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Abstract: 

The study of “intelligent machines” is Artificial Intelligence (AI), and it 

has applications in various sectors. Similar to how other general-purpose 

technologies and novel AI applications in workplace of the future raise 

significant issues for safety and health, it is predicted that AI will have a 

globally transformative impact on economic and social structures as more 

applications are integrated into daily life. With a particular emphasis on 

applications in health, medicine, pharmacology, toxicology, hematology, 

drug discovery, multi-omics, bioinformatics, nanotechnology and, 

biotechnology, this review aims to familiarize readers with the broad areas 

of AI. It also outlines the most recent developments in the field of AI 

research for medical applications. As new opportunities and concerns 

materialize, it is as crucial to recognize and comprehend these threats as it 

is to realize the AI approach itself. Therefore, mitigating the negative 

consequences of AI on human safety, health, and well-being will need a 

comprehension of both its potential and its challenges for the future work. 

Key words: Artificial Intelligence, Computational Methods, Health care, 

Machine Learning. 

I.INTRODUCTION

The study of algorithms that enable machines to think and carry out tasks like problem-

solving, object and word recognition, inference of world states and decision-making is 

Artificial Intelligence (AI). Though AI is frequently associated with computers or robots, its 

roots may be found in a variety of disciplines including statistics, psychology, linguistics and 

philosophy (Hashimoto et al., 2020). Almost every sector of society is being shaped by AI. It 

acts as the primary force behind developing technologies like Big Data, robots, and IoT, and 

will continue to do so for the future. AI represents, examines and interprets material that is 

often thought to be beyond complicated for human intellect alone, using sophisticated 

mathematical techniques, statistical models and machine learning algorithms. AI techniques 

like machine learning and natural language processing allow computers to learn for 

themselves how to find and identify correlations in complicated health care data is now a 

significant interest in the field of healthcare (Matava et al., 2020). 
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At present AI is in many aspects of our everyday life, including personal assistants, 

automated public transit, aircraft and video games. AI has more recently started to be used in 

medicine to enhance patient care by accelerating procedures and obtaining higher accuracy, 

paving the way for improved healthcare overall. Machine learning involves evaluating 

pathology slides, radiological images and patient EMRs (electronic medical records), 

assisting in patient diagnosis and treatment, and enhancing clinicians’ abilities (Mintz and 

Bodie, 2019). Many sectors are quickly adopting AI as a technology, largely to increase 

performance, precision and time efficiency as well as to save costs. Although AI has received 

a lot of media attention, many healthcare professionals still view technology as a “black box”, 

which can lead to unrealistic expectations and unjustified anxieties. In this review, we 

summarize the technological foundations of AI conceptually and succinctly. Also prospective 

applications of AI are addressed, including their potential roles in the fields of medicine, 

health, pharmacology, toxicology, hematology, drug discovery, multi-omics, bioinformatics, 

nanotechnology and biotechnology. 

AI in Drug Discovery 

For drug manufacturers and chemical experts, developing new drugs is an essential field of 

study. Low effectiveness, inaccurate delivery, time requirements and high expenses create a 

barrier, difficulties that affect drug design and development. Additionally, the drug 

development process is hampered by complicated big data from genomes, proteomics, micro 

array data and clinical trials. The development of new drugs is greatly aided by AI and 

machine learning technologies. In other words, the field has become more advanced due to 

ANN (Artificial Neural Networks and deep learning algorithms. Peptide combination, 

structure and ligand-based virtual screening, toxicity estimation, drug inspection and release 

pharmacophore modeling, (QSAR), drug relocation, poly pharmacology, and physiochemical 

works are just a few of the drug discovery processes that have incorporated machine learning 

and deep learning algorithms (Gupta et al., 2021). 

