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Abstract 

The solution of large-scale linear equations is a computationally 

challenging problem in scientific and engineering computing. Due to 

memory and CPU time constraints, usually only iterative solver can be 

used. In recent years, many solvers have been built to handle such 

challenging problems. In this paper, our main objective is to design a new 

ADDM preconditioner for finding a method of linear equations which are 

efficient, robust, and can also be implemented well. We designed and 

implemented an efficient ADDM preconditioner algebraically without 

having to know an information of the problem in general and also without 

any hypothesis on the least-squares matrix except that it is sparse, this and 

other results showing how our designed preconditioner outperformed other 

preconditioners are shown in this paper.We discussed how the ADDM 

preconditioner can be designed using the Matlab and Python codes and the 

results are analyzed and presented to show the performance of the 

proposed preconditioner. The ADDM preconditioner designed are very 

robust and efficient since it outperforms other preconditioners designed in 

the past in terms of convergence. The problems which could possible arise 

from a very practical applications are actually used to make a relation in 

the performance of our new preconditioner and the other related 

preconditioners designed in the past. 

 
Keywords: Algebraic domain decomposition, Additive Schwarz, Large 

liner systems, Linear least-squared, precondition. 

 
Introduction 

The success of large linear systems constantly play a significant function in scientific 

computing. The difficulty to be resolved are often a really large size which needs to be 

addressed by decomposing the large linear problems in to a smaller one in order to achieve a 

desire result. We try to look at this problem in terms of electromagnetic computations, which 
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primarily includes only two numerical solvers. The first solver looks at the direct 

computation of differential equation and the second solver deals with a derived integral 

equation from the Maxwell's equations. For the purpose of our paper, preconditioner is 

required in order to give a condition number of problems into a more desirable pattern for 

numerical computations. Its interest is much more in reducing the condition number of the 

problems through decomposition. 

There have been many domain decomposition algorithms developed over the years, however, 

there is still lack of black-box routines working at the matrix level which could further lead 

to the general adoption of these techniques in both engineering and scientific computing 

community. As part of this paper, we want to follow the path which leads to the construction 

of such black-box solver by a collaboration between numerical analysis and computer science. 

The general objectives of this paper is to design and implement scalable preconditioner, 

which is the bottleneck problem for a lot of real-world engineering or scientific research. This 

paper seeks to design algebraic domain decomposition (ADDM) method adapting to 

electromagnetic (EM) computation as a preconditioner of a Krylov subspace iterative solver. 

Some special properties arising from linear systems of electromagnetic computations is what 

we want to follow in order to design an efficient algebraic domain decomposition method 

(ADDM) preconditioners. 

In practice, every good preconditioner should satisfy so many constraints. First and foremost, 

it must be cheaper or affordable in terms of computation and also to apply in both memory 

storage and computational time. Because the interest of this is parallel applications, therefore, 

the designing and execution of the system's preconditioner should also be parallelizable and 

scalable. That is, the preconditioned iterations should always converge rapidly, and therefore 

the performance should not be degenerate in case the number of processors increases. There 

are two primary categorization of preconditioners, the first one is to design specialized 

algorithms that are very closed to an optimal for any narrow type of problems, whereas the 

second class is a general-purpose algebraic method. But however, this type of 

preconditioning requires an absolute complete knowledge about the problem, and this may 

not always be feasible. Furthermore, these problem specific approaches are generally very 

delicate to the details of the problem, and therefore, even if there is a small change in the 

problem. Sometimes the algebraic methods on settings may or may not reduce the solver's 

effectiveness only made use of information that contained in the coefficient of the various 

matrices. These techniques usually achieve a reasonable efficiency on a broader scope of 

problems. In general, these preconditioners are very simple to employ and also well suited for 

any irregular problems. Furthermore, one crucial feature of such an approach is the fact that, 

they can be adapted and tuned to exploit specific application. 

 
Basic Iterative Methods 

Broadly, an iterative method is in essence a mathematical procedure that uses an initial value 

to produce a sequence of rising an approximate solutions for a class of problems which is an 

n-th approximation derived from the previous ones.[11][14] We shall consider Jacobi, Gauss- 

Seidel, SOR, Chebychev methods and these are explained below. 

The Jacobi  Method, which is  required for  the determination of the solutions  to strictly 
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𝑗 

𝑖 

diagonally dominant systems of linear equations, is the first fundamental iterative method to 

be taken into consideration. This is accomplished by solving for each diagonal element and 

then plugging in an approximation of its value. After then, the procedure is recurrent until 

convergence is reached. This algorithm simplifies the Jacobi transformation method of matrix 

diagonalization.[1][13] The method is described here as an iterative process. 

