More on IF-(α , β)-n-Normal operator on IFH-space

Tuka Adnan Alrubaiy¹, Dr. Hadeel.Shubber²

^{1,2}Department of Mathematics, College of Education for Pure Science, University of Thi-Qar, Iraq.

tukaadnan90@gmail.com

hadeelali2007@utq.edu.iq

Abstract

Article Info Page Number: 1025 – 1028 Publication Issue: Vol. 71 No. 3 (2022)

In this paper we introduce IF- (α, β) -n-Normal operator on Hilbert space \mathcal{H} .We give some basic properties of these operator .An operator δ is an intuitionistic fuzzy- (α, β) -n-normal operator if $\alpha^2 \delta^* \delta^n \leq \delta^n \delta^* \leq \beta^2 \delta^* \delta^n$ i.e. δ commutes with its intuitionistic fuzzy ad joint with $0 \leq \alpha \leq 1 \leq \beta$

Article History Article Received: 12 January 2022 Revised: 25 February 2022 Accepted: 20 April 2022 Publication: 09 June 2022

Keywords: Self ad joint , intuitionistic fuzzy(α, β)- n-normal operator , intuitionistic fuzzy n-normal operator , partial isometry

1. Introduction

Let IF B(H) be the set of all IF-Bounded Linear operators on IF H-space .On Intuitionistic Fuzzy Metric and Norm have been defined by saadati [6]. Then Goudarzi et al. [4] in 2009 ,introduced Intuitionistic Fuzzy Inner product space(IFIP-Space).

Majumdhar and Samanta [7] defined IFIP-Space in 2011 .In 2018

Radharamani et al .[1], [2] have given the definition and properties of Intuitionistic Fuzzy Hilbert space (IFH-Space) \mathcal{H} as a triplet $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ and also the cancept of intuitionistic fuzzy adjoint and self-adjoint operators (IFA and IFSA, operators) in IF H-space .IF H-space .IF $\delta \in IFB(H), \exists < \delta x, y > = < x\delta^* y >, \forall x, y \in \mathcal{H}$. AlSo δ is an IF SA-operator if $\delta = \delta^*$. An operator T is said to be normal if $T^*T = TT^*$, (it is well known that normal operators have translation – invariant properties r ,i.e., if T is normal operator, then $(T - \lambda)$ is normal operator for evry($\lambda \in \mathbb{C}$);

Self ad joint if $T^* = T$; projection if $T^2 = T = T^*$. For an operator $T \in H$, if ||Tx|| = ||x|| for all $x \in H$ (or equivalently $T^*T = I$),

Then T is called an isometric .An on to isometric is called unitary .An operator $T \in IF B(H)$ is called partial isometry if T*T is projection, An operator $S \in IF B(H)$ is called intuitionistic fuzzy n-normal operator if $S^nS^* = S^*S^n$

Tuka Adnan Alrubaiy ,Dr Hadeel Shubber

"A note on-Intuitionistic fuzzy n-Normal operator on IF H-space has been accepted for publication in the Journal of Interdisciplinary mathematics in 2022

Now we introduced intuitionistic fuzzy(α, β)-n-normal operator on \mathcal{H} , if for real number α, β with $0 \le \alpha \le 1 \le \beta$ then $\alpha^2 T^*T^n \le T^nT^* \le \beta^2 T^*T^n$

Have we establish some theorems and an example for intuitionistic fuzzy(α, β)- n-normal operator like addition and multiplication of intuitionistic fuzzy(α, β)- n-normal operator.

2. PRELIMINARIES

Definition 2.1: [4]A continuous t – norm T is called continuous t- representable iff \exists a continuous t- norm * and a continuous t- conform \Diamond on the interval [0,1] such that for all

 $x = (x_1, x_2), y = (y_1, y_2) \in L^*, \mathcal{T}(x, y) = (x_1 * y_1, x_2 \diamond y_2).$

Definition 2.2: [4] Let μ : V² × (0, + ∞) → [0,1] and ϑ : V² × (0, ∞) → [0,1] be Fuzzy sets, such that $\mu(x, y, t) + \vartheta(x, y, t) \le 1, \forall x, y \in V \& t > 0$. An Intuitionistic Fuzzy Inner Product Space

