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Laplace transform, etc.

Introduction:

The Appell’s functions F, to F, (see [26]; p. 224) are defined in the following way:

F(a:B.cr;ab)=

5 (@), (B)(7), a' b°

=S (3 figl )
F,(a:B.7:r,5 ab)=
S (a)f+g(ﬂ)f(7/)g af bg
f%i‘o (r),(s), "frgt )
and
Fy(a; By, % a,b) =
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2100, ol “
The convergence conditions of Appell series are
(i) the series F, and F, converges for |a|<|,|b|<]

(i) the series F, converges for |a|+|b|<],

1 1
and (iii) the series F, converges when |a? |+|b? |<],

In 1967, Srivastava [27] defined the triple hypergeometric series F in the following way

o] (@)= ):(B7):(r): (7 ):(7"):
(r)zz(s)s(s')s(s™): (w)s (wh); (w);

(@ (D)) () LG, o

F

7 (0, (9 (9, (7). (), (), ()Tt ®

here (o), is interpreted as

(@), =TT,

i H : FO;:; )f | ®)

v ZHF(F(—/;)” )

) :ljrfygyi)f) ®)

) :ljrgz:;)f) ©)
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5 T(ss+ 1)
()f 1;! F(S{S)
(10)
and
FT(ws+f)
w =
( )f :!5;][ F(W‘S)
(11)
where
A+B+B"+C<D+E+E"+F,
A+B+B'+C'<D+E+E'+F!,

A+B'+B"+C"<D+E'+E"+F"

and A,B,B!BY,C,C!,CY,D,E, E,

EY, F,F' and F™" are non-negative integers and |a|<|,|b|<|,|c|<|;
but

A+B+B"+C=D+E+E"+F+1,
A+B'+B"+C*=D+E'+E" +F" +1,
A+B+B'+C'=D+E+E'+F'+1.

In 1920, Humbert (see [28]) defined seven functions in which some of them are the limiting
form of Appell’ functions and them are:

o (a: By ab)=

,(a: Bry; ab)=

e (@),(8), a' b
éo (r)f+g 'f!'g!

(13)

o (a; B, a,b) =

f
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- (a)f a' b°
féo (,B)f+g flg!
(14)

¢ (a;By.r;ab)=

(@), 2

f%:o (r)f(l’)g “f1 gl
(15)

é/z(a;ﬂlﬂ/; a,b):

4 08), (), T g!
(16)

ZOO: (a)f+g a-f bg

and
x(a; B.y.r; a,b)=

(@), (8),0), a' 1
N C R TNT

f,9=0 LN

EIN
(17)
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Kampe’ de Feriet function (see [29]) is denoted by

A:B:D
F
F:G:H

T

F:G:H

(w): (u):(v);

where for convergence

(i) A+B<E+G, A+D<E+H for

{lal.lbl< oo}
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(i) A+B=E+G+L,A+D=E+H+1,

1 1
|al* +|b| ~E<|, if A>E_

max{|al,|bl} <, if A<E

In 1893, Lauricella (see [30]) further generalized the four Appell functions F,...,F, to
functions of g variables and defined his functions as follows:

F© I:a’ﬁl,,_,,ﬂg;yl,...,yg;ai,...,ag:l=

o (@), (B)(B), gt b

f1*;“) (71)f1“'(7g)f . fllfg|

(19)

FB(Q)[ali"'1ag’ﬁ1""’ﬂg;7/l’ al,azy...,ag:lz

i (O‘l)fl"'(ag)fg (ﬂl)fl”'(ﬁg)fg alfl a,’
fren fy=0 (7l)f1+...+f . fl!'“ fg!
(20)

Fég)I:a’ﬂ;yl’72!"'!7/g;al’a2""’ag]:

- (a)f1+~~~+fg (ﬂ)fl-%—“'-*—fg aifl agg
fye fy=0 (]/l)f1 (]/g )fg fll fg !