Let 𝐴𝑥 = 𝑏, be a square system of n linear equations, where ∶ 

𝖥
𝑎11 𝑎12 ⋯ 𝑎1𝑛

1 𝑥 𝑏1 

A = 
𝑎21 𝑎22 

. . . 
⋱ 

𝑎2𝑛 
⋮ 

1 

, x = [
𝑥2 ], b = [

𝑏2 ] 

I 
[𝑎 

⋮ 

𝑛1 

⋮ 
𝑎𝑛2 

⋯ 𝑎𝑛𝑛
I 

⋮ 
𝑥𝑛 

⋮ 
𝑏𝑛 

Then A can be decomposed in to a diagonal component of D, a lower triangular part L and an 

upper triangular part U: 

𝐴 = 𝐷 + 𝐿 + 𝑈 (2.1) 

𝖥
𝑎11 0 ⋯ 0 

1 𝖥 
0 𝑎12 ⋯ 𝑎1𝑛

1
 

 
Where, D = 0 𝑎22 

. . . 
⋱ 

0 
⋮ and L + U= 𝑎21 

. . . 
⋱ 

𝑎2𝑛 

⋮ 
I ⋮ ⋮ ⋯ 𝑎 I I ⋮ ⋮ ⋯ 0 I 
[ 0 0 𝑛𝑛] [𝑎𝑛1 𝑎𝑛2 ] 

The solution is then obtained iteratively by 

𝑋(𝑘+1) = 𝐷−1(𝑏 − (𝐿 + 𝑈)𝑋(𝑘)), (2.2) 

Where 𝑋(𝑘) is the k-th approximation or iteration of x and 𝑋(𝑘+1) is the next or k+1 iteration 

of x. The element based formula is thus: 

𝑋(𝑘+1) = 
1 
𝑎𝑖𝑖 

 
(𝑏𝑖 

 
− ∑ 𝑎 

𝑗≠𝑖 

 

𝑖𝑗 𝑥(𝑘)), 𝑖 = 1, 2, . . . . , 𝑛. (2.3) 

Every element in the𝑋(𝑘)except itself is necessary for the computation of 𝑋(𝑘+1). We cannot 

replace 𝑋(𝑘)with𝑋(𝑘+1), unlike the Gauss-Seidel technique, because the value is required for 
𝑖 𝑖 

the remainder of the computation. Two vectors of size n make up the bare minimum of 

storage.[4][5][7] 

In general, the technique converges when 𝑃(𝐷−1(𝐿 + 𝑈)) < 1. Where P is the spectral 

radius defined as 𝑃(𝐴) = 𝑀𝑎𝑥*|𝜆1|,       |𝜆𝑁|+ which is the 𝜆1 eigenvalues of A as the matrix. 

Again, Gauss-Seidel method is another iterative method which is sometimes referred to as the 

consecutive displacement method or the Liebmann method.[8] Which is necessary for solving 

a system of linear equations and which is much comparable to the Jacobi approach. 

Convergence is only achieved if the matrix is absolutely diagonally dominant, symmetric, 

and positive definite, even though it can be applied to any matrix with non-zero diagonal 

components.[21][30][34] 

The Gauss-Seidel method is discussed below. A square system of n linear equations with an 

unknown X must be solved. 

0 
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∗ 

Let 𝐴𝑥 = 𝑏, which is defined by the iteration: 

𝐿∗𝑋(𝑘+1) = 𝑏 − 𝑈𝑋(𝑘) (2.4) 

𝑋(𝑘) represent the k-th iteration of x, and 𝑋(𝑘+1) which is the next or k+1 iteration of x and 

the decomposition of matrix A to lower triangular component 𝐿∗ , and a strictly upper 

triangular component U i.e, 𝐴 = 𝐿∗ + 𝑈. In more details, we write out A, x and b in their 

component form: 

𝖥
𝑎11 𝑎12 ⋯ 𝑎1𝑛

1 𝑥 𝑏1 

A = 
𝑎21 𝑎22 

. . . 
⋱ 

𝑎2𝑛 
⋮ 

1 

, x = [
𝑥2 ], b = [

𝑏2 ] 

I 
[𝑎 

⋮ 

𝑛1 

⋮ 
𝑎𝑛2 

⋯ 𝑎𝑛𝑛
I 

⋮ 
𝑥𝑛 

⋮ 
𝑏𝑛 

The breakdown of A into its rigorously upper triangular component and its lower triangular 

component is therefore provided by: 

