Estimation of Growth Properties of Composite Entire Functions in Terms of their Minimum Modulus

Majid Hamid Dar
Department of Mathematics, Dr. Satendra Kumar
(Assistant Professor)
Sunrise University, Bagd Rajput, Tehsil -Ramgarh, District -Alwar (Rajasthan)

Article Info

Page Number: 2053-2061
Publication Issue:
Vol 71 No. 3 (2022)

Article History

Article Received: 15 June 2022
Accepted: 28 July 2022
Publication: 21 August 2022

Abstract

Recently many researchers have investigated the growth of entire functions of several complex variables with their corresponding left or right factor.An entire function of n complex variables for which order and lower order are same is said to be of regular growth.Further the functions which are not of regular growth is said to be of irregular growth.In this paper we will study growth properties of composite entire functions in terms of their minimum modulus by using the definitions of relative L-hyper order and relative L-hyper lower order of an entire function f with respect to an another entire function g .

Keywords: Relative order,L-order,L-lower order,L-type, Relative L-hyper order, Relative L-hyper lower order,L*- order,L*-lower order

Introduction, Definitions and Notations.

Let f and g be two entire functions and

$$
F(r)=\max \{|f(z)|: z=r\}, G(r)=\max \{|g(z)|:|z|=r\}
$$

If is non-constant then $\mathrm{F}(\mathrm{r})$ is strictly increasing and continuous and its Inverse exists and is such that

$$
\begin{aligned}
& F^{-1}:(|f(0)|, \infty) \rightarrow(0, \infty) \\
& \qquad \lim _{s \rightarrow \infty} F^{-1}(s)=\infty
\end{aligned}
$$

Bernal [1] introduced the definition of relative order of $\quad f$ with respect to g , denoted by $p g$ (f) as follows:

$$
\rho_{g}(f)=\inf \left\{\mu>0: F(r)<G\left(r^{\mu}\right) \text { for all } r>r_{0}(\mu)>0\right\}=\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log r}
$$

The definition coincides with the classical one [2] if

$$
\mathrm{g}(\mathrm{z})=\text { expz. }
$$

Similarly, one can define the relative lower order of f with respect to g denoted by g (f) as follows:

$$
\lambda_{g}(f)=\underset{r \rightarrow \infty}{\operatorname{limin} f} \frac{\log G^{-1} F(r)}{\log r}
$$

Somasundaram and Thamizharasi 3] introduced the notions of L-order, b- lower order and Ltype for entire functions where $\mathrm{L}=\mathrm{L}(\mathrm{r})$ is a positive continuous function increasing slowly i.e.

$$
L(a r) \sim L(r) \text { as } r \rightarrow \infty
$$

for every constant 'a'. Their definitions are as follows:
Definition 4.1.1 $\{3\}$ The L-lower order ρ_{f}^{L} and the L-lower order λ_{f}^{L} of an entire function f are defined as follows:

$$
\rho_{f}^{L}=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[2]} M(r, f)}{\log [r L(r)]} \text { and } \lambda_{f}^{L}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log [r L(r)]}
$$

Definition 4.1.2 $\{3\}$ The L-type σ_{f}^{L} of an entire function f with L -order ρ_{f}^{L} is defined as

$$
\sigma_{f}^{L}=\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{[r L(r)]^{L_{f}^{L}}}, 0<\rho_{f}^{L}<\infty
$$

Similarly one can define the L-hyper order and L-hyper lower order of entire functions. So with the help of the above notion one can easily define the relative L -order and relative L lower order of entire functions.