(21)

and

Fég)I:a’ﬂl""’ﬁg;y;ai""’ag]:

(a)f1+...+fg (ﬂl)fl"'(ﬁg)fg a1f1 agfg

fiefg=0 (yl)f1+-~~+fg l fl' fg !
(22)

(i) the series F\? and F\% converges when max. {la ]l a, I} <|
(ii) the series Fﬁg) converges when |a, |+---+|a, [<]

and the series F\® converges when | |++]\fa, I<I.
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Hermite Polynomials:
Hermite polynomials (see [31]) are defined by means of generating relation
2ax—x? = X9
=Y H, ()%
g=0 g -
(23)

It follows from (23) that

(24)

(or) equilatently

H :zgzpoﬁ,_g”,—-_—l}
J(2)=(zay 270 2.0,

(25)
Associated Laguerre Polynomials:

The associated Laguerre polynomials (see [31])

g=0 (1—) e
(26)
m(ay_ [ g+m (<)’
where L (a)_;(g_aj 5
27)

The hypergeometric form of the Laguerre polynomials given in [31; p. 200 (1)] is

1+m
glFl[—g;ljt s,a]

L™ (a) =
g!

(28)
where (Re (m) > —1).

A generating functions involving confluent hypergeometric function for Laguerre
polynomials is in the form
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o0

a L5( )
= 1+5)

(1- x)_xlFl{a;l+ 5; 11"(}

- X
(29)

F
and LY (a)=L,(a)=1 1[-g;La]
(30)
Generalized Rice and Related Polynomials:

Investigation of Rice [32]; were continued by Khandeker [33] who in 1964 defined the
generalized Rice polynomials

(1+ e)g
g!

3F 2{—g,g+e+01+1,€;a}
1+ e Nk

HY (¢,i,a)=

9

Re(e)>-1, and Re(6,)>-1

(31)
and
H, (4,i.2)=3 2{ 9.9+L5 }
1, i, ;
(32)

Jacobi Polynomials:

The Jacobi polynomials (see [31]) Pg(e'gl)(a) are defined by the generating relation

(33)

In case when we put ¢=i and azl_Ta in equation (30) reduces to Jacobi polynomial

P“%) (@) (see [31; p. 254]);

g
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P(eﬂl) _ (l+ e)g 2F1 _gal+€+81+g; 1—a
l+e; 2

(Lre), .{(a+1)}g ) Fl{—g,—ﬁ1 -9 ;a__q

g! 2 l+e;a+1
Re(€)>-1, Re(4,)>-1, and

g>0
(35)

An equivalent form of (34), given in Rainville [31; p. 255 (8)] is

Pg(evgl)(a):
(1+91)g (a__ljg 2F1 _91—6—9; a_+1
g! 2 1+6,; a-1
(36)

Legendre Polynomials:

Put €=, =0 in equation (33), we get the Legendre polynomials P, (a) (see [31; p. 166 (2)]
which is defined in the following way

ﬁ (2a)°
_12/, gFl{ﬁ 1—_9.11}
g! 2 2 2@
a-1\° .F a+1
P(a)=y=|—1 2 1/-0;-0;L,—
-1~ 2 1 -ean
_qoph 29 —9¥l, -l
2 1= a2

(36)
The Legendre polynomial B, (a) (see [31]) of order m is generated by means of relation;

-1

in(g)xg =(1-2ax+x*)?

g=0

(37)

and has its series representation as follows:
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9

H 1) (29 —25)1a9°2°
Pg(a)—z( 1)" (29 —-25)!

- &2951(g-5)Y(g-25)!

(38)
where
g . )
= if is even
LA
2 gT—l of g os odd
(39)

Gagenbauer Polynomials:

Put 6, =< in equation (33), then Gagenbauer Polynomials C” (), given by C\(a)=
(L+e), 2F1 ~-g,1+2e+0; 1-a
g! l+e 2

(40)

or equivalently (see [31; p. 279 (15)])

1
1+e), C, 2(a)
p(ee) —c© :( g 9
g (a) g ( (1+2€)
9
(41)
25 -9,26+0; ,
cg(a)_( s, p 12
g! 5+§; 2

(42)

The Gegenbauer polynomial is generated by means of generating function;

o0

> Co(a)x® =(1-2ax+x* )75

(43)

(44)