𝖥 
𝑎11 0 ⋯ 0 

1
 0 𝑎12 ⋯ 𝑎1𝑛 

I𝑎21 𝑎22 
. . . 0 

I 𝖥 . . . 0 0 𝑎2𝑛
1 

𝐿∗ = I ⋱ ⋮ I,   𝑈 = ⋱ ⋮ 
I ⋮ ⋮ ⋯ 𝑎𝑛𝑛

I I  ⋮ ⋮ 
⋯ 0 I 

[𝑎𝑛1 𝑎𝑛2 ] [ 0 0 ] 

The system of linear equations may be rewritten as: 

𝐿∗𝑋 = 𝑏 − 𝑈𝑋. 

Using past values for x on the right side, the Gauss-Seidel method now resolves the left side 

of this formula for x.[6][8][10] this may be presented as: 

𝑋(𝑥+1) = 𝐿−1(𝑏 − 𝑈𝑋(𝑘)). 

However, by fetching benefit of the triangular form of 𝐿∗ the elements of 𝑋(𝑥+1) can be 

computed sequentially using forward substitution: 

𝑋(𝑥+1) = 
1 

𝑖−1 

(𝑏 − ∑ 𝑎 
𝑛 

𝑥(𝑘+1) − ∑ 𝑎 
 

𝑥(𝑘)) 
 

 

𝑖 𝑎𝑖𝑖 
 

𝑗=1 

𝑖𝑗  𝑗  
𝑗=𝑖+1 

𝑖𝑗  𝑗 

The process is broadly continued until the occurrence made by a sufficiently small residual. 

In addition, a faster-converging variation of the Gauss-Seidel method for resolving a linear 

system of equations is known as successive over-relaxation (SOR).[28][29] Any iterative 

process that converges slowly can be implemented using a similar technique. The motivation 

of this method is to improved on the Gauss-Seidel loop by taking an appropriate weighted 

average of the 𝑋𝑚+1,𝑗 𝑎𝑛𝑑 𝑋𝑚,𝑗. 

Now, using the same square matrix as the matrix of Gauss-Seidel method, the system of 

linear equations may be rewritten as: 

(𝐷 + 𝜔𝐿)𝑋 = 𝜔𝑏 − ,𝜔𝑈 + (𝜔 − 1)𝐷-𝑋 (2.5) 

For a constant ω > 1, this is referred to as relaxation factor. 
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Analytically, this may be written as: 

𝑋(𝑥+1) = (𝐷 + 𝜔𝐿)−1(𝜔𝑏 − ,𝜔𝑈 + (𝜔 − 1)𝐷-𝑋(𝑘)) = 𝐿𝜔𝑋(𝑘) (2.6) 

𝑋(𝑘) represent the 𝑘 − 𝑡ℎ iteration of x, and 𝑋(𝑘+1) is also the k+1 or next iteration of x. 

Again, by fetching benefit of the triangular form of (𝐷 + 𝜔𝐿), the elements of 𝑋(𝑥+1) can be 

computed sequentially using forward substitution: 

𝑋(𝑥+1)  = (1 − 𝜔)𝑋(𝑘) +  
𝜔 

(𝑏 
 

 

− ∑ 𝑎 𝑥(𝑘+1) − ∑ 𝑎 𝑥(𝑘)) (2.7) 
𝑖 𝑖 𝑎𝑖𝑖 

𝑖
  

𝑗<1 

𝑖𝑗  𝑗  
𝑗>𝑖 

𝑖𝑗  𝑗 

i = 1, 2, . . . , n. 

Classic Preconditioning Techniques 

Simply put, preconditioning is the process of changing the original linear system into a more 

manageable version that nonetheless has the same solution. In general, the quality of the 

preconditioner has a significantly greater impact on an iterative technique's dependability 

when handling different applications than do the specific Krylov subspace accelerators 

employed.[15][16][19] 

It is important to first think about the choices for preconditioning a system. Finding a 

preconditioning matrix M is the initial step in preconditioning. The matrix M can be defined 

in many different ways but it must satisfy a few minimal requirements. Practically speaking, 

the cost of solving linear systems 𝑀𝑥 = 𝑏 is the primary criterion for M. This is due to the 

fact that each step of the preconditioned algorithms will call for a linear system solution using 

the matrix M. Also M should close to A in some sense and it should clearly be non-singular. 

Considering the ways in which the preconditioner is applied to solve the original system. 

