More on IF- (α, β) -n-Binormal Operator on IFH-Space

Marwah Abdulridha sharef ¹, Dr. Hadeel.Shubber²

^{1, 2}Department of Mathematics, College of Education for Pure Science, University of Thi-Qar, Iraq.

mrwhalmry661@gmail.com hadeelali2007@utq.edu.iq

Article Info

Page Number: 1006 – 1010

Publication Issue: Vol. 71 No. 3 (2022)

Article History

Article Received: 12 January 2022

Revised: 25 February 2022 Accepted: 20 April 2022 Publication: 09 June 2022 Abstract

In this paper we introduce IF- (α, β) -n-Binormal operator on Hilbert space \mathcal{H} . We give some basic properties of these operator .An operator δ is an intuitionistic fuzzy- (α, β) -n-binormal operator if $\alpha^2 \delta^n \delta^* \delta^* \delta^n \leq \delta^* \delta^n \delta^n \delta^* \leq \beta^2 \delta^n \delta^* \delta^* \delta^n$ i.e. δ commutes with its intuitionistic fuzzy adjoint with $0 \leq \alpha \leq 1 \leq \beta$

Keywords: Self adjoint, intuitionistic fuzzy(α , β)- n-binormal operator, intuitionistic fuzzy n-binormal operator, partial

isometry

1. Introduction

Let IFB(H) be the set of all IF-Bounded Linear operators on IFH-space .On Intuitionistic Fuzzy Norm have been defined by saadati [6] . Then Goudarzi et al . [4] in 2009 ,introduced Intuitionistic Fuzzy Inner product space(IFIP-Space).

Majumdhar and Samanta [7] defined IFIP-Space in 2011 .In 2018

$$\sum_{k=0}^{n} (-1)^{-k} {n \choose k} T^{*n-k} T^{n-k} = 0 \text{ or } T^{*n} T^n - {n \choose 1} T^{*n-1} T^{n-1} + {n \choose 2} T^{*n-2} T^{n-2} \dots (-1)^{-n-1} {n \choose n-1} T^* T + (-1)^{-n} I = 0 \text{ and } n\text{-binormal if } T^* T^n T^n T^* = T^n T^* T^* T^n.$$

Marwah Abdulridha sharef, Dr Hadeel Shubber

"A note on-Intuitionistic fuzzy n-Binormal operator on IFH-space has been accepted for publication in the Journal of Interdiscip linary mathematics in 2022

Now we introduced intuitionistic fuzzy(α , β)-n-binormal operator on \mathcal{H} , if for real number α , β with $0 \le \alpha \le 1 \le \beta$ then $\alpha^2 T^n T^* T^* T^n \le T^* T^n T^n T^* \le B^2 T^n T^* T^* T^n$

Have we establish some theorems and an example for intuitionistic fuzzy(α, β)- n-binormal operator like addition and multiplication of intuitionistic fuzzy(α, β)- n-normal operator.

2. PRELIMINARIES

Definition 2.1: [4]A continuous t – norm T is called continuous t- representable iff \exists a continuous t- norm * and a continuous t- conform \Diamond on the interval [0,1] such that for all $x = (x_1, x_2)$, $y = (y_1, y_2) \in L^*$, $\mathcal{T}(x, y) = (x_1 * y_1 , x_2 \lozenge y_2)$.

Definition 2.2: [4] Let $\mu: V^2 \times (0,+\infty) \to [0,1]$ and $\vartheta: V^2 \times (0,\infty) \to [0,1]$ be Fuzzy sets , such that $\mu(x,y,t) + \vartheta(x,y,t) \le 1, \forall \, x,y \in V \,\&\, t > 0$. An Intuitionistic Fuzzy Inner Product Space