 $\begin{array}{l} (\mathrm{IFIP}\text{-}\mathrm{Space}) \text{ is a triplet } \left(v, \mathcal{F}_{\mu,v} \,, \mathcal{T}\right), \text{ where V is real Vector Space }, \mathcal{T} \text{ is a continuous } t -\text{representable and } \mathcal{F}_{\mu,v} \text{ is an Intuitionistic Fuzzy set on V}^2 \,\times\, \mathbb{R} \text{ satisfying the following conditions for all } x \,, y \,, z \,\in\, V \text{ and } s \,, r \,, t \,\in\, \mathbb{R} : \\ (\mathrm{IFI-1}) \,\mathcal{F}_{\mu,v}(x\,,y,0\,) = 0 \text{ and } \mathcal{F}_{\mu,v}(x\,,y\,,t\,) > 0 \,, \text{ for every } t \,>\, 0 \,. \\ (\mathrm{IFI-2}) \,\mathcal{F}_{\mu,v}(x\,,y\,,t\,) = \,\mathcal{F}_{\mu,v}(y\,,x\,,t\,) \,. \\ (\mathrm{IFI-3}) \,\mathcal{F}_{\mu,v}(x\,,x\,,t\,) \neq\, \mathrm{H} \,(t) \\ \text{for some } t \,\in\, \mathbb{R} \,\, \text{iff } x \,\neq\, 0 \\ \text{Where } \,\mathrm{H} \,(t) = \begin{cases} 1 \,, & \text{if } t \,>\, 0 \\ 0 \,, & \text{if } t \,\leq\, 0 \end{cases} \end{array}$

(IFI-4) For any $\propto \in \mathbb{R}$,

$$(\text{IFI} - 5) \sup \left\{ \mathcal{T} \left(\mathcal{F}_{\mu,\nu}(x, z, s), \mathcal{F}_{\mu,\nu}(y, z, r) \right) \right\} = \mathcal{F}_{\mu,\nu}(x + y, y, t)$$

(IFI - 6) $\mathcal{F}_{\mu,\nu}(x, y, .)$: $\mathbb{R} \rightarrow [0,1]$ is Continuous on $\mathbb{R} \setminus \{0\}$.
(IFI - 7) $\lim_{t \to 0} \mathcal{F}_{\mu,\nu}(x, y, t) = 1$

Note 2.3: [4]

the

(i) Here the standard negator $\mathcal{N}_s(x) = 1 - x$, $\forall x \in [0,1]$ (ii) By putting $\langle x, y \rangle = \mathcal{F}_{\mu,v}(x, y, ...)$, it is very simple to show that Intuitionistic Fuzzy Inner Product acts quite similarly as

theOrdinary Inner Product.

Definition 2.4: (IFSA – operator) [2] Let $(V, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-Space with IP: $\langle x, y \rangle$ = sup $\{t \in \mathbb{R}: \mathcal{F}_{\mu,v}(x, y, t) < 1\}, \forall x, y \in v$ and let $\mathcal{S} \in IFB(V)$. Then \mathcal{S} is Intuitionistic Fuzzy Self- Ad joint operator, if $\mathcal{S} = \mathcal{S}^*$, where of \mathcal{S}^* is Intuitionistic Fuzzy Self- ad joint of \mathcal{S} . Theorem 2.5: [2]Let $(v, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFIP – Space, where \mathcal{T} is a continuoust-representable for every $x, y \in V$, sup $\{t \in \mathbb{R} : \mathcal{F}_{\mu,vx,y,t<1}$. Then(V,.,.) is an IFIP-space, so that $(V, \mathcal{P}_{\mu,v})$ is normed space, where $\mathcal{P}_{u,v}(x, t) = \langle x, x \rangle^{1/2} \forall x \in V$

3. MAIN RESULTS

In this section, we introduced the definition of intuitionistic $fuzzy(\alpha, \beta)$ - n-Normal operator in IFH - space and also explain some elementary properties of IF(α, β)- n-Normal operator in IFH, space in detail.

Definition 3.1: let $(\nu_1, F_{\mu,\nu}, T)$ be IFH-space and let $\tau \in IFB(\nu)$ Then T is called IF- (α, β) n-normal if for real number α, β with $0 \le \alpha \le 1 \le \beta$,

$$\alpha^2 T^* T^n \le T^n T^* \le \beta^2 T^* T^n$$

An immediate consequence of a bove definition

 $\alpha^{2}\langle T^{*}T^{n}x,x\rangle \leq \langle T^{n}T^{*}x,x\rangle \leq \beta^{2}\langle T^{*}T^{n}x,x\rangle$ For all $x \in r$

Theorem 3.2: if S_1S_2 are commuting IF- (α, β) n-normal operator, then S_1S_2 is an IF- (α, β) n-normal operator Proposition 3.3: let T,S is be a commuting IF- (α, β) n-normal operator such that $(S + T)^*$ commutes with $\sum_{k=1}^{n-1} {n \choose k} S^{n-k}T^k$ Then (S + T) is an IF- (α, β) n-normal operator

Theorem 3.4: Let $T \in IFB(H)$ Then T is IF- (α, β) -n-normal operator if and only if T^n is IF- (α, β) -normal operator where $n \in N$