Once a preconditioning matrix M is available, there are three known ways of applying the 

preconditioner. The preconditioner can be applied from the left, leading to the preconditioned 

system: 

𝑀−1𝐴𝑥 = 𝑀−1𝑏 (2.8) 

Alternatively, it can also be applied to the right: 

 
𝐴𝑀−1𝑢 = 𝑏, 𝑥 Ξ 𝑀−1𝑢 

Note that the above formulation amounts to making the change of variables u = Mx, and 

finding with regard to the unknown u, the system. Finally, a common situation is when the 

preconditioner is available in the factored form: 

𝑀 = 𝑀𝐿𝑀𝑅 

where, typically 𝑀𝐿and 𝑀𝑅 are triangular matrices. In this situation, the preconditioning can 

be divided 
𝑀−1𝐴𝑀−1𝑢 = 𝑀−1𝑏, 𝑥 Ξ 𝑀−1𝑢 

𝐿 𝑅 𝐿 𝑅 

It is imperative to preserve symmetry when the original matrix is symmetric, so the split 

preconditioner seems mandatory in this case. However, there are other ways of preserving 

symmetry, or rather to take advantage of symmetry, even if M is not available in a factored 

form.[17][18] 
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Domain Decomposition Methods 

In preconditioning methods, domain decomposition refers to the process of subdividing the 

solution of the large linear system into a smaller problems and therefore, its solutions can 

actually be used to produce a solver (or preconditioner) for the system of equations that effect 

from the discretization of the PDE on the whole domains. In this context, domain 

decomposition refers only to the solution method for the algebraic system of equations 

arising from discretization.[40][45] 

There are some specific importance which is given to the techniques which are well 

appropriate to the parallel method of large-scale scientific applications and progressive 

numerical simulations. Some computational aspects related to their parallel implementation 

are also addressed. This thesis is not purposely only for those who specialized in domain 

decomposition but rather for scientists who also have some special knowledge about linear 

algebra and discretization techniques and those who would like an introduction into domain 

decomposition.[49] 

Two-level domain decomposition method 

Single level methods are effective only for a small number of subdomains. The problem with 

single level methods is that the information about f and g in (2.13) in one subdomain traverse 

through all the intermediate subdomains only through their common interfaces.[36][42] Thus for 

example the convergence rate of the single level adaptive Schwarz method becomes 

progressively worse when the number of subdomains becomes large. From an algebraic point 

of view this loss of efficiency is caused by the presence of small eigenvalues in the spectrum 

of the preconditioned, coefficient matrix. They have a harmful influence on the condition 

number, thus in addition to traditional preconditioner like ASM, a second kind of 

preconditioner can be incorporated to improve the conditioning of the coefficient matrix, so 

that the resulting approach gets rid of the effect of both small and large eigenvalues. The 

iterative process that results is referred to as a "projection method," and the combined 

preconditioning is also known as "two-level preconditioning."[48][53] 

Simple example of two-level preconditioned system is Conjugate Gradient method 

(CG)[32][35][51] combined with a two-grid method. In this case, together with the fine-grid 

linear system from which the approximate solution of the original differential equations is 

computed, a coarse-grid system is build based on a predefined coarse grid. From a Multi-Grid 

(MG)[9][24][25] point of view, the (second-level) coarse-grid system is used to reduce the slow- 

varying, low frequency components of the error, that could not be effectively reduce on the 

(first-level) fine grid. 

 
Methodology 

Schwarz Method with Inflation 

Here we try to show that the original Schwarz method need overlapping subdomains in order 

for convergence. Furthermore, in order to display the pace of the method and however the 

need of the overlap is connected together. For us to increase the efficiency of the method, we 

need to introduce what we called the “inflation” and the tool that is needed in creating the 

overlapping regions by duplicating unknowns at the algebraic level. Once an inflation has 
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𝐼=1 

Ω 

2 

been performed, it leads to the modified Schwarz method. A simple Dirichlet-type interface 

conditions can be enhanced when we introduce more of complex interface conditions. 

 
Definition 3.1 (Inflation). 

Let 𝐷Ω represent a domain, that is, a set of unique indices such that each correspond to an 

unknown.  Further  let  {𝐷𝗇𝐼 +𝐼=1 ...𝑁  represent  a  partition  of 𝐷Ω ,  that  is,  a  set  of  N  disjoint 

subsets, such that 𝖴𝑁 𝐷𝗇 = 𝐷𝗇. Now, each subset 𝐷𝗇𝐼 can be inflated into 𝐷̃𝗇𝐼
 as follows. 

