon \Omega \to \Theta$ is a $\mu \widehat{g} \pi$ -continuous function.

Theorem 4.5. If $f: \Omega \to \Psi$ is bijective, Micro open and $\mu \hat{g}\pi$ -continuous, then f is $\mu \hat{g}\pi$ -irresolute.

Proof. Let P be a $\mu \widehat{g}\pi$ -closed set in Ψ . Let $f^{-1}(P) \subseteq G$, where G is Micro open in Ω . Therefore, $P \subseteq f(G)$ holds. Since f(G) is Micro open and P is $\mu \widehat{g}\pi$ -closed in Ψ , then $\overline{P} \subseteq f(G)$. Hence $f^{-1}(\overline{P}) \subseteq G$. Since f is $\mu \widehat{g}\pi$ -continuous and \overline{P} is Micro closed in Ψ , $\overline{f^{-1}(\overline{P})} \subseteq G$. That is., $\mu \widehat{g}\pi$ -closed in Ω . Hence f is $\mu \widehat{g}\pi$ -irresolute.

References

- 1. Anandhi, R. and Balamani, N. Micro α -Generalized Closed Sets in Micro Topological Spaces, AIP Conference Proceedings, 2022. 2385, 130007; https://doi.org/10.1063/5.0071060.
- 2. Bhavani, R. On Strong Forms of Generalized Closed Sets in Micro topological spaces, Turkish Journal of Computer and Mathematical Equation, 2021. 12 (11): p. 2772-2777.
- 3. Chandrasekar, S. and Swathi, G. Micro α -open sets in Micro topological spaces, International Journal of Research in Advent Technology, 2018. 6: p. 2633-2637.
- 4. Ibrahim, H.Z. Micro β -open sets in Micro Topology, General letters in Mathematics, 2020. 8(1): p. 8-15.

- 5. Ibrahim, H.Z. On Micro T1/2 -space, International Journal of Applied Mathematics, 2020. 33: p. 369-384.
- 6. M. L. Thivagar and C. Richard, On Nano forms of weakly open sets, International Journal Mathematics and Statistics Invention, 1/1 (2013) 31-37.
- 7. Pawlak . Z, Rough Sets, International Journal Information and Computer Sciences, 11(1982), 341-356
- 8. Dhabliya, D. (2021c). Designing a Routing Protocol towards Enhancing System Network Lifetime. In Intelligent and Reliable Engineering Systems (pp. 160–163). CRC Press.
- 9. Dhabliya, D. (2021b). Blockchain Technology and Its Growing Role in the Internet of Things. In Intelligent and Reliable Engineering Systems (pp. 156–159). CRC Press.
- 10. Anupong, W., Yi-Chia, L., Jagdish, M., Kumar, R., Selvam, P. D., Saravanakumar, R., & Dhabliya, D. (n.d.). Sustainable Energy Technologies and Assessments.
- 11. Sakkraiveeranan Chandrasekar, On Micro topological spaces, Journal of New Theory, 2019, 26: p. 23-31.
- 12. Sandhiya and Balamani,Micro g*-closed set in Micro topological spaces, Journal of Research in Applied Mathematics ,Volume 8 Issue 4 (2022) pp: 16-20 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735
- 13. Taha H. Jasim, Saja S. Mohsen, Kanayo S. Eke On Micro-generalized closed sets and Micro-generalized continuity in Micro Topological spaces, European Journal of Pure and Applied Mathematics, Vol. 14, No. 4, 2021, 1507-1516 ISSN 1307-5543.