Definition 4.1.3 The relative L-order $\rho_{g}^{L}(f)$ and the relative L-lower order $\lambda_{g}^{L}(f)$ of an entire function f with respect to another entire function g are defined as

$$
\rho_{g}^{L}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log G^{-1} F(r)}{\log [r L(r)]} \text { and } \lambda_{g}^{L}(f)=\underset{r \rightarrow \infty}{\liminf } \frac{\log G^{-1} F(r)}{\log [r L(r)]}
$$

Definition 4.1.4 The relative L-hyper order $\bar{\rho}_{g}^{L}(f)$ and the relative L-hyper lower order $\bar{\lambda}_{g}^{L}(f)$ of an entire function f with respect to another entire function g are defined as

$$
\bar{\rho}_{g}^{L}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[2]} G^{-1} F(r)}{\log [r L(r)]} \text { and } \bar{\lambda}_{g}^{L}(f)=\underset{r \rightarrow \infty}{\liminf } \frac{\log ^{[2]} G^{-1} F(r)}{\log [r L(r)]}
$$

In this chapter we establish some results on the growth properties of entire functions on the basis of relative L-order and relative L-lower order where $\mathrm{L}=\mathrm{L}(\mathrm{r})$ is a slowly changing function. In the sequel we use the following notations:

$$
\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right) \text { for } k=1,2,3, \ldots \ldots \text { and } \log ^{[0]} x=x
$$

The more generalised concept of L-order and L-type of entire and meromorphic functions are respectively L *-order and L *-type. Their definitions are as follows:

Definition 4.1.5 The L^{*}-order, L^{*}-lower order and L^{*}-type of a meromorphic function f are defined by

$$
\begin{aligned}
\rho_{f}^{L^{*}} & =\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, f)}{\log \left[r e^{L(r)}\right]}=\underset{r \rightarrow \infty}{\liminf } \frac{\log T(r, f)}{\log \left[r e^{L(r)}\right]} \\
\text { and } \sigma_{f}^{L^{*}} & =\underset{r \rightarrow \infty}{\limsup } \frac{T(r, f)}{\left[r e^{L(r)]_{f}^{*_{f}^{*}}}\right.}, 0<\rho_{f}^{L^{*}}<\infty .
\end{aligned}
$$

When f is entire, one can easily verify that

$$
\begin{aligned}
\rho_{f}^{L^{*}} & =\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log \left[r e^{L(r)]}\right]}, \lambda_{f}^{L^{*}}=\liminf _{r \rightarrow \infty} \frac{\log { }^{[2]} M(r, f)}{\log \left[r e^{L(r)}\right]} \\
\text { and } \sigma_{f}^{L^{*}} & =\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{\left[r e^{L r}\right]_{f}^{L_{f}^{*}}}, 0<\rho_{f}^{L^{*}}<\infty
\end{aligned}
$$

Definition 4.1.6 The relative L^{*}-order $\rho_{g}^{L^{*}}(f)$ and the relative L^{*}-lower order $\lambda_{g}^{L^{*}}(f)$ of an entire function f with respect to another entire function g are defined as

$$
\rho_{g}^{L^{*}}(f)=\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log \left[r e^{L(r)}\right]} \text { and } \lambda_{g}^{L^{*}}(f)=\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log \left[r L^{L(r)}\right]}
$$

Definition 4.1.7 The relative L^{*}-hyper order $\bar{\rho}_{g}^{L^{*}}(f)$ and the relative L^{\prime} - hyper lower order $r \bar{\lambda}_{g}^{L^{*}}(f)$ of an entire function f with respect to another entire function g are defined as

$$
\bar{\rho}_{g}^{L^{*}}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[2]} G^{-1} F(r)}{\log \left[r e^{L(r)}\right]} \text { and } \bar{\lambda}_{g}^{L^{*}}(f)=\underset{r \rightarrow \infty}{\liminf } \frac{\log ^{[2]} G^{-1} F(r)}{\log \left[r e^{L(r)}\right]}
$$

In order to develop our results we shall need various kinds of measures and densities for sets of points on the positive axis. Let E be such a set and let $E[a, b]$ denote the part of E for which $\mathrm{a}<\mathrm{r}<\mathrm{b}$. The linear and logarithmic measures of E are defined to be

$$
m(E)=\int_{E} d r \text { and } \operatorname{lm}(E)=\int_{E(1, \infty)} \frac{d r}{r} \text { respectively }
$$