Let 𝑖0 , 𝑖1, . . . 𝑖𝑁𝐼     
denote  the  indices  of DΩI 

.  Then 𝐷̃𝗇𝐼   
is  constructed  by  adding  to 𝐷𝗇𝐼   

the 

duplication of the indices j𝛽 belonging to any subset 𝐷𝗇j≠𝐼 such that 

Inflation 

𝐷̃𝗇𝐼   = 𝐷𝗇𝐼  𝖴 * j𝛽  ∈ 𝐷𝗇𝐼  | E𝑖𝛼  ∈ 𝐷𝗇𝐼 , 𝑎𝑖𝛼𝑗𝛽≠0+ (3.1) 

Where 𝑎𝑖 
𝛼𝑗𝛽 

is the element in the matrix A. The union is the set of inflated subscripts D𝑖𝑛ƒ𝑙. 
𝐷̃𝗇  =𝖴𝑁 𝐷̃𝗇 𝑤ℎ𝑒𝑟𝑒 𝐷𝗇 <  𝐷̃𝗇 (3.2) 

𝐼=1 𝐼 𝐼 𝐼 

In the sub-sequence, we will often announce a set of indices which have the same notation 

than  its  capitalize  identifier,  an  example  is 𝐷𝗇𝐼   
by  I  and 𝐷̃𝗇𝐼   

also  by 𝐼̃.  Then  finally,  the 

inflated operator which is 𝐴𝑖𝑛ƒ or 𝐴̃ actual hold when duplicating the right rows and the right 

columns. 

 
Modified Schwarz Method 

The intense thought of the modified Schwarz method basically consists in using a minimum 

overlapping which is along with interface conditions improvement, in a way that, more than 

“Dirichlet data” is actually passed from one subdomain to another in the iterative process. In 

algebraic terms, these interface condition improvement become an additional sub-block 

matrices in the inflated matrix and that will be called “interface blocks”. 

 
Optimal Algebraic Interface Conditions 

When the problem (2.1) is discretized by a finite element or a finite difference method, it 

yields a linear system 𝐴𝑈 = 𝐹 . If domain Ω in our problem is decomposed into two 

subdomains Ω1 and Ω2 , at the discrete level this decomposition leads to the matrix 

partitioning 
𝐴11 𝐴1 0 𝑈1 𝐹1 

(𝐴 1 𝐴 𝐴  2) (𝑈  ) = (𝐹  ). (3.3) 

0 𝐴2 𝐴22 𝑈2 𝐹2 

Where 𝑈Г corresponds to the unknowns on the interface Γ, and 𝑈𝑗, j = 1, 2 represent the 

unknowns in the interior of subdomains Ω1 and Ω2. In order to write a “modified” (by new 

interface condition) Schwarz method, we have to introduce two square matrices 𝑆1 and 𝑆2 

which act on vectors of the type 𝑈Г, then the modified Schwarz method reads: 
𝐴 𝐴 𝑈𝑛+1 𝐹1 

(  11 1 ) ( 1 ) = ( 𝑛 𝑛) (3.4a) 
𝐴 1 𝐴     + 𝑆2 

𝑛+1 
Г,1 

𝐹   + 𝑆2𝑈Г,2 − 𝐴 2𝑈2 

(
𝐴22 𝐴2  𝑈𝑛+1 

) ( ) = ( 𝐹2 𝑛 𝑛) (3.4b) 
𝐴 2 𝐴    + 𝑆1 

𝑛+1 
Г,2 

𝐹   + 𝑆1𝑈Г,1 − 𝐴 ,1𝑈1 

𝑈 

𝑈 

𝐼 
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11 

22 

𝑖 

𝑖=1 

𝑖 

𝑖=1 𝑖=1 

𝑖=1 𝑖=1 

Lemma 3.1. Assume that 𝐴     + 𝑆1 + 𝑆2 is invertible and problem in (3.3) is well-posed. 

Then if the algorithm (3.4) converges, it converges to the solution of (3.3). This is to be 

understood in the sense that if we denote by (𝑈∞, 𝑈∞ , 𝑈∞, 𝑈∞ ) then the limit as n goes to 
1 ,1 2 ,2 

infinity of the sequence 
(𝑈𝑛, 𝑈𝑛 , 𝑈𝑛, 𝑈𝑛 )𝑛≥2 we have for i = 1, 2: 

1 1 2 2 
𝑈∞ = 𝑈𝑖 and 𝑈∞ = 𝑈∞ = 𝑈 . 

