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Abstract 

Even though low-cost inertial navigation units (INS) are affordable, their 

data gathering is often of low quality and accuracy. In addition, the 

nonlinear nature of process and measurement models renders those INS 

incapable of delivering accurate navigation for airborne vehicles. Given the 

constraint that MEMS sensors used in low-cost INS design offer signals 

with bias variations and large amounts of noise, the present paper aims to 

design an EKF for low-cost UAV attitude estimation using a perturbed 

process noise model and a nonlinear measurement estimator. The UAV 

orientations are obtained using a data fusion model that uses 

accelerometers and magnetometer measurements gathered from field 

experiments. First-order Gauss-Markov models and zero-mean Gaussian 

noises are used to model biases and measurement noises, respectively. 

Simulation results reveal that the proposed method can effectively estimate 

the UAV attitude with high precision and cheap cost, both of which have 

practical applications in flight control systems.  

 

Keywords: Low-cost INS, MENS, extended Kalman filter, UAV attitude 

estimation, Gauss-Markov model 

. 

 

1. Introduction 

Cost-effective Unmanned Aerial Vehicle (UAV) platforms are becoming increasingly popular 

in the civilian and military aviation sectors for various tasks, including surveillance, 

reconnaissance, and inspection. The Inertial Navigation Systems (INS) in these automobiles 

typically utilize low-cost and low-power inertial sensing technology developed for use in 

Micro-Electro-Mechanical Systems (MEMS). Unlike other types of gyroscopes, such as active 

ring-laser and interferometric fiber-optic sensors, MEMS gyros are less precise, noisier, more 

sensitive to external impacts, and have larger biases [1,2]. Also, MEMS-based INS can't 

directly estimate orientation in the air. If MEMS-based INS need to be reliable and accurate 
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enough for UAV attitude monitoring and estimation, Nonlinear filtering and data fusion are of 

prime importance. 

On the other hand, Extended Kalman Filter (EKF) and Gauss-Markov models are popular 

filters and estimators used for attitude estimate, tracking, nonlinear measurement, bias, and 

uncertainty modeling [3-8]. However, in numerous attitude estimation applications, the 

linearization inherent to EKF results in performance deterioration and unbounded estimation 

errors. This is due mainly to highly nonlinear dynamics, nonlinear measurement models, and 

the absence of reasonable priori state estimates. Various nonlinear attitude estimation 

approaches with enhanced robustness and precision have been developed in response to these 

limitations. Optimal Kalman Filter (OKF), Particle Filters (PFs), and the Generalized 

Complementary Extended Kalman Filter (GCEKF) are among the valuable alternatives to the 

conventional EKF [9]. 

Recently, nonlinear filtering for flying vehicles’ attitude estimation has received growing 

interest. The mission of autonomous vehicles such as UAVs requires high-precision attitude 

prediction. Among the most recent studies in UAV attitude estimation using nonlinear filters, 

one can cite the comparison study between EKF and UKF for attitude estimation of a fixed-

wing UAV presented in [10], in which the authors demonstrated that UKF exhibits superior 

performance and robustness compared to EKF. In the presence of Gaussian process and 

measurement disturbances, the authors of [11] recommended utilizing OKF to estimate the 

state variables of a quadrotor UAV. Despite disturbances, accurate location and attitude 

monitoring were predicted using OKF. In the research presented in [12], Particle optimization 

Swarm (POS) was applied successfully for attitude estimation of a fixed-wing UAV in 

dynamic environments. In [13], the authors presented a novel GCEKF method based on vector 

observation. Using cross-products, this inventive method estimated and compensated for 

attitude errors.  In [14], a complementary filter-based attitude estimation method was proposed 

in which the gyroscope's output angular velocity was obtained by combining the acceleration 

measured by an accelerometer and the magnetic field measured by a magnetometer. Using a 

cheap navigation device with an IMU, ultrasonic range sensors, and an optical flow camera, 

the authors in [15] designed a Kalman filtering-based sensor fusion system for navigation in 

areas where global positioning system (GPS) signals are blocked. To deal with heterogeneous 

sensors with varying sample rates, a multi-rate EKF was proposed. The results demonstrated 

high precision and stability of the attitude estimation technique. In [16], authors presented an 

EKF for a low-budget MARK sensor setup (magnetic, angular rate, and gravity). The 

proposed method combines the EKF with a two-stage gradient descent algorithm (GDEKF). 

