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Abstract: In the present paper, we study the growth properties of 

entire functions of several complex variables. The characterizations 

of generalized lower order of entire functions of several complex 

variables have been obtained in terms of their Taylor’s series 

coefficients. Also we have obtained the characterization of 

generalized lower order of entire functions of several complex 

variables in terms of approximation and interpolation errors. 
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Introduction 

We denote the complex N−space by CN.  Thus, z ∈ CN means that z = (z1, z2... zN ), where z1, 

z2, ...,  zN are complex numbers. A function g(z), z ∈  C N is said to be analytic at a point ξ ∈ 

C N if it can be expanded in some neighborhood of  ξ  as an absolutely convergent power 

series. If we assume  

ξ = (0, 0, ..., 0), then g(z) has representation. 

𝑔(𝑧) = ∑  

∞

|𝑘|=0

𝑎𝑘1,𝑘2,…,𝑘𝑁
𝑧1

𝑘1𝑧2
𝑘2 … 𝑧𝑁

𝑘𝑁 = ∑  

∞

𝑛=0

𝑎𝑘𝑧𝑘 

 

Where k = (k1, k2... , kN ) ∈ N 0
N and n = |k| = k1 + k2 + ... + kN .        For r > 0, the maximum 

modulus S (r, g) of entire function g(z) is given by    (see [3])      

 S(r, g) = sup{|g(z)| : |z1| 
2 + | z2|

2 + ... + |zN |2 = r 2 } . For r > 0, the maximum term µ(r) of 

entire function g(z) is defined as  ( see [4]  and [5] ) 

 

𝜇(𝑟) = 𝜇(𝑟, 𝑔) = 𝑚𝑎𝑥
𝑛≥0

 {∥∥𝑎𝑘∥∥𝑟𝑛} 

 

Also the index k with maximal length n for which maximum term is achieved is 

called the central index and is denoted by ν (r) = ν (r, g) = k. 

 For generalization of the classical characterizations of growth of entire functions, 

Seremeta [7] introduced the concept of the generalized order and generalized type using 

the general growth functions as follows: 

 Let L0 denote the class of functions h (x) satisfying the following conditions: 

i.h (x) is defined on [a, ∞) and is positive, strictly increasing, differentiable   and tends 
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to   ∞  as  x → ∞, 

ii.                      𝑙𝑖𝑚
𝑥→∞

 
ℎ[{1+1/𝜓(𝑥)}𝑥]

ℎ(𝑥)
= 1    for every function ψ (x) such that ψ (x) → ∞ as x → ∞. 

Let Λ denote the class of functions h (x) satisfying conditions (i) and 

 

iii.     𝑙𝑖𝑚
𝑥→∞

 
ℎ(𝑐𝑥)

ℎ(𝑥)
= 1 ,   h(x) = 1 , for every c > 0, that is h(x) is slowly increasing. If        g (z) is an 

entire function and functions α (x) ∈ Λ , β(x) ∈ L0 , then the generalized order ρ(α, β, g) of g 

(z) is defined as (see [2]) 

 

   𝜌(𝛼, 𝛽, 𝑔) = 𝑙𝑖𝑚
𝑟→∞

 𝑠𝑢𝑝
𝛼[log 𝑆(𝑟,𝑔)]

𝛽(log 𝑟)
 

 

For an entire function g (z) and functions α (x) ∈ Λ , β (x) ∈ L0 , we define the generalized 

lower order λ (α, β, g) of g(z) as 

      λ(𝛼, 𝛽, 𝑔) = 𝑙𝑖𝑚
𝑟→∞

 𝑖𝑛𝑓
𝛼[log 𝑆(𝑟,𝑔)]

𝛽(log 𝑟)
           (1.2) 

 

Following Bose and Sharma ([1], p. 219-220) we can easily show that the generalized lower 

order λ (α, β, g) of g(z) can be expressed in terms of central index as 

        𝜆(𝛼, 𝛽, 𝑔) = 𝑙𝑖𝑚
𝑟→∞

 𝑖𝑛𝑓
𝛼{|𝜈(𝑟)|}

𝛽(log 𝑟)
                 (1.3) 

Let K be a compact set in CN and let ||.|| K denote the supremum norm on K. The function 

         ΦK(z) = 𝑠𝑢𝑝[|𝑝(𝑧)|1/n: 𝑝 −  polynomial, deg 𝑝 ≤ 𝑛, ∥ 𝑝 ∥𝐾≤ 1], 

Where n = 1, 2, ... and z ∈ CN , is called the Siciak extremal function of the compact set K 