The ultraspherical (or Gegenbauer) polynomial (see [34; p. 81]) defined by
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5 (25 )g (571 5%]
B ()= A gl )
2),
; 1
i (a).6>

(45)
Generalized Sylvester Polynomials:

We consider the polynomial v, (a; a) by means of generating relation

o0

>, (aa)x? =(1-a) " .e™
g=0
(46)
The generalization of the Sylvestor polynomial (see [26, p. 302])
0,(a)=w, (ai1)
(47)

and is defined by

v, (aa) :(agil)QZ Fl{—g,a;—;i}
(48)

Bateman’s Polynomials:

In 1936, Bateman (see [35; p. 574]) defined a polynomial, called Bateman polynomial
denoted by J\"")(a) and is given as follows:

1 h
Jlmm) () = 5t +9 ' a

-9, "2
m +1,%+772 +1;

F
1 2

(49)

The above polynomial is derived from the generating function (see [35; p. 575])

i\]g’hv’lz)(a) X29+771 —

g=0
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(1-x) ™9, [Zax(l— X2 )21] 1x |<]
(50)

or equivalent to

> 9() (@) x =
g=0

% ) = 23-\/;
x 2 .(1-x) .Jm(ﬁ]

(51)

where

J, (a)- F(Hg)oFl{_;ug;‘Tﬂ

(52)
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where J, (a) is the Bessel function of first kind.

Known theorems:

In 1969, Chatterjee [36] was first mathematician who proved the following theorem on

ultraspherical polynomials:

Theorem A: If X (a—x) Za x'P’(a

then

P ”X[—a S RO

j=0

Ms

where g, (b [ joszf and
=0

1 I
P= (1— 2ax + x2)2 and P/ (a) is the ultraspherical polynomial defined by the equation (45).

In 1970, Saran [1] gave three theorems on bilinear generating functions which of one is given

as follows:
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Theorem B: If v, (a)=u(g).G(a)D* {u(a)} where u(a) G(a) are independent of g, and

Za X"y (@) then

G(a)X (a—xxb) & (-x)’ .
G(a-x) _;ﬂ(j)”'gl(b)-‘//j( )
where
i )a,b" and D_%,

In 1972, Saran [36] gave remaining two theorems which are as follows:

Theorem C: Let X (a, X):i‘//g (a)x*

g=0

where w, (a) is a polynomial of degree g in a, then

L (ppag Py o D
F(ﬂ)Je 0P 1[;/,,B,b_1j.

X (a,x¢)dl =

b)Y > (B —g,1; B:b)y, (a)x°, provided the integral is convergent.

g=0

9

Theorem D: Let G(a,x)=>_u,(a
g=0

where u, (a) is a polynomial of degree g in a, then

Far ! Jeren

b)Y’ 3 (), (B),2 1(-g.f+giab) u, ()5

provided the integral is convergent.
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In this research note we obtain three theorems which are then applied to obtain a set of

bilinear and bilateral generating functions in terms of Laplace and beta integrals. These
theorems include as special cases many known results given above.

Main theorems:

Theorem 1: Let 7(51,62,...,5f) denotes suitable bounded multiple sequences of arbitrary

complex numbers for all positive integer f. Let X (a, x) be a special type of function having
formal power series expansion in x such that

x<a,x>=§ygwg<a>xg

(53)

where {yg}:=0 iIs a sequence of parameters, independent of a and x. and wg(a) are

polynomial functions of degree g in a. Then Re(i)>0, Re(¢)>0 where ¢ and x such that

the triple hypergeometric series of Srivastava and X (a,x—clj remain uniformly convergent
C_

for 0<C <1,

Smn

M

o £+9.()=(B): (A ) (B )(r)i(r):(r); e
[ RS (S ) 4

3, C, a,C, a,c

e i
where (), = FE“OE;)Q)
(54)

and F® (a, b, c) is the triple hypergeometric series of Srivastava, defined by equation (s).

0

Theorem 2: Let X (a,x)=> y,(a)x® where y,(a) is a polynomial of degree g in a, then

g=0
for equation (2),

670
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o0

F(,B)Je".éﬁ‘ll - 1(y; Bibo)1 i 1(e;r;cl).