Theorem 3.5: Let $T_1 \dots T_m$ be commute IF- (α, β) -n -normal operator in IFB(H) then $(T_1 \oplus \dots \oplus T_m)$ are IF- (α, β) -n -normal operator

Theorem 3.6: Let $T_1 \dots T_m$ be commute IF- (α, β) -n -normal operator in IFB(H)then $(T_1 \otimes \dots \otimes T_m)$ are IF- (α, β) -n-normal operator

Theorem 3.7 : Suppose T is both IF- (α, β) -k-normal operator and IF- (α, β) -(k+1)-normal operator for some positive integer K Then T is IF- (α, β) -(k+2)-normal operator and hence T is IF- (α, β) -n-normal operator for all $n \ge K$ Theorem 3-8: Let $T \in B(V)$ be an IF- (α, β) -n-normal operator, if $0 \le p \le 1$ or $p \ge 2$, then we have $\left(\left(P_{\mu,\nu}(T^{*}T^{n}+T^{n}T^{*}),t\right)^{2}+\left(P_{\mu,\nu}(T^{*}T^{n}-T^{n}T^{*}),t\right)^{2}\right)^{p} \geq \left(P_{\mu,\nu}(T^{*}T^{n},t)\right)^{2p}\varphi(\alpha,p)$ Where $\varphi(\alpha, p) = 2^p (1 + \alpha^{2p})^2 + (2^p - 2^2) \alpha^{2p}$ Proof: We use the following inequality [8, Theorem 8, page 551]: $((P_{\mu,\nu}(a+b,t))^2 + (P_{\mu,\nu}(a-b,t))^2)^p \ge$ $2^{p}(((P_{u,v}(a,t))^{p} + (P_{u,v}(b,t))^{p})^{2} + (2^{p} - 2^{2})(P_{u,v}(a,t))^{p}(P_{u,v}(b,t))^{p})$ (3.2) Where a and b are two vectors in a Hilbert space and $0 \le p \le 1$ or $p \ge 2$ Now, if we put $a = T^*T^nx$ and $b = T^nT^*x$ in (3.3)Then we obtain $\left(\left(\mathsf{P}_{\mu,\nu}(T^*T^nx + T^nT^*x, t) \right)^2 + \left(\mathsf{P}_{\mu,\nu}(T^*T^nx - T^nT^*x, t) \right)^2 \right)^p \ge 0$ $\geq 2^{p} (((\mathbf{P}_{\mu,\nu}(T^{*}T^{n}x,t))^{p} + (\mathbf{P}_{\mu,\nu}(T^{n}T^{*}x,t))^{p})^{2} + (2^{p}-2^{2})$ $(\mathsf{P}_{\boldsymbol{\mu},\boldsymbol{\nu}}(T^*T^n\boldsymbol{x},t))^p \big(\mathsf{P}_{\boldsymbol{\mu},\boldsymbol{\nu}}(T^nT^*\boldsymbol{x},t))^p\big)$ $\geq 2^{p} ((\mathbf{P}_{u,v}(T^{*}T^{n}x,t))^{2p}(1+\alpha^{2p})^{2}+(2^{p}-2^{2})\alpha^{2p}(\mathbf{P}_{u,v}(T^{*}T^{n}x,t))^{2p})(3.4)$ $= 2^{p} \left((P_{\mu\nu}(T^{*}T^{n}x,t))^{2p} (1+\alpha^{2p})^{2} + (2^{p}-2^{2})\alpha^{2p} \right)$ $= (\mathbf{P}_{\mu,\mathbf{v}}(T^*T^nx,t))^{2p}\varphi(\alpha,p)$ Now, Taking the supremum over $P_{u,v}(x, t) = 1$ in (3.5)We get $((\mathbf{P}_{u,v}(T^*T^n + T^nT^*), t)^2 + (\mathbf{P}_{u,v}(T^*T^n - T^nT^*), t)^2)^p \ge (\mathbf{P}_{u,v}(T^*T^n, t))^{2p} \varphi(\alpha, p)$ Where $\varphi(\alpha, p) = 2^p (1 + \alpha^{2p})^2 + (2^p - 2^2) \alpha^{2p}) \Box$ Theorem (3.9): Let $T \in B(V)$ be an IF- (α, β) -n-normal operator, if $\mathcal{N}(T^n) = 0$ and for any $x \in V$ with $P_{\mu,v}(x,t) = 1$ We have $P_{\mu,v}\left(\frac{T^n x}{P_{\mu,v}(T^* x,t)} - \frac{T^* x}{P_{\mu,v}(T^n x,t)}, t\right) \leq \rho$ Then we have $\alpha^2 \left(\mathsf{P}_{\mu, \mathsf{v}}(T^*T^n, t) \right)^2 \leq \omega((T^nT^*)^*(T^nT^*)) + \frac{1}{2}\rho^2\alpha^2 \left(\mathsf{P}_{\mu, \mathsf{v}}(T^*T^nx, t) \right)^2$ Proof : We use the following reverse of Schwarz's inequality : $(0 \leq)(\mathsf{P}_{\mu,\nu}(a,t)(\mathsf{P}_{\mu,\nu}(b,t)) - |\langle a,b \rangle|$ $\leq \left(\mathsf{P}_{\mu,\nu}(a,t) \right) \mathsf{P}_{\mu,\nu}(b,t) - \operatorname{Re} \langle a,b \rangle \leq \frac{1}{2} \rho^2 (\mathsf{P}_{\mu,\nu}(a,t) \mathsf{P}_{\mu,\nu}(b,t))$ Which is valid for $a, b \in V/0$ and $\rho > 0$, with $P_{\mu,v}\left(\frac{a}{P_{\mu,v}(b,t)} - \frac{b}{P_{\mu,v}(a,t)}, t\right) \le \rho$ (see[9]).