Because it saves time and money, AI has emerged as a successful and demanding technology 

today. In general, time-consuming and exhaustive tasks that can be reduced and made faster 

with the assistance of AI include classification, sorting of cell, calculating the characteristics 

of small molecules, producing organic compounds using computer programs, design and 

develop new compounds, assays, and estimate the 3D structure of target molecules. The 

initial step in the drug screening process involves classifying and sorting cells using AI-

powered image analysis (Zhavoronkov et al., 2020). It takes a lot of effort and time to design 

and monitor drug-likeness. Recently, a number of online tools have been created to study 

medication release and verify the responsibility of particular bioactive substances as a carrier. 

The computational analysis is later validated using bench mark datasets. The most 

appropriate pharmocophore for such evaluations is one based on chemical characteristics. 

These models generate huge 3D datasets from internal chemical collections or in silico 

studies (Rollinger et al., 2008). 

Finding bioactive ligand is a vital step in choosing a potent medication for a particular target. 

Currently, scientists are using AI to find bioactive molecules that may be exploited for 

http://philstat.org.ph/


Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

1986 

particular targets related to a disease. As an example Wu et al., developed WDL-RF by 

combining DL and RF techniques to assess the bioactivity of G protein-coupled receptors 

(GPCRs) ligand-targeting mechanisms [53]. Similarly, Cichonska et al., (2018) invented 

pairwiseMKL, a multiple kernel learning-based technique [12], for figuring out the 

bioactivity of substances. Additionally, adverse drug responses (ADRs) are unanticipated, 

deadly side effects brought on by the delivery of drugs. Adverse Drug Responses are a 

significant barrier in drug development, and in order to make the process more robust and 

effective, it has become crucial to recognize potential adverse drug responses in the early 

stages of drug development. Recently, researchers have utilized AI to predict potential ADRs 

linked to certain medications before they are made available to the general population. For 

example, Dey et al., (2015) employed a DL based model, which can forecast ADRs 

connected to medicine and even identify chemical substructures accountable for those 

adverse drug responses. 

 AI in medicine 

AI, the driving force behind the fourth scientific and technological revolution, offers the 

chance to attain precision public health and tailored therapy (Xiang et al., 2020). Precision 

medicine and the growth of artificial intelligence in medicine are frequently linked. The fact 

that routine tasks take up a significant portion of a physician’s daily work is frequently 

disregarded, but doing so would free up the human workforce’s time to concentrate on 

higher-value tasks that typically call for human qualities like creativity, cognitive insight, 

meaning, or empathy (Hainc et al., 2017). Planning examinations, identifying pathologies, 

quantifying them, and manually searching for additional information in medical records and 

textbooks are just a few of the many tasks involved in the day-to-day work of medical 

imaging. While these tasks frequently bore and challenge experienced doctors too little 

intellectually, overwhelm newcomers due to their consistently increasing workloads. Without 

undermining the potential of “super-diagnostics” and precision medicine, the aims of AI in 

medicine that appears to be more achievable should not be overlooked since they might free 

up highly skilled individuals with advanced education from repetitive everyday activities 

(Nensa et al., 2019). 

In instances like rehabilitation, robots can be helpful in assessing how human performance 

has changed (Simonov and Delconte, 2015). Monitoring the directed distribution of 

medication to specific organs, tissues, tumors’ is another area where AI may be applied to 

good effect. For instance, it is heartening to read about the recent advancements of nano 

robots intended to solve delivery issues that occur when therapeutic drug diffusion into a 

place of interest is problematic. When a therapist tries to treat the tumor’s core, which is often 

less vascularized and anoxic, but most proliferatively active, a difficulty arises. Researchers 

have tried to use a natural agent with the appropriate qualities in the place of only 

“intelligent” nanoparticles to overcome the limits of mechanical or radioactive robotics. They 

are researching a particular form of marine bacteria called Magnetococcus marinus for this 

purpose since it naturally moves to low-oxygen environments. An external magnetic source 

provides initial guidance, which is followed by the nanorobots’ innate abilities. Covalent 
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bonds between these nanorobots and nanoliposomes with therapeutic characteristics are 

possible. According to preliminary data, the gradient of the required medicine into the 

hypoxic zones has significantly increased (Felfoul et al., 2016). 