𝑖 ,1 ,2 

Lemma 3.2. Assume that 𝐴𝑖𝑖 is invertible for 𝑖= 1,2. Then in algorithm (3.4a)-(3.4b), taking 

𝑆1 = − 𝐴 1𝐴−1 𝐴1  

and 

𝑆2 = − 𝐴 1𝐴−1 𝐴2  

This yields a convergence in two steps. 

 
ADDM Preconditioning 

The motivation of our choice of preconditioner is the additive schwarz procedure with its 

basic form presented in the Algorithm below. Now, it is simple to obtain the preconditioning 

matrix from the additive schwarz procedure. 

 
Algorithm3.1. Additive Schwarz Iterations. 
Required: 𝐷𝗇 = 𝑈𝑁  𝐷𝗇 𝑡ℎ𝑢𝑠 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇 

𝑖=1 𝑖 𝑖 

1: for 𝑖 = 1 to N 𝐝𝐨 

2: Compute 𝛽𝑖 = 𝑅𝑇𝐴𝑖𝑅𝑖(𝐹 − 𝐴𝑈) 

3: end for 

4: 𝑈𝑛𝑒𝑤 = 𝑈 + ∑𝑁 
 

𝛽𝑖 
 

For better picture we need to introduce some notations, that is: 

Notation 3.1 

𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑖, 𝑖) (3.5) 
𝑃𝑖 = 𝑅𝑇𝐴−1𝑅𝑖𝐴 (3.6) 

𝑖 𝑖 
𝑇𝑖 = 𝑃𝑖𝐴−1 = 𝑅𝑇𝐴−1𝑅𝑖 (3.7) 

𝑖 𝑖 

It is notice that, the new iterate in ASM satisfies the relation using the above notation 

𝑈𝑛𝑒𝑤 = (✰ − ∑ 𝑃𝑖)U + ∑𝑁 𝑇𝑖𝐹 

Thus, this iteration corresponds to a fixed-point iteration 𝑈𝑛𝑒𝑤 = 𝐺𝑈 + 𝑓, 𝑤𝑖𝑡ℎ 

𝐺 = 𝐼 − ∑𝑁 𝑃𝑖, 𝑓 = ∑𝑁 𝑇𝑖𝐹 

With the relation G = ✰ − M−1A between G and the preconditioning matrix M, the result is 

that 

 

 
 

and 

𝑁 

𝑀−1𝐴 = ∑ 𝑃𝑖 

𝑖=1 

𝑁 𝑁 

𝑀−1 = ∑ 𝑃𝑖 𝐴−1 = ∑ 𝑇𝑖 

𝑖=1 𝑖=1 
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Now the procedure for applying the preconditioned operator M−1 becomes clear (see 

Algorithm 3.2). 

z 

 

Algorithm3.2. Additive Schwarz Preconditioner. 

1: Input : (𝐷𝐷𝑀 𝑉𝑒𝑐𝑡𝑜𝑟)𝑣 

2: Output: (𝐷𝐷𝑀 𝑉𝑒𝑐𝑡𝑜𝑟)𝑧 = M−1𝑣 

3: for 𝑖 = 1 to N 𝐝𝐨 

4: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟)𝑧𝑖 ∶= 𝑇𝑖𝑣 = ,𝑒𝑛𝑑𝑜𝑚𝑜𝑝ℎ𝑖𝑐 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑖, 𝑖)-−1𝑣𝑖 

5: end for 

6: Compute 𝑧 ∶= 𝑧1 + 𝑧2+. . . +𝑧𝑁. 

Note that, the do loop can be performed in parallel. In line 6 it sums up all the vectors 𝑧𝑖 in 

each domain to obtain global vector z. 

 
Low-Rank Correction 

The goal of this low-rank correction is to build a preconditioner for matrix A in the form: 
𝐴 = . 

𝐵 𝐸
/ = . 

𝐼 0
/ .

𝐵 𝐸
/ which is obtained from the DDM. 

𝐸𝑇 𝐶 𝐸𝑇𝐵−1 𝐼 0 𝑆 
The preconditioning matrix M is specified in the form of: 𝑀 = . 

𝐼 0
/ .

𝐵 𝐸
/ 

𝐸𝑇𝐵−1 𝐼 0 𝑆̃ 

Where 𝑆 = 𝐶 − 𝐸𝑇𝐵−1𝐸 , B is diagonals corresponding to the interior unknowns of the 

decouple subdomains and C is the global interface. 