(IFIP-Space) is a triplet $\left(v,\mathcal{F}_{\mu,v}\,,\mathcal{T}\right)$, where V is real Vector Space \mathcal{T} is a continuous t – representable and $\mathcal{F}_{\mu,v}$ is an Intuitionistic Fuzzy set on $V^2\times\mathbb{R}$ satisfying the following conditions for all x, y, $z\in V$ and s, r, $t\in\mathbb{R}$: (IFI-1) $\mathcal{F}_{\mu,v}(x\,,y,0\,)=0$ and $\mathcal{F}_{\mu,v}(x\,,y,t\,)>0$, for every t>0.

$$(\text{IFI-2}) \, \mathcal{F}_{\mu,v}(\,x,y\,,t\,) = \, \mathcal{F}_{\mu,v}(\,y\,,x\,,t) \, . \\ (\text{IFI-3}) \, \mathcal{F}_{\mu,v}(\,x\,,x\,,t\,) \neq \text{H (t)}$$
 for some $t \in \mathbb{R}$ iff $x \neq 0$

Where
$$H(t) = \begin{cases} 1, & \text{if } t > 0 \\ 0, & \text{if } t \leq 0 \end{cases}$$

$$(IFI-4) \text{ For any } \alpha \in \mathbb{R},$$

$$\begin{split} (\text{IFI}-5) \text{sup} \left\{ & \mathcal{T} \left(\mathcal{F}_{\mu,v}(x,z,s), \mathcal{F}_{\mu,v}(y,z,r) \right) \right\} = \mathcal{F}_{\mu,v}(x+y,y,t). \\ (\text{IFI}-6) & \mathcal{F}_{\mu,v}(x,y,.) \colon \mathbb{R} \ \rightarrow [0,1] \text{ is Continuous on } \mathbb{R} \setminus \{0\}. \\ (\text{IFI}-7) & \text{Iim}_{t \rightarrow 0}. \, \mathcal{F}_{\mu,v}(x,y,t) = 1 \end{split}$$

Note 2.3: [4]

(i) Here the standard negator $\mathcal{N}_{s}\left(x\right)=1-x$, $\forall x\in\left[0,1\right]$

(ii) By putting $\langle x,y\rangle=\mathcal{F}_{\mu,\nu}(x,y,...)$, it is very simple to show that the Intuitionistic Fuzzy Inner Product acts quite similarly as

theOrdinary Inner Product.

Definition 2.4: (IFSA – operator) [2] Let $(V, \mathcal{F}_{\mu, v}, \mathcal{T})$ be an IFH-Space with IP: $\langle x, y \rangle = \sup \{ t \in \mathbb{R}: \mathcal{F}_{\mu, v}(x, y, t) < 1 \}$, $\forall x, y \in v$ and let $\mathcal{S} \in \text{IFB}(V)$. Then \mathcal{S} is Intuitionistic Fuzzy Self- Ad joint operator , if $\mathcal{S} = \mathcal{S}^*$,where of \mathcal{S} is Intuitionistic Fuzzy Self- ad joint of \mathcal{S} . Theorem 2.5: [2]Let $(v, \mathcal{F}_{\mu, v}, \mathcal{T})$ be an IFIP – Space , where \mathcal{T} is a

1007

continuoust–representable for every x, $y \in V$, sup $\{t \in \mathbb{R} \mid t \in \mathbb{R} \mid$

$$\mathcal{F}_{u,v} x, y, t < 1 < \infty$$
. Define.,.: $V \times V \rightarrow \mathbb{R}$ by

 $x, y = \sup$

 $t \in \mathbb{R}$: $\mathcal{F}_{\mu,vx,y,t<1}$. Then (V,.,.) is an IFIP-space, so that $(V,\mathcal{P}_{\mu,v})$ is normed

space, where $\mathcal{P}_{u,v}(x,t) = \langle x, x \rangle^{1/2} \forall x \in V$

3. MAIN RESULTS

In this section, we introduced the definition of intuitionistic fuzzy(α , β)- n-Biormal operator in IFH - space and also explain some elementary properties of IF-(α , β)- n-Binormal operator in IFH, space in detail.