(see [2] and [3]). Given a function f  defined and bounded on K, for n = 1, 2, ... , we put 

       E1 n  (f, K) =  ||f – tn ||   K ;  

      E2 n (f, K) =   ||f – ln ||     K ;  

       E3 n+1 (f, K) =  ||l n+1 – l n|| K ; 

 

Where tn denotes the n th Chebyshev polynomial of the best approximation to f on K and ln 

denotes the n th Lagrange interpolation for f with nodes at extremal points of K (see [2] and 

[3]). Kumar and Srivastava ([6], Thm. 2.1) have obtained coefficient characterizations of 

lower order of entire functions of several complex variables in terms of their Taylor’s series 

coefficients. In the present paper we have obtained the characterizations of generalized lower 

order of entire functions of several complex variables in terms of their Taylor’s series 

coefficients. Also we have obtained the characterizations of generalized order of entire 

functions of several complex variables in terms of approximation and interpolation errors.  

 

 2. Main Results 

 Now we prove Theorem 2.1. Let g(z) be an entire function whose Taylor’s series 

representation is given by (1.1). If α (x) ∈ Λ,  β(x) ∈ L0 , then the generalized lower order λ of  

g(z)  satisfies 

   𝜆 = 𝜆(𝛼, 𝛽, 𝑔) ≥ 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝛼(𝑛)

𝛽{log∥∥𝑎𝑘∥∥−1/𝑛}
               (2.1) 

Further, if   
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   𝜓(𝑛) = 𝑚𝑎𝑥
|𝑘|=𝑛

  {
∥∥𝑎𝑘∥∥

∥∥𝑎𝑘′∥∥
, ∥𝑘′∥ =∥ 𝑘 ∥ +1} 

is a non-decreasing function of n then equality holds in      (2.1) 

Proof. Write 

   Φ = 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝛼(𝑛)

𝛽{log∥∥𝑎𝑘∥∥−1/𝑛}
 

First we prove that λ ≥ Φ. The coefficients of an entire Taylor’s series satisfy Cauchy’s 

inequality, that is  

                          || ak ||  ≤  S(r, g) r −n , | k | = n.                                               (2.2) 

Also from (1.2), for arbitrary ε > 0 and a sequence r = rs → ∞ as s → ∞,  

we have 

                       ∥∥𝑎𝑘∥∥ ≤ 𝑟−𝑛exp [𝛼−1{𝜆̅𝛽(log 𝑟)}] 

Putting r = exp [β −1{ α  (𝑛)/𝜆̅̅ ̅ }] in the above inequality we get 

                       ∥∥𝑎𝑘∥∥ ≤ exp [𝑛 − 𝑛 𝛽−1{𝛼 (𝑛)/𝜆̅̅ ̅}], 

or                    

or                       

𝛽−1 [
𝛼(𝑛)

𝜆̅
] ≤ 1 −

1

𝑛
{log∥∥𝑎𝑘∥∥},

𝛼(𝑛)

𝛽{1+log ∥∥𝑎𝑘∥∥−1/𝑛}
≤ 𝜆̅.

   

Since β (1 + x)’  β (x) as x → ∞, proceeding to limits as n → ∞,  we get 

                             Φ = 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝛼(𝑛)

𝛽{log∥∥𝑎𝑘∥∥−1/𝑛}
≤ 𝜆̅ 

Since ε > 0 is arbitrarily small so finally we get Φ ≤ λ. Now we prove the reverse inequality 

i.e., λ ≤ Φ. From the assumption on ψ,  ψ(n) → ∞ as n → ∞.  By the definition given in 

section 1, if µ(r) = || a k || r | k | is the maximum term then for                | k 1| ≤ | k |  <  | k2 |,      

          ||a k1||r | k 1 | ≤  ||a k|| r | k |   > ||ak2||  r |k2|    

and for            |k| = n,  ψ (n − 1)  ≤ r < ψ (n).  