AI in Pharmaceuticals  

For the past ten years, the breakthrough technology that is most predicted to have a 

transformational impact on pharmaceutical research and development is AI and machine 

learning. According to DiMasi et al., (2016), the following estimations show that creating a 

new medicine is a difficult, expensive procedure with a poor success rate: the average cost of 

research and development (R&D) for each drug is $ 1.3 billion, the median development 

period for each drug is between 5.9 and 7.2 years for non-oncology drugs and 13.1 years for 

oncology drugs, and 13.8% of all drug development projects result in approval (Wong et al., 

2019). Due to automated nature, predictive skills, and predicted increase in efficiency, AI 

approaches are appealing to the drug-development business in response to these challenges. 

AI encompasses a new and quickly expanding collection of technologies that might alter how 

pharmaceutical research & development (R&D) is conducted in future and provide prospects 

that boost R&D productivity (Schuhmacher et al., 2019). The pharmaceutical sector is at an 

“early mature” stage of using AI in R&D by contrasting top pharmaceutical companies with 

regard to their internal and external R&D activities [43] (Schuhmacher et al., 2020). While 

some top manufacturers, including Gilead Sciences and Takeda, have been “Selective AI 

Explorers” rather than “Digital Pharma Players”, others like Astra-Zeneca and Novartis, have 

used AI more extensively (Schuhmacher et al., 2021). 

Machine learning is now the most prevalent AI technology utilized in pharmaceutical R&D 

with regard to the types of AI techniques being employed. This outcome runs counter to the 

writers’ expertise and experience. Deep learning technologies are anticipated to be the 

dominant AI technology, as shown for diagnostics (Ardila et al., 2019) or in small-molecule-

based drug discovery (Zhavoronkov et al., 2019). Deep learning has also been shown to be 

superior in the grouping of bio-medical images and in the prediction of biomedical activity 

and toxicity (Lavecchia, 2019). De Novo drug design, ligand-protein interaction prediction, 

chemoinformatic analysis, QSAR connections, and selection of cohorts in clinical trials are 

further areas where deep learning has been used (Chen et al., 2018). 

AI in Toxicology  

The Frank R. Lautenberg Chemical safety for the 21st Century Act, passed in 2016, is the first 

piece of US legislation to promote chemical safety assessments by adopting cutting-edge 

testing methods that minimize the use of vertebrate animals in testing. The development of 

computational toxicology and AI strategies for applying cutting-edge testing techniques is 

crucial to this objective. Currently available chemical, in vitro, and in vivo data for toxicity 

modeling uses have been described using the words volume, velocity, and variety. The 

diversity of publicly accessible data pools, like PubChem, also poses considerable 

computational issues, as indicated by a number of academics (Ciallella and Zhu, 2019). To 

find substances that potentially cause chemical toxicity, conventional empirical testing 
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approaches, both in vivo and in vitro, are typically expensive and time-consuming 

(Luechtefeld et al., 2018). A viable alternative for assessing chemical toxicity is 

computational modeling. QSAR models for different toxicity end points are examples of 

existing computational methods for risk assessment that may be used to prioritize potentially 

dangerous compounds for experimental testing and swiftly forecast huge numbers of novel 

compounds (Ciallella and Zhu, 2019). 

The growth of data-directed technology and the creation of computational tools to address the 

problems of four V’s (volume, variety, velocity and veracity) give the new potential for 

present model enhancement and innovative model advancement, not with-standing the 

difficulties brought on by big data in analytical toxicology modeling. Examples of early data 

mining technologies that connect different public data origins to target compounds are 

Chem2BioRDF [9] (Chen et al., 2020) and HTS Navigator [18] (Fourches et al., 2014). 