Definition 3.1: let $(\nu_1, F_{\mu,\nu}, T)$ be IFH-space and let $\tau \in IFB(\nu)$ Then T is called IF- (α, β) n-normal if for real number α, β with $0 \le \alpha \le 1 \le \beta$,

 $\alpha^2 T^n T^* T^* T^n \le T^* T^n T^n T^* \le B^2 T^n T^* T^* T^n$ An immediate consequence of a bove definition $\alpha^2 \langle T^n T^* T^* T^n x, x \rangle \le \langle T^* T^n T^n T^* x, x \rangle \le \beta^2 \langle T^n T^* T^* T^n x, x \rangle$ For all $x \in H$

Theorem 3.2:if S_1S_2 are commuting IF- (α, β) n-binormal operator, then S_1S_2 is an IF- (α, β) n-binormal operator.

Proposition 3.3: let T,S is be a commuting IF- (α, β) - n-binormal operator such that $(S+T)^*$ commutes with $\sum_{k=1}^{n-1} {n \choose k} S^{n-k} T^k$ Then (S+T) is an IF- (α, β) - n-binormal operator.

Theorem 3.4: Let $T \in IFB(H)$ Then T is $IF - (\alpha, \beta) - n$ - binormal operator Then T^* is $\in [IF - (\alpha, \beta) - n - BN]$ operator.

Theorem 3.5: Let $T_1 \dots T_m$ be commute IF- (α, β) -n -binormal operator in IFB(H) then $(T_1 \oplus \dots \oplus T_m)$ are IF- (α, β) -n -binormal operator

Theorem 3.6: Let $T_1 \dots T_m$ be commute IF- (α, β) -n -binormal operator in IFB(H)then $(T_1 \otimes \dots \otimes T_m)$ are IF- (α, β) -n-binormal operator

Theorem 3.7 :Let $S_1 \in [IF - (\alpha, \beta) - n - BN]$ and $S_2 \in [IF - (\alpha, \beta) - n - BN]$ If S_1 and S_2 are doubly commuting . Then $S_1S_2 \in [IF - (\alpha^2, \beta^2) - n - BN]$

Theorem 3.8: Let $T \in B(V)$ be an IF- (α, β) -n-binormal operator, if $0 \le p \le 1$ or $p \ge 2$, and $\binom{1}{p} + \binom{1}{q} = 1$. Then we have

$$\left(P_{\mu,\nu}(T^{*}T^{n}T^{n}T^{*}x + T^{n}T^{*}T^{n}x, t)\right)^{p} + \left(P_{\mu,\nu}(T^{*}T^{n}T^{n}T^{*}x - T^{n}T^{*}T^{n}x, t)\right)^{p} \geq 2(1 + \alpha^{2q})^{p-1} \left(\left(P_{\mu,\nu}(T^{n}T^{*}T^{*}T^{n}x, t)\right)^{p} (3.1)\right)^{p}$$

Proof: use the following known inequality:

$$\left(P_{\mu,\nu}(a+b,t)\right)^{p} + \left(P_{\mu,\nu}(a-b,t)\right)^{p} \ge 2\left[\left(P_{\mu,\nu}(a,t)\right)^{q} + \left(P_{\mu,\nu}(b,t)\right)^{q}\right]^{p-1} (3.2)$$

Which is valid any $a, b \in H$ where H is Hilbert space.

Now, if we take $a = T^n T^* T^n x$ and $b = T^* T^n T^n T^* x$ in (3.2), Then for any $x \in V$ we get $\left(P_{\mu,\nu} (T^n T^* T^* T^n x + T^n T^n T^* x, t) \right)^p + \left(P_{\mu,\nu} (T^n T^* T^n x - T^* T^n T^n T^* x, t) \right)^p \geq$

$$2\left[\left(P_{\mu,\nu}(T^{n}T^{*}T^{n}x,t)\right)^{q} + \left(P_{\mu,\nu}(T^{*}T^{n}T^{n}T^{*}x,t)\right)^{q}\right]^{p-1}$$