These may be finite or infinite. We also define the lower and upper densities of E by

$$
\begin{aligned}
\text { dens } E(\text { upper }) & =\limsup _{r \rightarrow \infty} \frac{m(E(0, r))}{r} \\
\text { and dens } E(\text { lower }) & =\liminf _{r \rightarrow \infty} \frac{m(E(0, r))}{r}
\end{aligned}
$$

and also the upper and lower logarithmic densities of E by $\log \operatorname{densE}($ upper $)=\underset{r \rightarrow \infty}{\lim \sup } \frac{\lim (E(1, r))}{\log r}$
and \log dens $E($ lower $)=\underset{r \rightarrow \infty}{\liminf } \frac{\lim (E(1, r))}{\log r}$.

$$
\text { Also let } f(r)=m(r, f)=\inf _{|z|=r}|f(z)|
$$

which is known as the minimum modulus of an entire function f. In this v chapter we also estimate some growth properties of composite entire functions in terms of their minimum modulus. In fact, all the definitions in the chapter can also be stated in terms of minimum modulus on a set of logarithmic density 1 .

4. Lemma.

In this section we present a lemma which will be needed in the sequel.
Lemma 4.2.1 [4], [5]. Let $f(z)$ be an entire function such that

$$
\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{(\log r)^{2}} \leq c<\frac{1}{4 e}
$$

$0<4 e c<\delta<1$ then outside a set of upper logarithmic density at most δ

$$
\frac{m(r, f)}{M(r, f)}>k(\delta, c)=\frac{1-2.2 \tau}{1+2.2 \tau} \text { where } \tau=\exp \{-\delta /(4 e c)\}
$$

If in particular $\mathrm{c}=0$ then

$$
\frac{m(r, f)}{M(r, f)} \rightarrow 1 \text { as } r \rightarrow \infty
$$

on a set of logarithmic density 1 .

4.3 Theorems.

In this section we present the main results of the chapter. In the following theorems we see the application of relative L-order and relative L-lower order in the growth properties of entire functions.
Theorem 4.3.1 Let f, g and h be three entire functions such that

$$
\begin{gathered}
0<\lambda_{g}^{L}(f) \leq \rho_{g}^{L}(f)<\infty \text { and } 0<\lambda_{g}^{L}(h) \leq \rho_{g}^{L}(h)<\infty . \text { Then } \\
\frac{\lambda_{g}^{L}(f)}{\rho_{g}^{L}(h)} \leq \liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{L}(f)}{\lambda_{g}^{L}(h)} \leq \limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L}(f)}{\lambda_{g}^{L}(h)}
\end{gathered}
$$

Proof. From the definition of relative L-arder and relative L-lower order we have for arbitrary positive c and for all large values of r ,

$$
\begin{gathered}
\log G^{-1} F(r) \geq\left(\lambda_{g}^{L}(f)-\varepsilon\right) \log [r L(r)] \\
\text { and } \log G^{-1} H(r) \leq\left(\rho_{g}^{L}(h)+\varepsilon\right) \log [r L(r)]
\end{gathered}
$$

Now from (4.3.1) and (4.3.2) it follows for all large values of r ,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\lambda_{g}^{L}(f)-\varepsilon}{\rho_{g}^{L}(h)+\varepsilon}
$$

As c:(>0) is arbitrary, we obtain that

$$
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\lambda_{g}^{L}(f)}{\rho_{g}^{L}(h)}
$$

Again, for a sequence of values of r tending to infinity,

$$
\log G^{-1} F(r) \leq\left(\lambda_{g}^{L}(f)+\varepsilon\right) \log [r L(r)]
$$

and for all large values of r

$$
\log G^{-1} H(r) \geq\left(\lambda_{g}^{L}(h)-\varepsilon\right) \log r
$$

So, combining (4.3.4) and (4.3.5) we get for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{L}(f)+\varepsilon}{\lambda_{g}^{L}(h)-\varepsilon}
$$

Since c:(>0) is arbitrary it follows that

$$
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{L}(f)}{\lambda_{g}^{L}(h)}
$$

Also for a sequence of values of r tending to infinity,

$$
\log G^{-1} H(r) \leq\left(\lambda_{g}^{L}(h)+\varepsilon\right) \log [r L(r)]
$$