However, we will approximate straightaway the inverse of S instead of S by exploiting low- 

rank properties. Generally, we seek an approximation of the form: 

𝑆̃−1  = 𝐶−1 + 𝐿𝑅𝐶 ,  where 𝐿𝑅𝐶  stands  for  a  low-rank  correction  matrix.  From  a  practical 

point of view, it will be difficult to compute directly an approximation in to the matrix𝑆−1 − 

𝐶−1, since 𝑆−1 is not available and we do not (yet) have an efficient means for solving linear 

systems with the matrix S. Instead we will extract this approximation from that of the matrix 

A which is defined in the decay properties of 𝑆−1 − 𝐶−1. We also consider the expression of 

𝑆 Ξ 𝐿(𝐼 − 𝐻)𝐿𝑇 and the eigen-decomposition of H in the expression: 𝐻 = 𝐿−1𝐸𝑇𝐵−1𝐸𝐿−𝑇 = 

𝑈fl𝑈𝑇 ,where U is unitary and fl = diag( 𝜆1, . . . , 𝜆𝑠) which is the diagonal matrix of 

eigenvalues. 

This yields: 

S = 𝐿(𝐼 − 𝑈fl𝑈𝑇)𝐿𝑇 = 𝐿𝑈(𝐼 − fl)𝑈𝑇𝐿𝑇 (3.8) 

The inverse of S is then: 

 
Which is written in the form: 

𝑆−1 = 𝐿−𝑇𝑈(𝐼 − fl)−1𝑈𝑇𝐿−1, 

𝑆−1 = 𝐿−𝑇(𝐼 + 𝑈,(𝐼 − fl)−1 − 𝐼-𝑈𝑇)𝐿−1, 

𝑆−1 = 𝐶−1+𝐿−𝑇𝑈,(𝐼 − fl)−1 − 𝐼-𝑈𝑇𝐿−1 

Again, the idea of low-rank approximation came in to mind when a matrix A is considered as 

symmetric positive definite (SPD). The preconditioner that we want to build or obtained 

through this approach would be called ADDM preconditioner. The preconditioner is 

presented in the form: 
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0 

𝑖 

k,θ 

𝑀−1 = 𝐴−1 + (𝐴−1𝐸)𝐺̃−1(𝐸𝑇𝐴−1) (3.9) 
0 0 0 

Where   𝐺 = 𝐼 − 𝐸𝑇𝐴−1𝐸, now, once we have an approximation of 𝐺̃−1  to 𝐺−1 thus give rise 

to the application of the ADDM precondition which will have two solves with the 𝐴0. 

Implementation of the ADDM Preconditioner 

In building the ADDM, we first of all have to consider a graph partitioner which is called on 

the adjacency graph to partition the domains in the system this is shown in the figure 3-1 

below. For each of the subdomain acquired, we then detached both the interior and interface 

nodes, and then reordering is done on the general matrix. Secondly, we build a solver for 

each of these 𝐵𝑖,𝖺 Ξ 𝐵𝑖 +𝖺−2 𝐸𝑖𝐸𝑇. Note that, the first and the second procedure can be done 

in parallel. The third step which is the last but not the least, is to build a solver purposely for 

global matrix such as 𝐶𝖺. Finally, this step is the last and classified as the most expensive 

stage which is to compute the low-rank approximations: 

𝐿𝑅𝐶  = 𝑆̃−1  − 𝐶−1 (3.10) 

But,  
𝑆−1 = 𝐶−1+𝐿−𝑇𝑈,(𝐼 − fl)−1 − 𝐼-𝑈𝑇𝐿−1 

 
𝐿𝑅𝐶 = 𝐶−1+𝐿−𝑇𝑈,(𝐼 − fl)−1 − 𝐼-𝑈𝑇𝐿−1 − 𝐶−1 (3.11) 

 
𝐿𝑅𝐶  = 𝐿−𝑇𝑈,(𝐼 − fl)−1 − 𝐼-𝑈𝑇𝐿−1 (3.12) 

 

We try to apply the ADDM with LR preconditioner by considering the ADDM to be written 

as: 
𝑀−1 = 𝐴−1(𝐼 + 𝐸𝐺−1 𝐸𝑇𝐴−1) (3.13) 

0 𝑘,𝜃 0 

 

The steps involves in the application of 𝑀−1 to a vector x is shown in the 

algorithm below. The vector u which is a resultant of the last step is the desire vector 

𝑢 = 𝑀−1𝑥. To solve the 𝐴𝑜, we need to employed all the five steps in the algorithm. 
 