$$\geq 2\left[\left(P_{\mu,\nu}(T^{n}T^{*}T^{*}T^{n}x,t)\right)^{q} + \alpha^{2q}\left(P_{\mu,\nu}(T^{n}T^{*}T^{*}T^{n}x,t)\right)^{q}\right]^{p-1}$$

$$= 2\left[\left(P_{\mu,\nu}(T^{n}T^{*}T^{*}T^{n}x,t)\right)^{q}\right]^{p-1}$$

$$= 2\left[\left(P_{\mu,\nu}(T^{n}T^{*}T^{*}T^{n}x,t)\right)^{q}\right]^{p-1}$$

$$= 2\left[\left(P_{\mu,\nu}(T^{n}T^{*}T^{*}T^{n}x,t)\right)^{q}\right]$$

Now, Taking the supremum over $P_{\mu,\nu}(x,t) = 1$ in (3.3), We get

$$\left(P_{\mu,\nu} (T^n T^* T^n x + T^n T^* T^n x, t) \right)^p +$$

$$\left(P_{\mu,\nu} (T^n T^* T^n x - T^* T^n T^n T^n x, t) \right)^p \ge$$

$$2(1 + \alpha^{2q})^{p-1} \left((P_{\mu,\nu} (T^n T^* T^n x, t))^p \right).$$

Theorem (3.9): Assume that T is $[IF - (\alpha, \beta) - n - BN]$ operator. Then for any real s with $0 \le s \le 1$, we have

$$\left[\left(\left(\frac{1-s}{\beta^4} \right) + s \right) \left((1-s) + \frac{s}{\beta^4} \right) \left(P_{\mu,\nu} (T^n T^* T^* T^n, t) \right)^4 \right] \\
\leq \left[(1-s) + s \beta^4 \right] \left(P_{\mu,\nu} (T^n T^* T^* T^n x, t) \right)^2$$

 $\left(P_{\mu,\nu}(T^*T^nT^nT^*-T^nT^*T^*T^n,t)\right)^2+\omega((T^*T^nT^nT^*)^*T^nT^*T^*T^n))^2.$

Proof . By [9, Theorem 2.6](see also [10, Theorem 2.4]) we have

$$\left[(1-s) \left(P_{\mu,\nu}(a,t) \right)^{2} + s \left(P_{\mu,\nu}(b,t) \right)^{2} \right] \left[(1-s) \left(P_{\mu,\nu}(b,t) \right)^{2} + s \left(P_{\mu,\nu}(a,t) \right)^{2} \right] - |\langle a,b \rangle|^{2} \le \left[(1-s) \left(P_{\mu,\nu}(a,t) \right)^{2} + s \left(P_{\mu,\nu}(b,t) \right)^{2} \right] \\
\left[(1-s) \left(P_{\mu,\nu}(b-ma,t) \right)^{2} + s \left(P_{\mu,\nu}(mb-a,t) \right)^{2} \right] \tag{3.4}$$

Where $0 \le s \le 1$, $m \in \mathbb{R}$ and $a, b \in \mathcal{V}$. By taking m = 1, $a = T^n T^* T^* T^n x$ and $b = T^* T^n T^n T^* x$ in (3.4), we have

$$\begin{split} \Big[(1-s) \left(P_{\mu,\nu} (T^n T^* T^* T^n x, t) \right)^2 \\ &+ s \left(P_{\mu,\nu} (T^* T^n T^n T^* x, t) \right)^2 \Big] \Big[(1-s) \left(P_{\mu,\nu} (T^* T^n T^n T^* x, t) \right)^2 \\ &+ s \left(P_{\mu,\nu} (T^n T^* T^n x, t) \right)^2 \Big] \\ - |\langle T^n T^* T^n x, T^* T^n T^n T^* x \rangle|^2 \end{split}$$

$$\leq \left[(1-s) \left(P_{\mu,\nu} (T^{n}T^{*}T^{n}x,t) \right)^{2} + s \left(P_{\mu,\nu} (T^{*}T^{n}T^{n}T^{*}x,t) \right)^{2} \right] \left[(1-s) \left(P_{\mu,\nu} (T^{*}T^{n}T^{n}T^{*}x - T^{n}T^{*}T^{*}T^{n}x,t) \right)^{2} + s \left(P_{\mu,\nu} (T^{*}T^{n}T^{n}T^{*}x - T^{n}T^{*}T^{n}x,t) \right)^{2} \right] \quad (3.5)$$