Additionally, certain data distributing gateways have useful data mining instruments 

available, such as rpubchem90 and ToxCast pipeline (tcpl) [17] (Filer et al., 2016) which are 

designed to make parsing and gathering information from the ToxCast database and 

PubChem repositories respectively, simpler and more efficient. There are new ways to 

automatically extract data from REACH and PubChem databases and recently created online 

tools REACHacross [29] (Luechtefeld et al., 2018) and the Chemical In Vitro, In Vivo 

Profiling site (CIIPro) [40] (Russo et al., 2016). Additionally there are online resources that 

may be used to speed up the creation and dissemination of structured toxicity data and QSAR 

models such as Chembench [6] (Capuzzi et al., 2017) and the Chemistry at Harvard 

Macromolecular Mechanics web-user interface (CHARM-Ming) [51] (Weidlich et al., 2015). 

Computational models are becoming suitable for huge chemical space examination, various 

biological data expansion, and complicate operation research as big data warehouses continue 

to increase quickly and latest approaches that cope with enormous data sets are being created. 

This ground-breaking movement will enable not only the prediction of novel chemicals but 

also the visualization of the toxicity mechanisms of probable toxins. Regulatory agencies 

urgently need to integrate analytical models into process oriented chemical risk estimations, 

this expanding big toxicity data prospects and improvements in modeling approach expansion 

leads to taking care the wealth of toxicity data available together establish a new way that is 

optimum for doing so (Ciallella and Zhu, 2019). 

AI in Multi-Omics 

Modern high-throughput omic measuring technologies have made it necessary for biomedical 

investigations to adopt an integrated (combined) strategy in order to make the most of this 

data and learn more about biological systems. Using machine learning-based prediction 

algorithms it is possible to decipher the complicated operation of systems biology by 

combining information from diverse omics sources such as metabolomics, proteomics, and 

genetics. In order to combine and analyze the diverse omics data and find new biomarkers, 

machine learning algorithms provide fresh approaches. These biomarkers may aid in the 

delivery of precision medicine, precise illness prognosis, and patient stratification (Reel et al., 

2021). 
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The core tenet of molecular biology governs how genetic information in living things is 

conveyed in the cells from DNA to mRNA to protein. This information flow, which has made 

it easier to comprehend how biological information is processed, is frequently compared to a 

computer system. Transcriptomics investigates the genes that are actively expressed and 

evaluate the transcribed genetic material to offer insight into what’s occurring at the 

biological level (Milward et al., 2016). In the form of protein pathways and their networks, 

proteomics aids in defining the data flow occurring inside the cell and the structure (Wu et 

al., 2014). Although they are not included in the core dogma analysis (Cobb, 2017), 

metabolomics, lipidomics, and glycomics nonetheless offer a wealth of knowledge about 

metabolites, lipids, and glycans [5] (Barh et al., 2011). These compounds have thought to be 

effective markers of a cell’s activity since they are the intermediary outcomes of a cell’s 

information flow. According to Reel et al., metagenomics is used for the arrangement of 

genetic data from ambient materials not having the need to isolate specific species, similar to 

single-genome investigations. 

The field of precision and computational medicine, on the other hand, has seen a rise in 

publications by depending on “multi-omics integration” and “multi-omics & machine 

learning” during the past five years. Although deep learning is quite popular in fields that are 

linked to multi-omics research, such as clinical natural language processing and medical 

imaging, interest in this field has lagged (Wu et al., 2020; Tan et al., 2020). Model-based 

supervised learning has also used deep learning techniques [36] (Poirion et al., 2020). The 

MOLI (Multi-Omics Late Integration) technique [45] (Sharifi-Noghabi et al., 2019) 

employed definite encoding sub-networks to get attributes from physical mutation, CNA, and 

gene expression information separately and afterwards integrated them to predict the outcome 

to a particular medication. A DL-based auto-encoding method has been put out by Lee et al., 

(2020) for combining four omics to produce a survival prediction model. In addition, the 

HIDFNForest framework (Xu et al., 2019) was created that employs a stacked autoencoder to 

train leading descriptions from 3 omic datasets. These depictions are later combined to 

forecast the organization of cancer subtypes. Similarly, to this, Chaudhary et al., employed 

SVM and autoencoders to predict the survival in subgroups with hepatocellular carcinoma. 