The attitude angles were first adjusted using the accelerometer and magnetometer in a two-

stage gradient descent technique. The gyroscope's computed attitude and bias were adjusted 

using quaternions in conjunction with the gyroscope measurement values. The outcomes 

demonstrated the proposed filter's effectiveness in measurement accuracy, anti-interference 

performance, and dynamic performance. However, most of the previously mentioned filters 

are uncertain or unstable due to UAVs' rapid attitude dynamics and substantial measurement 

error systems [17-20].  
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Nonlinear filtering methodologies for UAV attitude estimation depend on its kinematics 

representation and observation modeling. Conventional EKF-based estimators are either 

singular or redundant [21]. Further, in low-cost UAV technologies, the IMU system comprises 

low-performance gyros, accelerometers, and magnetometers, making them susceptible to 

errors and noises, including bias and measurement-corrupted noises. Significant guidance, 

navigation, and control issues arise when biases are integrated into the mechanization process. 

To overcome this dilemma, a new perturbed process noise-based EKF design for a low-cost 

UAV attitude estimation is proposed in the present study. To demonstrate the effectiveness of 

the proposed filter, the attitude, and gyros measurement biases of the UltraStick e25 UAV are 

estimated using flight test data. White Gaussian noises are used to introduce process and 

measurement noises, and first-order Gauss-Markov processes are used to model the gyro 

biases. 

2. Extended Kalman Filter And Sensitivity Analysis  

2.1 Extended Kalman filter design 

Consider the following nonlinear dynamic system  

{
𝒙̇(𝑘) = 𝒇(𝒙(𝑘 − 1), 𝒖(𝑘),𝒘(𝑘))

𝒚(𝑘) = 𝒉(𝒙(𝑘), 𝒗(𝑘))                    
                                                              (1) 

where 𝒇 ∈ ℝ𝒏 and e 𝒉 ∈ ℝ𝒎 are differential field vectors; 𝒙 ∈ ℝ𝒏,𝒖 ∈ ℝ𝒑, 𝒚 ∈ ℝ𝒎 denote 

the system state vector, the control vector, and the output vector, respectively; 𝒘 ∈ ℝ𝒏, 

𝒗 ∈ ℝ𝒎 are the process noise and the sensor-noise input, respectively. It is a common 

practice to implement nonlinear Kalman filters using state-space-based algorithms that 

combine model and measurement data to produce an optimal state estimation. 

Stage 1: Time update 

As shown in the following equation, the filter first generates a current estimate (prediction) of 

the system state vector 𝒙 and its associated error covariance matrix 𝑷 for time ′𝑘′ based on 

the previous estimate and error covariance matrix at time ′𝑘′ 

,

𝒙(𝑘|𝑘 − 1) = 𝒇(𝒙(𝑘 − 1|𝑘 − 1), 𝒖(𝑘),𝒘(𝑘))

𝑷(𝑘|𝑘 − 1) = 𝐅(𝑘|𝑘 − 1)𝑷(𝑘 − 1|𝑘 − 1)𝐅𝑇(𝑘|𝑘 − 1) + 𝑳(𝑘)𝑸(𝑘)𝑳𝑇(𝑘)

𝒚(𝑘) = 𝒉(𝒙(𝑘|𝑘 − 1), 𝒗(𝑘))

                   (2) 

Table 1. EKF predict variables 

Variable Definition 

𝑘 Time step 

𝒙(𝑘|𝑘 − 1) Prior estimate 

𝑷(𝑘|𝑘 − 1) Prior estimation-error covariance 
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𝑭(𝑘|𝑘 − 1) State transition model  

𝑳(𝑘) Process noise model 

𝑸(𝑘) Process noise covariance 

where 𝑭 = 𝜕𝒇 𝜕𝒙⁄ ∈ ℝ𝒏×𝒏, 𝑳 = 𝜕𝒇 𝜕𝒘⁄ ∈ ℝ𝒏×𝒏 and 𝒉(. )is an observation nonlinear vector 

function. The following condition, which rules out any overconfidence in the estimate 𝒙̂, 

must be verified by the matrix 𝑷 in order to ensure internal consistency 

 𝑷(𝑘|𝑘 − 1) − 𝑐𝑜𝑣,𝒙(𝑘|𝑘 − 1) − 𝒙(𝑘|𝑘 − 1)- ≥ 0                            (3) 

Stage 2: Measurement update 

Using an observation model, the a priori estimate derived in stage 1 (Eq. 10) is adjusted. 