Now from (4.3.1) and (4.3.7) we obtain for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\lambda_{g}^{L}(f)-\varepsilon}{\lambda_{g}^{L}(h)+\varepsilon} .
$$

Choosing c---+ 0 we get that

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\lambda_{g}^{L}(f)}{\lambda_{g}^{L}(h)}
$$

Also for all large values of r ,

$$
\log G^{-1} F(r) \leq\left(\rho_{g}^{L}(f)+\varepsilon\right) \log [r L(r)]
$$

4.3.9 So, from (4.3.5) and (4.3.9) it follows for all large values of r ,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L}(f)+\varepsilon}{\lambda_{g}^{L}(h)-\varepsilon}
$$

$\operatorname{As}(>0)$ is arbitrary we obtain that

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L}(f)}{\lambda_{g}^{L}(h)}
$$

4.3.10 Thus the theorem follows from (4.3.3), (4.3.6), (4.3.8) and (4.3.10). Remark 4.3.1 Under the same conditions stated in Theorem 4.3.1, the con- clusion of the theorem can also be drawn by using Lemma 4.2 .1 in terms of $f(r), g(r)$ and $h(r)$ instead of $F(r), G(r)$ and $\mathrm{H}(\mathrm{r})$ on a set of logarithmic density 1 . Theorem 4.3.2 Let $\mathrm{f}, \mathrm{g}, \mathrm{h}$ be three entire functions with

$$
\begin{aligned}
& 0<\lambda_{g}^{L}(f) \leq \rho_{g}^{L}(f)<\infty \text { and } \rho_{g}^{L}(h)<\infty \text { Then } \\
& \quad \liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L}(f)}{\rho_{g}^{L}(h)} \leq \underset{r \rightarrow \infty}{\limsup } \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)}
\end{aligned}
$$

Proof. From the definition of relative $£$-order we get for a sequence of values of r tending to infinity,

$$
\log G^{-1} H(r) \geq\left(\rho_{g}^{L}(h)-\varepsilon\right) \log [r L(r)]
$$

Now from (4.3.9) and (4.3.11) it follows for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L}(f)+\varepsilon}{\rho_{g}^{L}(h)-\varepsilon}
$$

As $\mathrm{E}(>0)$ is arbitrary we obtain that

$$
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L}(f)}{\rho_{g}^{L}(h)}
$$

Again for a sequence of values of r tending to infinity,

$$
\log G^{-1} F(r) \geq\left(\rho_{g}^{L}(f)-\varepsilon\right) \log [r L(r)]
$$

So, combining (4.3.2) and (4.3.13) we get for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\rho_{g}^{L}(f)-\varepsilon}{\rho_{g}^{L}(h)+\varepsilon}
$$

Since c (>0) is arbitrary it follows that

$$
\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\rho_{g}^{L}(f)}{\rho_{g}^{L}(h)}
$$

Thus the theorem follows from (4.3.12) and (4.3.14).
(4.3.14) Remark 4.3.2 Under the same conditions stated in Theorem 4.3.2, the conclusion of the theorem can also be deduced in view of Lemma 4.2.1 in terms of $f(r), g(r)$ and $h(r)$ instead of $\mathrm{F}(\mathrm{r}), \mathrm{G}(\mathrm{r})$ and $\mathrm{H}(\mathrm{r})$ on a set of logarithmic density 1 . The following theorem is a natural consequence of Theorem 4.3.1 and Theorem 4.3.2.

Theorem 4.3.3 Let f, g and h be three entire functions with

$$
\begin{aligned}
& 0<\lambda_{g}^{L}(f) \leq \rho_{g}^{L}(f)<\infty \text { and } 0<\lambda_{g}^{L}(h) \leq \rho_{g}^{L}(h)<\infty \text {. Then } \\
& \begin{array}{l}
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \quad \leq \min \left\{\frac{\lambda_{g}^{L}(f)}{\lambda_{g}^{L}(h)}, \frac{\rho_{g}^{L}(f)}{\rho_{g}^{L}(h)}\right\} \\
\\
\leq \max \left\{\frac{\lambda_{g}^{L}(f)}{\lambda_{g}^{L}(h)}, \frac{\rho_{g}^{L}(f)}{\rho_{g}^{L}(h)}\right\} \leq \limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)}
\end{array}
\end{aligned}
$$

The proof is omitted.