0

X (a,x¢)d¢ =
S(B), R (B+9.a 71, Bicb)w, (a).x°
(55)

provided the integral is convergent.

g

Theorem 3: Let G(a, X) =Zu
g=0
(56)

where u, (a) is a polynomial of degree g in a, then for the equation (4),

/—\
O'-—;S

'Te /+| Ea_l - f-1
0

F F
0 1(=y;bli)0 1(—r;cti).

G(a,x(i)d/di =

o0

Z (a+9,8+9;7,1r;b,c)u, (a)x®

) (56)

provided the integral is convergent.

Proof of the theorem 1:

To prove our theorem 1, we replace X (a,x) by its equation (53) by F*(a,b,c) by its series

representation (5) in the integral of (54). Changing the order of integration and summation,
which is permissible due to uniform convergence of the series involved and evaluating the
inner beta function integral, we arrive at the result (54).

Proof the theorem 2:
To prove our theorem 2, put n¢ for x equation (55), multiply both sides by

F F
e .01 1(y;B;bl)1 1(e;r;cl) and integrate with respect to ¢ between the limits 0 to oo

with the help of the result [31; p. 15, th. 6], we get the required result.
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Proof of theorem 3:

To prove the theorem 3, we multiply equation (56) by
ra . F . F . : . .

e ") 110" 1(=y;bli)0 1(=r;cti), replace x by x¢i and integrate with respect to ¢

and i between the limits 0 to oo, we obtain the theorem 3.

Corollary 1:

Put B=B'=B"=E=E'=E"=0, a,=0, the theorem 1 gives the result of type

> g+g,(a):(y);(r1); a]u a)x® =
= ( 1+£—| { [ ’(r):(w);(wl);a” 2 |Ug (3)

T g | @) ‘c
mJ'c (1-c) 'F()[(r):(w);(wl);al'azc}[a’c_ljdc

(57)
where F(Z)(a,b) is the Kempé de Feriet’s double hypergeometric function, given by

T
equation (18) and (a)g = [(a+g) .

r'(a)
Corollary 2:

Put B=B'=B"=E=E'=E"=D=0,C=C'=C"=F=F'=F" = A=1, replacing then
«a, by iin the given theorem 1, F® reduces to F,, we get result of author [2; p. 222 (2.2)];

o0

1+£—| £+g Bri Bos By 71,72 Vs s az’aS]l//g( )
g:O

Tl i (-1 (1 i—r-1 . ) .
T(0).r(-0) !c S RN (VWA AP AVAL LA b

XC
X(a,c—_1],|a1|+|a2|+|a3|<|
(58)

Similarly results for Lauricella’s functions F;, F. and F, (see equation (20) to equation
(24)) given by author [2] appear as special case of our theorem 1 and are as follows:

o0

,g f f ’ ' =
g=0 1+£_| "‘gﬂ?/l V21 V3,8, as]‘//g( )
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T i 11 i1 . .
W-{[C '(1_C) 'FC[I’ﬂ’71’72’73’a1cla20,83C]

X [a X—Cj dc,
c-1
WW@H 59

o0

2 1+£ =R [(+ 9,8, 5 B v 2y, 8y, (2)X° =

T 0 -1 i—0-1 ] o
WIC '(1_C) Fo ['1,311,32,ﬂ3a7a310,a20,a3c]

0

X(a X—Cij
c-1

la [<],....| a5 |<]

(60)

0 (1_ﬂ)g . . . 9 _
—)FB[61,62,63,91,92.93,,3—g1a1’azfas]'//g(a)x =
9

1
r(s jc"‘l )" Ry[ene,e6,6,,0;aa0,a,0,ac].
0

X[a,ijdc,
1-c

la [<],....l a5 |<]
(61)

Corollary 3:

Putting c=0,b= bil and making use of linear transformation;

el

(1—c)‘ﬂ2F1{7_“’ﬂ; _—C}
7, 1-cC
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<|

c
1-c

(62)

In theorem 2 and 3, we get result of author [36; pp. 12-13], gives our required result.
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