Compared to the prior estimates, the following posteriori state and error covariance matrices 

have a smaller standard error 

{
𝒙(𝑘|𝑘)  =  𝒙(𝑘|𝑘 − 1) + 𝑲(𝑘)𝒆(𝑘)

𝑷(𝑘|𝑘)  =  (𝑰 − 𝑲(𝑘)𝑯(𝑘))𝑷(𝑘|𝑘 − 1)
                                       (4) 

with 𝒆(𝑘) and 𝑲(𝑘) being the innovation and Kalam gain matrix, respectively  

,

𝒆(𝑘) = ,𝒚(𝑘) − 𝑯(𝑘)𝒙(𝑘|𝑘 − 1)-

𝑲(𝑘) = 𝑷(𝑘|𝑘 − 1)𝑯𝑇(𝑘)𝑺−1(𝑘)

𝑺(𝑘) = ,𝑯(𝑘)𝑷(𝑘|𝑘 − 1)𝑯𝑇(𝑘)+𝑴(𝑘)𝑹(𝑘)𝑴𝑇(𝑘)-

                                                       (5) 

where 𝑯(𝑘) = 𝜕𝒉(𝒙(𝑘|𝑘 − 1)) 𝜕𝒙(𝑘|𝑘 − 1)⁄ ∈ ℝ𝒑×𝒏 denotes the observation model matrix 

𝑴 = 𝜕𝒉(𝒙(𝑘|𝑘 − 1)) 𝜕𝒗(𝑘|𝑘 − 1)⁄ ∈ ℝ𝒏×𝒑 denote and the measurement noise model 

matrix, respectively. It is worth noting that  𝑭, 𝑳, and 𝑯 are Jacobian matrices and 𝒚(𝑘) −

𝑯(𝑘)𝒙(𝑘|𝑘 − 1) represents the discrepancy between actual measurements 𝒚(𝑘) and 

predicted ones 𝑯(𝑘)𝒙(𝑘|𝑘 − 1). 

Table 2. EKF update variables 

Variable Definition 

𝒙(𝑘|𝑘) Posterior estimate  

𝑷(𝑘|𝑘) Posterior estimation-error covariance 

𝑭(𝑘|𝑘 − 1) State transition model  

𝒆(𝑘) Innovation  

𝑲(𝑘) Filter gain matrix 

𝑺(𝑘) Estimator gain matrix 

𝑯(𝑘) Measurement matrix 
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𝑹(𝑘) Measurement noise covariance 

2.2 Sensitivity analysis 

Consider the case 𝒖(𝑘) = 0, the EKF (2)- (5) is written as follows 

{
  
 

  
 
𝒙(𝑘|𝑘 − 1) = 𝐅(𝑘)𝒙(𝑘 − 1) + 𝑳(𝑘)𝒘(𝑘)

𝑷(𝑘|𝑘 − 1) = 𝐅(𝑘)𝑷(𝑘 − 1|𝑘 − 1)𝐅𝑇(𝑘) + 𝑳(𝑘)𝑸(𝑘)𝑳𝑇(𝑘)

𝒚(𝑘) = 𝑯(𝒙(𝑘|𝑘 − 1), 𝒗(𝑘))                                                                                     

𝒙(𝑘|𝑘) = 𝒙(𝑘|𝑘 − 1) + 𝑲(𝑘),𝒚(𝑘) − 𝑯(𝑘)𝒙(𝑘|𝑘 − 1)-                                    

𝑷(𝑘|𝑘) = (𝑰 − 𝑲(𝑘)𝑯(𝑘))𝑷(𝑘|𝑘 − 1)                                                                   

𝑲(𝑘) = 𝑷(𝑘|𝑘 − 1)𝑯𝑇(𝑘),𝑯(𝑘)𝑷(𝑘|𝑘 − 1)𝑯𝑇+𝑴(𝑘)𝑹(𝑘)𝑴𝑇(𝑘)-−1         

                   (6) 

To start sensitivity analysis of the EKF (6), we make the following assumptions 

Assumption 1. 𝑳 = 𝑴 = 𝑰. 

Assumption 2. 𝑸 and 𝑹 are symmetric.  