1009

Thus, we have

$$\begin{split} & \left[\left(\frac{1-s}{\beta^4} \right) \left(P_{\mu,\nu} (T^*T^nT^nT^*x,t) \right)^2 + s \left(P_{\mu,\nu} (T^*T^nT^nT^*x,t) \right)^2 \right] \left[(1 \\ & - s) \left(P_{\mu,\nu} (T^*T^nT^nT^*x,t) \right)^2 + \frac{s}{\beta^4} \left(P_{\mu,\nu} (T^*T^nT^nT^*x,t) \right)^2 \right] \\ & - |\langle (T^*T^nT^nT^*x)^*T^nT^*T^*T^nx, \rangle|^2 \\ & \leq \left[(1-s) \left(P_{\mu,\nu} (T^nT^*T^*T^nx,t) \right)^2 \\ & + s\beta^4 \left(P_{\mu,\nu} (T^nT^*T^*T^nx,t) \right)^2 \right] \left(P_{\mu,\nu} (T^*T^nT^nT^*x - T^nT^*T^nx,t) \right)^2 \end{split}$$

Finally, we take supremum over $P_{u,v}(x,t) = 1$

$$\begin{split} \left[\left(\left(\frac{1-s}{\beta^4} \right) + s \right) & \left((1-s) + \frac{s}{\beta^4} \right) \left(P_{\mu,\nu} (T^n T^* T^* T^n, t) \right)^4 \right] \\ & \leq \left[(1-s) + s \beta^4 \right] \left(P_{\mu,\nu} (T^n T^* T^* T^n x, t) \right)^2 \\ & \left(P_{\mu,\nu} (T^* T^n T^n T^* - T^n T^* T^* T^n, t) \right)^2 + \omega ((T^* T^n T^n T^*)^* T^n T^* T^* T^n))^2. \Box \end{split}$$

References

[1] A. Radharamani S Maheswari and Brindha, "Intuitionisti fuzzy n Hilbert cbase and some Properties", Inter. J Sci. Res-(Jan), Vol. 8(9), 2018, 15-12

Radharamani, A., and S. Maheswari. "Intuitionistic Fuzzy adjoint & Intuitionistic fuzzy self-adjoint operators in Intuitionistic fuzzy Hilbert space." *Inter. J. Research and Analytical* [2] *Reviews (IJRAR)* 5.4 (2018): 248-251.

S.S.Dragomir and M.S.Moslehian, "Some inequalities for (α, β) -normal operator in Hilbert Space," Facta Universitatis ,Vol.23,pp.39-47,2008 [3]

Goudarzi, M., S. M. Vaezpour, and Reza Saadati. "On the intuitionistic fuzzy inner product [4]spaces." *Chaos, Solitons & Fractals* 41.3 (2009): 1105-1112.

Park, Jin Han. "Intuitionistic fuzzy metric spaces." *Chaos, Solitons & Fractals* 22.5 (2004): [5]1039-1046.

Saadati, Reza, and Jin Han Park. "On the intuitionistic fuzzy topological spaces." *Chaos*, [6] *Solitons & Fractals* 27.2 (2006): 331-344.

[7] Atanassov, Krassimir T. "Intuitionistic fuzzy sets." *Intuitionistic fuzzy sets*. Physica, Heidelberg, 1999. 1-137.

[8] D.S.Mitrinovic, J.E.Pecaric, and A.M.Fink, Classical and New Inequalities in Analysis, Vol.61, Kluwer Academic, Dordrecht, The Netherlands, 1993.

[9] S.S. Dragomir, "A potpourri of Schwarz related inequalities in inner product spaces. I," Journal of Inequalities in Pure and Applied Mathematics, vol. 6,no.3,article 59,2005.