AI in Haematology 

Massive amount of data has been produced as a result of digitizing the medical records and 

the implementation of genetic approaches in clinical practice. The goal of machine learning is 

to computationally extract useful information from complicated data structures. Machine 

learning is increasingly being used in haematological settings (Shouval et al., 2021). Among 

the many activities that machine learning may help with, include limiting a differential 

diagnosis, assisting in therapy selection, providing risk forecasts, lowering the incidence of 

medical mistakes, and increasing efficiency (RajKomar et al., 2019). Diagnostics, image 

analysis, and predictive modeling are the key areas. Shouval et al., (2017) created a model for 

the prediction of 100-day mortality following allogenic HSCT and internal and externally 

verified it in a registry study from the European Society of Blood and Marrow transplantation 

that included patients with acute leukemia. To improve upon the prior benchmark for 
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outcome prediction, an interpretable boosted decision tree model was employed for model 

building. To forecast acute graft-versus-host disease, Arai et al., (2019) employed a similar 

strategy. Agius et al., (2020) used an elegant ensemble technique to predict the need for 

therapy and infections in chronic lymphocytic leukemia by combining many separate 

machine learning algorithms. On the basis of imaging data and gene expression, other 

organizations have concentrated on developing techniques for predicting therapy response 

(Milgrom et al., 2019; Herold et al., 2018). Overall, there is little question that in the near 

future, the use of recommendation systems in diagnostic and therapeutic decision-making as 

well as mistake avoidance will increase. 

AI in Bioinformatics 

In order to tackle biological issues, frequently at the molecular level, bioinformatics uses 

methods from computer science, artificial intelligence, informatics, applied mathematics, 

statistics, chemistry and biochemistry. Alignment of sequence, gene discovery, genome 

assembly, protein structure alignment and prediction, gene expression prediction, protein-

protein interaction prediction, and evolution modeling are some of the major research 

initiatives in this area. Consequently, another way to define bioinformatics is the use of 

computer techniques to create biological discoveries (Hassanien et al., 2013). In the relatively 

recent subject of bioinformatics, characteristics of bio-molecules, in particular, DNA, RNA, 

and proteins on a genomic and proteomic scale are computationally analyzed and predicted. 

In the discipline of bioinformatics, machine learning models are becoming more and more 

crucial for the creation of innovation techniques, summarization, and high-throughput 

analysis. A number of works that provide an overview of particular sub-areas of protein 

bioinformatics have been published. These works summarize developments in the fields 

related to protein structure and function prediction, structural bioinformatics, and peptide 

analysis (Andrews, 2020). 

AI in Nanotechnology  

Nano, biological and information sciences are becoming more important to the advancement 

of modern science and technology. The thought that the fusion of nanotechnology, AI, and 

biology will ignite another practical and scientific revolution is lingering for more than a 

decade. Nevertheless, work is still being done to complete the anticipated integration of 

diverse research. While AI has largely drawn inspiration from biological principles to 

construct the most successful paradigms, are neural networks or evolutionary algorithms, 

nanotechnology integrates the understanding of physics, chemistry and engineering. A new 

era of communication and information technologies which have a significant influence on our 

society can be produced by bridging the gap between present nanosciences and AI. These 

technologies may also provide the means for the eventual fusion of technology and biology 

(Sacha and Varona, 2013). 

In reality, by filling the space between nanotechnology and AI might enable the fusion of 

technology and biology that results in more efficient brain-machine communication. 

Simulating the system under investigation is one of the major issues that researchers have 
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identified while working at nanoscale. Real optical pictures cannot be produced at the 

nanoscale, which is how macroscopic and nanoscopic images vary from one another. These 

sizes of images need interpretation, and numerical models are occasionally the best option. 

There are several tools and programs available right now that can faithfully mimic various 

systems with atomic effects (Zhang et al., 2021).  