Assumption 3. There exists an orthogonal matrix 𝚲 such that 𝜦𝑇𝑸𝜦, 𝜦𝑇𝑹𝜦, 𝜦𝑇𝑷(𝑘 − 1|𝑘 −

1)𝜦 and 𝜦𝑇𝑷(𝑘|𝑘)𝜦 are diagonal matrices. 

Assumption 4. 𝑸 = 𝑸𝑡 + 𝛿𝑸 where 𝑸𝑡 and 𝛿𝑸 denote the covariance of the true process 

noise and a fictitious process noise, respectively. 

For simplicity, we drop the notation ‘𝑘’ from all the matrices expect for 𝑷 and we substitute 

𝑷(𝑘|𝑘) witn𝑷𝑘,𝑘. From equation (6), using assumption 1, 𝑷𝑘,𝑘 can be written as follows 

𝑷𝑘,𝑘 = (𝑰 − 𝑲𝑯)𝑷𝑘,𝑘−1                                                                                                                                        

= (𝑰 − 𝑷𝑘,𝑘−1𝑯
𝑇[𝑯𝑷𝑘,𝑘−1𝑯

𝑇+𝑹-−1𝑯)𝑷𝑘,𝑘−1                                                                        

=  (𝑰 − [𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇 + 𝑸]𝑯𝑇[𝑯(𝐅𝑷𝑘−1,𝑘−1𝐅

𝑇 + 𝑸)𝑯𝑇+𝑹-−1𝑯). [𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇 + 𝑸]

    

  (7) 

Consider the case  𝑯 = 𝑰 

𝑷𝑘,𝑘 = (𝑰 − [𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇 + 𝑸][(𝐅𝑷𝑘−1,𝑘−1𝐅

𝑇 + 𝑸)+𝑹-−1). [𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇 + 𝑸]               

(8) 

Using assumption 3, 

𝑷𝑘,𝑘 =  𝚲(𝑰 − [𝚲𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇𝜦𝑇 + 𝚲𝑸𝜦𝑇][(𝚲𝐅𝑷𝑘−1,𝑘−1𝐅

𝑇𝜦𝑇 + 𝚲𝑸𝜦𝑇)+𝚲𝑹𝜦𝑇-−1).

[𝚲𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇𝜦𝑇 + 𝚲𝑸𝜦𝑇]𝜦𝑇                                                                        

               

(9) 

Assume 𝚲𝑹𝜦𝑇 = 𝛀, 

𝚲𝑷𝑘,𝑘𝜦
𝑇 = (𝑰 − [𝚲𝐅𝑷𝑘−1,𝑘−1𝐅

𝑇𝜦𝑇 + 𝚲𝑸𝜦𝑇][𝚲𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇𝜦𝑇 + 𝚲𝑸𝜦𝑇+𝛀-−1).

[𝚲𝐅𝑷𝑘−1,𝑘−1𝐅
𝑇𝜦𝑇 + 𝚲𝑸𝜦𝑇]                                                                        

               

(10) 
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Since 𝜦𝑷𝑘,𝑘𝜦
𝑇 is diagonal, it results from equation (10) and assumption (4) that the 

eigenvalue 𝑃̃𝑖,𝑘 is given as follows 

𝑃̃𝑖,𝑘 = ((𝑓𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1 + 𝑞̃𝑖 + 𝛿𝑞̃𝑖) −

(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖)

2

𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖

)                                       (11) 

where 𝑃̃𝑖,𝑘−1, 𝑓𝑖,𝑘−1, 𝑞̃𝑖, 𝛿𝑞̃𝑖, and 𝜆𝑖 denote the eigenvalues of 𝑷𝑘−1,𝑘−1 𝐅, 𝑸𝑡, 𝛿𝑸 and 𝛀, 

respectively. Equation (11) shows that the eigenvalues 𝑃̃𝑖,𝑘 depend on the process noise 

covariance eigenvalues 𝑞̃𝑖 and the measurement noise covariance eigenvalues 𝜆𝑖. First, the 

gradient of 𝑃̃𝑖,𝑘 with respect to the eigenvalue 𝛿𝑞̃𝑖 is given, from equation (11), as follows 

∆𝑃̃𝑖,𝑘 =
∂𝑃̃𝑖,𝑘

∂𝛿𝑞̃𝑖
|
𝛿𝑞̃𝑖=0

𝛿𝑞̃𝑖 = (1 −
2(𝑓̃𝑖,𝑘−1

2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖)(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)−(𝑓̃𝑖,𝑘−1