Algorithm3.3. ADDM Preconditioner with Preconditioning Operations 

1: Solve: 𝐴𝑜𝑧 = 𝑥 Solves 𝛽𝑖,𝛼 𝑎𝑛𝑑 𝐶𝛼 

2: Compute: y = ETZ 

3: Compute: w = G−1 y 

4: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒: 𝑣 = 𝐸𝑤 

5: Solve:   𝐴𝑜𝑢 = 𝑥 + 𝑣 Solves 𝛽𝑖,𝛼 𝑎𝑛𝑑 𝐶𝛼 

Numerical Results 

We try to implement the ADDM in Matlab and some numerical results were obtained to 

compare the performance of ADDM preconditioner to restricted addictive schwarz (RAS) 

method. The accelerators were conjugate gradient method for matrix and preconditioners 

which are SPD and generalized minimal residual method for indefinite cases. We then try to 

compare the preconditioner we have implemented that is ADDM - CG to RAS - GMRES. We 

also consider a number of factors when comparing the preconditioners after the 

implementation of the ADDM. We considered the finite difference methods (fdm), number of 
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subdomains (nDom), number of iterations (n-It), time of iterations (t-It), time of building the 

preconditioner (t-p) and, finally the residuals. 

The results and the analysis of this experiment is shown on experimental result table 4-1 and 

4-2. 

Results Showing Performance of ADDM without Low Rank Correction 

 
Fdm nDom n-It t-It t-p S=Residuals 

32 2 109 114 0.097 1.7779e-09 
 

4 224 126 1.032 1.6028e-09 

8 320 172 1.531 1.8634e-09 

16 400 205 2.305 8.0138e-09 

64 2 227 237 2.502 7.4740e-10 

4 400 269 3.120 1.8503e-09 

8 400 269 3.120 3.0072e-07 

16 400 269 3.120 5.8094e-05 

128 2 293 307 4.174 7.8237e-10 

4 - - - - 

8 - - - - 

16 - - - - 
 

From above table 4-1 shows the performance of the ADDM preconditioner without the LRC. 

We implemented the ADDM in Matlab and the above results were obtained. We loaded the 

system with a smaller matrix size and keep changing the subdomains in Metis_test python 

from 2 to the highest subdomain which is 16 as can be shown in table 4-1 above. 

Again, we increase the matrix size to a larger system fdm and further increases the size to the 

largest system of fdm to obtained the results. 

From the table 4-1, it can be seen that, as the number of subdomains increases, the number of 

iteration count also increases alongside and whiles the time of iteration increases, the time in 

building the preconditioner also increases and thereby minimizing the residuals in both fdm 

32 and 64 respectively. 

For the case of fdm 128, we only have the iteration count for only for the smallest subdomain 

and the rest of the subdomains failed to performed. We can however conclude that, our choice 

of preconditioner is a better preconditioner since it allows for convergence to be achieved 

within a very possible fewest iterations with the best iteration iteration time. 
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From above table 4-2 shows the performance of the ADDM preconditioner with the LRC. 

From the performance with low rank correction, it can be shown that, there have been a 

significant improvement in the number of iterations, the time of iterations and the time to 

build the preconditioner as a result of the increase in the ranks of the matrix. The main issue 

with the preconditioner is the fact that it is difficult to update. For instance, when we 

computed the preconditioner to the first matrix, we finds out that it was not accurate enough 

in order to yield convergence. In the case of  the ADDM we started all over from the 

beginning instead of updating it from where the error is. 

However, after the introduction of the low rank, the preconditioner is improved by obtaining 

a low rank correction matrix G, where 𝐺 = 𝐼 − 𝐸𝑇𝐴−1𝐸. And adding a few more vectors that 

is increase k and this can be achieved in a number of ways without having to throw away the 

vectors already computed which can even consume more time. 

 

Conclusions 

Algebraic domain decomposition methods have been our main focused in this thesis, and by 

that, we were to designed a scalable ADDM preconditioner in handling large linear systems 

or problems. We were able to have access to the coefficients of the matrix for the linear 

systems to be solved. We also have introduced some two fresh algebraic method for building 

interface conditions. The most important fact about the methods are that, both methods are 

adaptive and can also be used during the first solve, that is, even before the first solve is 

completed. 
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For both methods, an information is pull out from the Krylov space produce by a few 

iterations of the Schwarz method algorithm with an overlapping subdomains. We also 

consider the Ritz eigenvectors which corresponds to the low eigenvalues since they are 

accountable for the inactivity or the slowness of the Krylov solver preconditioned by the 

Schwarz algorithm. A modification of another method arises from the changes in the 

algorithm of ASM to MSM. We were able to also check for their convergence level by the 

influence of the inflation in the system. 
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