Remark 4.3.3 Under the same conditions stated in Theorem 4.3.3, the conclusion of the theorem can also be drawn in view of Lemma 4.2.1 in terms of $f(r), g(r)$ and $h(r)$ instead of $\mathrm{F}(\mathrm{r}), \mathrm{G}(\mathrm{r})$ and $\mathrm{H}(\mathrm{r})$ on a set of logarithmic density 1 . In the line of Theorem 4.3.1, Theorem 4.3.2 and Theorem 4.3.3 we may now prove similar results for relative hyper order and relative hyper lower order.
Theorem 4.3.4 Let J, g and h be three entire functions such that

$$
\begin{aligned}
& 0<\bar{\lambda}_{g}^{L}(f) \leq \bar{\rho}_{g}^{L}(f)<\infty \text { and } 0<\bar{\lambda}_{g}^{L}(h) \leq \bar{\rho}_{g}^{L}(h)<\infty . \text { Then } \\
& \frac{\bar{\lambda}_{g}^{L}(f)}{\bar{\rho}_{g}^{L}(h)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[2]} G^{-1} F(r)}{\log ^{[2]} G^{-1} H(r)} \leq \frac{\bar{\lambda}_{g}^{L}(f)}{\bar{\lambda}_{g}^{L}(h)} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[2]} G^{-1} F(r)}{\log ^{[2]} G^{-1} H(r)} \leq \frac{\bar{\rho}_{g}^{L}(f)}{\bar{\lambda}_{g}^{L}(h)}
\end{aligned}
$$

Theorem 4.3.5 Let f, g and h be three entire functions with

$$
\begin{gathered}
0<\bar{\lambda}_{g}^{L}(f) \leq \bar{\rho}_{g}^{L}(f)<\infty \text { and } 0<\bar{\rho}_{g}^{L}(h)<\infty . \text { Then } \\
\underset{r \rightarrow \infty}{\liminf } \frac{\log ^{[2]} G^{-1} F(r)}{\log ^{[2]} G^{-1} H(r)} \leq \frac{\bar{\rho}_{g}^{L}(f)}{\bar{\rho}_{g}^{L}(h)} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[2]} G^{-1} F(r)}{\log ^{[2]} G^{-1} H(r)}
\end{gathered}
$$

The following theorem is a natural consequence of Theorem 4.3.4 and Theorem 4.3.5. Theorem 4.3.6 Let f, g and h be three entire functions with

$$
\begin{aligned}
0<\bar{\lambda}_{g}^{L}(f) \leq \bar{\rho}_{g}^{L}(f) & <\infty \text { and } 0<\bar{\lambda}_{g}^{L}(h)<\infty . \text { Then } \\
\underset{r \rightarrow \infty}{\operatorname{liminfin}} \frac{\log ^{[2]} G^{-1} F(r)}{\log ^{[2]} G^{-1} H(r)} & \leq \min \left\{\begin{array}{l}
\bar{\lambda}_{g}^{L}(f) \\
\bar{\lambda}_{g}^{L}(h)
\end{array}, \frac{\bar{\rho}_{g}^{L}(f)}{\bar{\rho}_{g}^{L}(h)}\right\} \\
& \leq \max \left\{\left\{\begin{array}{l}
\bar{\lambda}_{g}^{L}(f) \\
\bar{\lambda}_{g}^{L}(h)
\end{array}, \frac{\bar{\rho}_{g}^{L}(f)}{\bar{\rho}_{g}^{L}(h)}\right\}\right. \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[2]} G^{-1} F(r)}{\log ^{[2]} G^{-1} H(r)} .
\end{aligned}
$$