2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖)
2

(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)

2 )𝛿𝑞̃𝑖

         = (1 −
2(𝑓̃𝑖,𝑘−1

2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)−(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖)

(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)

) 𝛿𝑞̃𝑖

= (1 −
(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+2𝜆𝑖)

(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)

) 𝛿𝑞̃𝑖                           (12)

   

Next, using equation (12), the sensitivity ∆𝑃̃𝑖,𝑘 with respect to 𝜆𝑖 can be addressed as follows 

∂∆𝑃̃𝑖,𝑘

∂𝜆𝑖
= −

2(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)−(𝑓̃𝑖,𝑘−1

2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+2𝜆𝑖)

(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)

2 𝛿𝑞̃𝑖

         =  −
(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖)

(𝑓̃𝑖,𝑘−1
2 𝑃̃𝑖,𝑘−1+𝑞̃𝑖+𝛿𝑞̃𝑖+𝜆𝑖)

2 𝛿𝑞̃𝑖                                        
                          (13) 

Since 𝚲𝑹𝜦𝑇 = 𝛀  is a positive semidefinite matrix with 𝜆𝑖 ≥ 0, we conclude that  

∂∆𝑃̃𝑖,𝑘

∂𝜆𝑖
< 0,         𝑓𝑜𝑟   𝛿𝑞̃𝑖 > 0                                                                      (14) 

From equation (12), one can find that  

{
lim𝜆𝑖→0 ∆𝑃̃𝑖,𝑘 = 0          

lim𝜆𝑖→∞ ∆𝑃̃𝑖,𝑘 = −𝛿𝑞̃𝑖  
                                                               (15) 

Equation (15) shows that lim𝜆𝑖→0 ∆𝑃̃𝑖,𝑘 (𝜆𝑖) decreases monotonically as 𝜆𝑖 → ∞. 

3. Ekf-Based Uav Attitude Estimation 

In this section, we applied the EKF shown in section 2 to a fixed-wing UAV attitude 

estimation to demonstrate its effectiveness and sensitivity. 

3.1 UAV Attitude parametrization 

The orientation of an aircraft, as described by Euler Angles (EA), is determined by three 

successive revolutions with respect to a fixed inertial reference, with the order of the rotations 

being of utmost importance. In a fixed reference frame, the relationships between angular 

velocities and EA are 
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,

 =  ̇ − 𝑠    ̇

𝑞 = 𝑐𝑜𝑠   ̇ + 𝑠   𝑐𝑜𝑠   ̇

𝑟 = − 𝑠    ̇ + 𝑐𝑜𝑠  𝑐𝑜𝑠   ̇

                                                                 (16) 

 

where  ,  ,  ,  , 𝑞, and 𝑟 denote the roll, pitch, and yaw rotation angles and their 

corresponding rates, respectively. Integrating the following equations, which are derived 

from a simple rearrangement of the original equations (16), gives the orientations of the 

airframe 

,

 ̇ =  + (𝑞 𝑠   + 𝑟 𝑐𝑜𝑠  ) 𝑡   

 ̇ = 𝑞 𝑐𝑜𝑠  − 𝑟 𝑠   

 ̇ = (𝑞 𝑠   + 𝑟 𝑐𝑜𝑠  ) 𝑐𝑜𝑠  

                                                          (17) 

In matrix form, we get 

,

 ̇

 ̇
 ̇

- = *

1 𝑠   𝑡   𝑐𝑜𝑠  𝑡   
0 𝑐𝑜𝑠  −𝑠   

0
 𝑖  

    

    

    

+ {
 
𝑞
𝑟
}                                                  (18) 

Despite drawbacks in EA-based attitude prediction algorithms like drift error accumulation, 

the gimbal-lock problem, and a lack of robustness against disturbances, non-full range 

nonlinear filters can be efficiently developed based on EA for smooth flight trajectories. 

Parameter adaptability and non-cumulative error-adding systems, such as magnetometers, can 

enhance robustness and performance. 

3.2 EKF for attitude estimation 

In the basis of Euler angles, we propose an EKF to predict the attitude of an UAV airframe. 