We take $a = T^*T^n x$ and $b = T^n T^* x$ in (3.8) to get $(P_{\mu,\nu}(T^*T^n x, t)(P_{\mu,\nu}(T^n T^* x, t)) \le |\langle T^*T^n x, T^n T^* x \rangle| + \frac{1}{2}\rho^2 (P_{\mu,\nu}(a, t)P_{\mu,\nu}(b, t) \quad (3.7)$ Thus, we obtain $\alpha^2 (P_{\mu,\nu}(T^*T^n x, t))^2 \le |\langle T^*T^n x, T^n T^* x \rangle| + \frac{1}{2}\rho^2 \beta^2 (P_{\mu,\nu}(T^*T^n x, t))^2$ (3.8)

$$\alpha^{2} \left(P_{\mu,v}(T^{*}T^{n}x,t) \right)^{2} \leq |\langle (T^{n}T^{*})^{*}(T^{n}T^{*})x,x \rangle| + \frac{1}{2}\rho^{2}\beta^{2} \left(P_{\mu,v}(T^{*}T^{n}x,t) \right)^{2}$$

Now, Taking the supremum over $P_{\mu,v}(x,t) = 1$ in (3.10) we get

$$\alpha^{2} \left(\mathsf{P}_{\mu, \mathsf{v}}(T^{*}T^{n}, t) \right)^{2} \leq \omega((T^{n}T^{*})^{*}(T^{n}T^{*})) + \frac{1}{2}\rho^{2}\beta^{2} \left(\mathsf{P}_{\mu, \mathsf{v}}(T^{*}T^{n}x, t) \right)^{2} \Box$$

References

[1] A. Radharamani S Maheswari and Brindha ,"Intuitionisti fuzzy n Hilbert cbase and some Properties" , Inter .J Sci . Res-(Jan), Vol .8(9) ,2018,15-12

Vol. 71 No. 3 (2022) http://philstat.org.ph Radharamani, A., and S. Maheswari. "Intuitionistic Fuzzy adjoint & Intuitionistic fuzzy self-adjoint operators in Intuitionistic fuzzy Hilbert space." *Inter. J. Research and Analytical Reviews (IJRAR)* 5.4 [2] (2018): 248-251.

S.S.Dragomir and M.S.Moslehian, "Some inequalities for (α, β) -normal operator in Hilbert Space," Facta Universitatis ,Vol.23,pp.39-47,2008 [3]

Goudarzi, M., S. M. Vaezpour, and Reza Saadati. "On the intuitionistic fuzzy inner product [4]spaces." *Chaos, Solitons & Fractals* 41.3 (2009): 1105-1112.

Park, Jin Han. "Intuitionistic fuzzy metric spaces." *Chaos, Solitons & Fractals* 22.5 (2004): 1039-1046. [5]

Saadati, Reza, and Jin Han Park. "On the intuitionistic fuzzy topological spaces." *Chaos, Solitons &* [6]*Fractals* 27.2 (2006): 331-344.

[7] Atanassov, Krassimir T. "Intuitionistic fuzzy sets." *Intuitionistic fuzzy sets*. Physica, Heidelberg, 1999. 1-137.

[8]D.S.Mitrinovic, J.E.Pecaric , and A.M.Fink, Classical and New Inequalities in Analysis,

Vol.61, Kluwer Academic, Dordrecht, The Netherlands, 1993.

[9] S.S. Dragomir ,"A potpourri of Schwarz related inequalities in inner product spaces. I," Journal of Inequalities in Pure and Applied Mathematics, vol. 6,no.3,article 59,2005.