Naturally, AI is advantageous for nano computing, in which computing is done via 

microscopic mechanics, in the future. Nano-computing devices may perform a function in a 

variety of ways, ranging from computational techniques to physical actions. Machine 

learning techniques may be used to create unique information representations for a variety of 

functions because many of these devices depend on complex physical systems to enable 

complex computational methods. Since both the development and success of AI and 

nanotechnology are on an upward slope, it appears that these two curves have grown closer to 

one another until we can distinguish a gap between them. This suggests that they are the ideal 

spouse and companions for each of these businesses since their strengths complement one 

another. The integration of AI with nanoscience/nanotechnology in today’s technology seems 

to be a virtual certainty (Farahnaz and Bahman, 2020). 

AI in Biotechnology  

Over the past 50 years, rapid advancements in information technology and biotechnology 

have happened side by side at a rate unmatched in any other industry. The expanding 

advancements in information applied sciences, which are uncommon outside the computer 

industry, are both a cause and   effect of Moore’s law. The field of biotechnology is excluded, 

where advances in sequencing and other high-throughput instruments have exceeded Moore’s 

law in terms of exponential growth (Oliveira, 2019). High-dimensional data like photographs 

or videos may be processed at a pace that is much faster than which is achievable by utilizing 

humans to analyse the data as machine learning technology, most notably with the advent of 

deep learning algorithms [50] (Webb, 2018). To accomplish supervised machine learning, a 

wide range of methods can be utilized, including SVM, deep neural networks, and regression 

and decision trees. Since these methods got insrtucted to categorize examples into one of a 

limited number of classes, they are sometimes referred to as “classifiers” (LeCun et al., 

2015). 

Drug development, drug recycling, and drug safety studies can all benefit from the 

knowledge that can be obtained through mining EHRs (Electronic Health Records). EHRs 

will rank among the most important tools that hospitals and other healthcare organizations 

can maintain and research with the support of the biotechnology field and academic 

community gave the present emphasis on fact-based medicine. EHRs may exploit both 

structured and unstructured data, with the second one needing the use of natural language 

processing tools that are only recently become mature. The capacity of businesses to combine 

patient genetic data with HER data, which will become increasingly prevalent, will be crucial 

to the development of pharmacogenomics in the future. Machine learning may be used in 

genome analysis, including GWAS (Genome-Wide Association Study), to not only estimate 

genotype-phenotype but also to pinpoint the connections between genetic traits and the 
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reaction to certain therapies. A growing number of people are increasingly interested in 

learning more about their own genomes and the potential effect that certain traits may have 

on their lifestyle due to the sharp decline in the cost of genotyping and sequencing. Numerous 

organizations, like 23andme and Veritas Genetics, aim to gather, aim to gather genetic 

information from millions of people, use it to further understanding, and encourage the 

creation of novel products (Oliveira, 2019). 

II.LIMITATIONS 

There are few limitations in our review; for instance, we only included peer-reviewed English 

language journal papers. It is conceivable that some pertinent papers were published in 

conferences, seminars, and news reports or were written in other languages. This may help to 

explain why some countries are over-represented in the evaluated publications, as was 

already mentioned. Furthermore, we excluded publications that were released prior to 2010, 

as AI has just recently begun to make headway in the clinical field. Another issue is the 

possibility that some AI applications have been used in therapeutic settings without any 

publicly available papers. For instance, more than 20 healthcare facilities, including the 

University of Iowa Health Care, have installed IDx-DR, the first FDA-approved AI system 

(Carfagno, 2019). 

III.CONCLUSION 

In conclusion, AI covers a wide range of recent technological developments that continue to 

have an influence on our day-to-day lives. Big data analysis is now feasible because of the 

development of AI, which helps decision-making by supplying accurate information. 

According to the literature described here, there is a lot of interest in creating AI tools to help 

clinical processes as more high-quality data is produced. As a result, in the future, it is 

anticipated that the AI-based comprehensive system would assist cutting-edge research and 

development while establishing high-quality human life. We came to the conclusion that AI 

has made significant strides in recent years and will soon play a crucial role in everyday life 

and healthcare in general. However, in order to transition from theory to clinical practice, a 

comprehensive, meticulous, and rigorous evaluation is required in the healthcare industry. 
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