In this study we define the state vector as 𝒙 = [              𝑞    ]
𝑇
 and the vector 𝒖 =

 𝑇 = ,   q  r-𝑇 . The state and measurement equations in model (2) are given as follows 

{
𝒙𝑘 = 𝑭𝑘,𝑘−1𝒙𝑘 +  𝑘,𝑘−1𝒖𝑘 +𝒘𝑘
𝒚𝑘 = 𝒙 + 𝒗𝑘

                                                   (19) 

with the matrices  𝑭 and   are given by 

𝐅 = [
03×3 𝑻
03×3 03×3

],        = [
𝑻
03×3

]                                                  (20) 

𝑻 = [

1 𝑠   𝑡   𝑐𝑜𝑠  𝑡   
0 𝑐𝑜𝑠  −𝑠   
0 𝑠    𝑐𝑜𝑠  𝑐𝑜𝑠   𝑐𝑜𝑠  

]                                           (21) 

where  = ,   𝑞   -𝑇 denotes the gyros biases vector,   ,  𝑞 and    are the roll, pitch, 

and yaw gyros biases, respectively. The transformation matrix 𝑻 converts body-frame angular 

rates to Euler angular rates. The output vector 𝒚𝑘 in model (19) is supplied by the 

magnetometer and attitude biases. Magnetometers are effective Bayesian recursive filters for 

correcting errors induced by inertial measurements. Using magnetometer readings, the UAV's 

attitude is computed as follows 
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𝒚 = [                               𝑞         ]
𝑇
                                                         (22) 

{
  
 

  
 
  = − 𝑡  2(

  

√  
2+  

2
)

  = − 𝑠  .
  

 
/

  = − 𝑡  2 (
       −   𝑖   

       +   𝑖    𝑖   +        𝑖   
)

                           (23) 

where   ,  ,   and   ,  ,   are the earth’s magnetic field and linear accelerations measured 

along  ,   and   aircraft body axes, respectively; g denotes the gravitational acceleration with 

gravity reference vector defined as follows  

𝒏 = [          ]
𝑇
= ,0  0  − 1-𝑇                                                    (24) 

3.3 Nonlinear measurement, bias, and uncertainties modeling 

Many factors, including nonlinear dynamics, unmodeled dynamics, modeling uncertainties, 

and measurement errors, can cause the EKF to diverge and produce biased estimates. To 

implement the EKF (2)-(5), it is assumed that the process and measurement noises are 

uncorrelated time-independent Gaussian white noises with  𝒐𝒗(𝒘 , 𝒗 ) = 0 and 

 𝒐𝒗(𝒘 , 𝒙0) =  𝒐𝒗(𝒗 , 𝒙0) = 0 

,

 *𝒘 + =  *𝒗 + = 0

 *𝒘 𝒘 
𝑇+ = 𝑸𝛿𝑘 

 *𝒗 𝒗 
𝑇+ = 𝑹𝛿𝑘 

                                                     (25) 

where 𝛿𝑘  denotes the Kronecker delta. The following model updates the sensors 

measurements when non-static bias is present. 

𝒚 = 𝒚 +  +                                                                 (26) 

where 𝒚 and 𝒚  denote the true value and the sensor value vectors, respectively.   is a full 

rank weighting matrix, and   denotes the measurement noise, considered, in this study as an 

independent Gaussian random variable 

{
 *  + = 0

 *    
𝑇+ =  2𝑰𝛿𝑘 

                                                                       (27) 

In the measurement model (26),   represents a first-order Gauss-Markov process 

 ̇ = −
1

 
 + 𝒛                                                                      (28) 
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where  , 𝒛 denote the correlation time (Gauss-Markov time constant) and Brownian noise 

process, respectively, and   denotes the noise variance. 

4. Field Experiment And Simulation Study Results 

The purpose of this section is to evaluate the accuracy of estimating the three attitude angles 

of an UAV frame as well as the convergence of the EKF. The flight test was performed using 

the fixed-wing UltraStick e25 airframe and handled manually with a typical radio control unit 

in an open-loop control. A complete takeoff-to-landing flight mission was performed with 

different maneuvers over 200 seconds. We acquired flight test data and transmitted telemetry, 

with typical sensor biases displayed in Table 3. It is worth noting that the UltraStick airframe 

has been successfully used as a low-cost test platform for model-aided navigation, guidance, 

and control system research at NASA Langley Research Center. 