Remark 4.3.4 Under the same conditions respectively stated in Theorem 4.3.4, Theorem 4.3.5 and Theorem 4.3.6 the conclusions of the theorems can also be drawn with the help of Lemma 4.2.1 in terms of $f(r), g(r)$ and $h(r)$ instead of $F(r), G(r)$ and $H(r)$ on a set of logarithmic density 1 . In the following theorems we see some comparative growth properties of entire functions on the basis of relative L^{*}-order and relative L^{*}-lower order where L $\mathrm{L}(\mathrm{r})$ is a slowly changing function.
Theorem 4.3. 7 Let j, g and h be three entire functions such that

$$
\begin{aligned}
\lambda_{g}^{L^{*}}(f) \leq \rho_{g}^{L^{*}}(f) & <\infty \text { and } 0<\lambda_{g}^{L^{*}}(h) \leq \rho_{g}^{L^{*}}(h)<\infty . \text { Then } \\
\frac{\lambda_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)} & \leq \liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{L^{*}}(f)}{\lambda_{g}^{L^{*}}(h)} \\
& \leq \limsup _{r \rightarrow \infty}^{\log G^{-1} F(r)} \frac{\rho_{g}^{L^{*}}(f)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{*}(h)}{}
\end{aligned}
$$

Proof. From the definition of relative $\mathrm{L} *$-order and relative $\mathrm{L} *$-lower order we have for arbitrary positive c and for all large values of r ,

$$
\begin{gathered}
\log G^{-1} F(r) \geq\left(\lambda_{g}^{L^{*}}(f)-\varepsilon\right) \log \left[r e^{L(r)}\right] \\
\text { and } \log G^{-1} H(r) \leq\left(\rho_{g}^{L^{*}}(h)+\varepsilon\right) \log \left[r e^{L(r)}\right] .
\end{gathered}
$$

Now from (4.3.15) and (4.3.16) it follows for all large values of r ,

$$
\frac{G^{-1} F(r)}{G^{-1} H(r)} \geq \frac{\lambda_{g}^{L^{*}}(f)-\varepsilon}{\rho_{g}^{L^{*}}(h)+\varepsilon} .
$$

As c (>0) is arbitrary, we obtain that

$$
\liminf _{r \rightarrow \infty} \frac{G^{-1} F(r)}{G^{-1} H(r)} \geq \frac{\lambda_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)}
$$

Again for a sequence of values of r tending to infinity,

$$
\log G^{-1} H(r) \geq\left(\lambda_{g}^{L^{*}}(h)-\varepsilon\right) \log \left[r e^{L(r)}\right]
$$

and for all large values of r,

$$
\log G^{-1} H(r) \geq\left(\lambda_{g}^{L^{*}}(h)-\varepsilon\right) \log \left[r e^{L(r)}\right]
$$

So combining (4.3.18) and (4.3.19) we get for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{L^{*}}(f)+\varepsilon}{\lambda_{g}^{L^{*}}(h)-\varepsilon}
$$

Since s (>0) is arbitrary it follows that

$$
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\lambda_{g}^{L^{*}}(f)}{\lambda_{g}^{L^{*}}(h)}
$$

Also for a sequence of values of r tending to infinity,

$$
\log G^{-1} H(r) \leq\left(\lambda_{g}^{L^{*}}(h)+\varepsilon\right) \log \left[r e^{L(r)}\right]
$$

Now from (4.3.15) and (4.3.21) we obtain for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\lambda_{g}^{L^{*}}(f)-\varepsilon}{\lambda_{g}^{L^{*}}(h)+\varepsilon}
$$

Choosing s -+ 0 we get that

$$
\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\lambda_{g}^{L^{*}}(f)}{\lambda_{g}^{L^{*}}(h)}
$$

Also for all large values of r,

$$
\log G^{-1} F(r) \leq\left(\rho_{g}^{L^{*}}(f)+\varepsilon\right) \log \left[r e^{L(r)}\right]
$$

So from (4.3.19) and (4.3.23) it follows for all large values of r ,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L^{*}}(f)+\varepsilon}{\lambda_{g}^{L^{*}}(h)-\varepsilon}
$$

As $c(>0)$ is arbitrary, we obtain that

$$
\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L^{*}}(f)}{\lambda_{g}^{L^{*}}(h)}
$$

Thus the theorem follows from (4.3.17), (4.3.20), (4.3.22) and (4.3.24).
Theorem 4.3.8 Let f, g and h be three entire functions with

$$
0<\lambda_{g}^{L^{*}}(f) \leq \rho_{g}^{L^{*}}(f)<\infty \text { and } 0<\rho_{g}^{L^{*}}(h)<\infty \text {. Then }
$$

$$
\liminf \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)} \leq \underset{r \rightarrow \infty}{\limsup } \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)}
$$

Proof. From the definition of relative L *-order we get for a sequence of values of r tending to infinity,

$$
\log G^{-1} H(r) \geq\left(\rho_{g}^{L^{*}}(h)-\varepsilon\right) \log \left[r e^{L(r)}\right]
$$

Now from (4.3.9) and (4.3.11) it follows for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L^{*}}(f)+\varepsilon}{\rho_{g}^{L^{*}}(h)-\varepsilon}
$$

As $c(>0)$ is arbitrary we obtain that

$$
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \leq \frac{\rho_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)}
$$

Again for a sequence of values of r tending to infinity,

$$
\log G^{-1} F(r) \geq\left(\rho_{g}^{L^{*}}(f)-\varepsilon\right) \log \left[r e^{L(r)}\right]
$$

So, combining (4.3.16) and (4.3.27) we get for a sequence of values of r tending to infinity,

$$
\frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\rho_{g}^{L^{*}}(f)-\varepsilon}{\rho_{g}^{L^{*}}(h)+\varepsilon}
$$

Since c (>0) is arbitrary it follows that

$$
\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} \geq \frac{\rho_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)}
$$

Thus, the theorem follows from (4.3.26) and (4.3.28). The following theorem is a natural consequence of Theorem 4.3. 7 and Theorem 4.3.8.
-
Theorem 4.3.9 Let f, g and h be three entire functions with

$$
\begin{aligned}
0<\lambda_{g}^{L^{*}}(f) & \leq \rho_{g}^{L^{*}}(f)<\infty \text { and } 0<\lambda_{g}^{L^{*}}(h) \leq \rho_{g}^{L^{*}}(h)<\infty . \text { Then } \\
\liminf _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)} & \leq \min \left\{\frac{\lambda L_{g}(f)}{\lambda_{g}^{L^{*}}(h)}, \frac{\rho_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)}\right\} \\
& \leq \max \left\{\left\{\begin{array}{l}
\lambda^{*}(f) \\
\lambda_{g}^{L^{*}}(h)
\end{array} \frac{\rho_{g}^{L^{*}}(f)}{\rho_{g}^{L^{*}}(h)}\right\}\right. \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log G^{-1} H(r)}
\end{aligned}
$$

Conclusion

Under the same conditions respectively stated in Theorem 4.3. 7, Theorem 4.3.8 and Theorem 4.3.9 the conclusions of the theorems can also be deduced by using Lemma 4.2.1 in terms of $f(r), g(r)$ and $h(r)$ instead of $F(r), G(r)$ and $H(r)$ on a set of logarithmic density 1 .

Acknowledgement:

I want to thank everyone involved in this initiative. I would like to thank my supervisor and mentor Dr Satendra Kumar, Assistant professor in Mathematics at Sunrise University Alwar,

Rajasthan. who helped me to learn a lot about this project. His ideas and comments aided in the completion of this research paper.

References:

[1] Bernal; Orden relative de crecimiento de funciones enteras collect math;vol.39(1988),pp.209-229.
[2] E.C.Titchmarsh;The theory of functions 2nd ed.oxford University press Oxford,1968.
[3] D. Soma SUNDARAM AND R. Thmizaharasi, A note on the entire functions of Lbounded Index and L-type, Indian J.Pure Appl. Math., 19(3) (1988), 284-293.
[4] P.D.Barry;The minimum modulus of small integral \& subharmonic functions,proc.London Math.soc.vol.3,No. 12 (1962),PP.445-495.
[5] W.K.Hayman;The local growth of power series; a survey of the Wiman-Valiron method,Canad.Math.Bull.,vol.17,No.3(1974),pp.317-358.