Table 3. Typical biases and random errors for sensors 

Instrument Bias Variance (all axes) Random Error (all axes) 

Gyros  3 (    𝑠)  1 (    𝑠) 

Accelerometers  0.05 (  𝑠2)  0.00 (  𝑠2) 

Magnetometer  4 (  )  1.25 (  ) 

A test flight was conducted at a cruising speed of 50 (m/s) to evaluate the proposed filter's 

sensitivity to high seed perturbation. (i.e., higher than the aircraft cruise speed). To account 

for the EKF's sensitivity to the errors and uncertainties mentioned above, the process and 

measurement covariances are chosen as follows 

{
𝑸 =     ( 1

2,  ,   
2) + 𝛿𝑞𝑰   

𝑹 =     ( 1
2,  ,   

2)
                                                (29) 

where  𝑖 and  𝑖 denote the standard deviations of process noise and measurement noise, 

respectively. Since the numerical simulation requires discrete-time dynamic models, the 

matrix 𝑸 must be small (i.e., close to zero but not zero). We set  𝑖 = 0.01 and  𝛿𝑞 = 0.1,and 

 𝑖 are set according to equation (15) (see Table 4). The filter was executed offline, and the 

biases and noises were obtained from the IMU's datasheet. Figure 1 shows the measurements 

of the angular velocities vector (i.e., the input vector) 𝒖 =  𝑇 = ,   q  r-𝑇 (see transition 

model (19)), the linear accelerations vector  = [                ]
𝑇
 and the earth’s magnetic 

vector 𝒉 = [                ]
𝑇
 (see measurement model (22)). 
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a) 

 

b) 

 

c) 

Figure 1. Measurements provided by the UAV’s IMU and magnetometer instruments:  

a)gyroscope measurements, b) accelerometer measurements, c) magnetometer measurements. 

Figures 2. and 3 show the estimates of the UAV attitude and the biases of the gyroscope. 

From these results it can be seen how the performance of the proposed algorithm is accurate 

and the convergence is smoother. Moreover, the estimator is stable over the flight period.  
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Figure 2. UAV attitude estimation using AE-UKF a) roll angle, b) pitch angle, c) yaw 

angle. 

 

Figure 3. Gyro biases estimation using AE-UKF a) roll axis, b) pitch axis, c) yaw axis. 

To achieve an ensemble average of estimating errors, we compute the estimation-error 

covariance  , lower and upper limits of deviations   𝑖 = min ( ) and     m   ( ), and 

RMSE (root-mean squared error) 𝑠 as follows 

{
 
 

 
 
  = 𝒙𝑖, − 𝒙̃𝑖

 =
1

 
∑    𝑖

𝑇 
𝑖=1

𝑠 = √
1

 
∑   
 
𝑖=1

                                                              (30) 

where   denotes the length of the data set, and  𝒙̃𝑖, 𝒙𝑖, ,    denote the state estimate, state 

measurement, and error vectors at each time step. Table 4 summarizes the analysis results for 

different standard deviations  𝑖. 

Table 4. Standard deviations of estimation-error covariance and RMSEs 

Instrument  𝑖 = 0.1  𝑖 = 1  𝑖 = 10 

  𝑖  7.0626e-9 1.9468e-10 4.4869e-9 

     0.0192 0.0185 0.0154 

𝑠 0.0059 0.0073 0.0200 
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𝑠̅ = 𝑠 (    −   𝑖 )⁄  0.3067 0.3957 1.3012 

 

From the results shown in Table 4, we find that the gradient ∆𝑃̃𝑖,𝑘 shown in equation (12) is 

sensitive to the eigenvalues  𝑖 and its limit (15) depends on the choice of the matrix  . 

Although the proposed process noise model aided in the investigation of the sensitivity of the 

estimation-error covariance, theoretical extension to include new process and measurement 

noise models is possible. 

5. Conclusion 

In this paper, a novel EKF for attitude estimation of a lightweight UAV was designed. Due to 

the UAV’s nonlinear kinematics and dynamics, nonlinear Kalman filtering is a typical 

solution for attitude estimation. An EKF algorithm for determining the three-attitude 

orientation as well as the gyros biases has been developed and its sensitivity was investigated. 

The algorithm's performance has been validated via simulation and evaluated by field test 

data gathered onboard of an UltraStick e25 UAV. The method is extremely suitable for future 

implementation on an onboard system with limited electronic resources. The results enable 

assurance to pursue guidance, navigation, and control tasks in real time.  
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