Now suppose that ||ak1|| r |k1 | and ||ak2 || r 
|k 2 | are two consecutive maximum terms. Then |k 1 |   

≤   |k 2 | − 1. Let |k 1 | ≤ n ≤ |k 2 |. Then for ψ (|k 1 ∗ |)  ≤  r < ψ (|k 1 |), we have | ν (r)| = |k 1 | 

where |k 1 ∗ | = | k 1 | − 1. Hence from (1.3), for arbitrary ε > 0 and all r > r0 (ε), we have   

                         |k 1 | = | ν(r) | > α−1  { λ’ β (log r) } , λ‘ = λ – ε,  

or                       

                             |𝑘1| = |𝜈(𝑟)| ≥ 𝛼−1{𝜆′𝛽[log{𝜓(|𝑘1|) − 𝑞}]}, 

     Or 

                                        log 𝜓(|𝑘1|) ≤ 𝑂(1) + 𝛽−1{𝛼(|𝑘1|)/𝜆′} 

where q is a constant such that 

                  0 < 𝑞 < 𝑚𝑖𝑛{1, [𝜓(|𝑘1|) − 𝜓(|𝑘1∗
|)]/2} 

Further we have 

                     𝜓(|𝑘1|) = 𝜓(|𝑘1| + 1) = ⋯ = 𝜓(𝑛 − 1) 

Now we can write 

      𝜓(|𝑘0|) … 𝜓(|𝑘∗|) =
∥𝑎

𝑘0||

∥𝑎𝑘||
≤ [𝜓(|𝑘∗|]𝑛−|𝑘0| 

where  |k ∗ | = n − 1 and n >> |k 0 |   or 

log ∥∥𝑎𝑘∥∥−1 ≤ 𝑛log 𝜓(|𝑘1|) + 𝑂(1) ≤ 𝑛𝛽−1{𝛼(|𝑘1|)/𝜆′} + 𝑂(1) 

or 
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                 −
1

𝑛
log ∥∥𝑎𝑘∥∥ ≤ [𝛽−1{𝛼(|𝑘1|)/𝜆′}][1 + 𝑜(1)], 

 or  

  or             

−
1

𝑛
log ∥∥𝑎𝑘∥∥ ≤ [𝛽−1{𝛼(𝑛)/𝜆′}][1 + 𝑜(1)],

𝜆′ ≤
𝛼(𝑛)

𝛽{log∥∥𝑎𝑘∥∥−1/𝑛}
[1 + 𝑜(1)].

 

Now taking limits as n → ∞, we get λ ≤ Φ. Hence the Theorem 2.1 is proved.  

 Next we prove  

Theorem 2.2. 

 Let K ⊆ C N be a compact set such that ΦK is locally bounded in C N .  If α(x) ∈ Λ and β(x) ∈ 

L0 then the function f , defined and bounded on K , is a restriction to K of an entire function g 

of generalized lower order λ(α, β, g) if and only if 

                     𝜆 = 𝜆(𝛼, 𝛽, 𝑔) ≥ 𝑙𝑖𝑚
𝑛→∞

 𝑠𝑢𝑝
𝛼(𝑛)

𝛽[log{𝐸𝑛
𝑠 (𝑓,𝐾)}−1/𝑛]

; 𝑠 = 1,2,3                         (2.3) 

Also if Es
n (f, K)/Es

n+1 (f, K) is a non-decreasing function of n , then equality holds in (2.3). 

Proof. First we assume that f has an entire function extension g which is of generalized order 

ρ = ρ(α, β, g). We write 

  𝜃𝑠 = 𝑙𝑖𝑚
𝑛→∞

 𝑠𝑢𝑝
𝛼(𝑛)

𝛽[log{𝐸𝑛
𝑠 }−1/𝑛]

; 𝑠 = 1,2,3 

Here Es
n stands for Es

n (g|K, K) , s = 1, 2, 3. Following Winiarski [8], we have  

                            E1
n  ≤  E2

n  ≤  (n∗ + 2)E 1n   n ≥ 0,      (2.4) 

and 

                           E3
n , ≤  2 (n∗ + 2)E 1n-1         n ≥ 1,     (2.5) 

Where = (
𝑛 + 𝑁

𝑛
).  Using Stirling formula for the approximate value of n! 

We get    𝑛∗ ≈
𝑛𝑁

𝑁!
    for all large values of n. Hence for all large values of n, we have 

and                 
𝐸𝑛

1 ≤ 𝐸𝑛
2 ≤

𝑛𝑁

𝑁!
{1 + 𝑜(1)}𝐸𝑛

1

𝐸𝑛
3 ≤ 2

𝑛𝑁

𝑁!
{1 + 𝑜(1)}𝐸𝑛

1.
 

Thus θ 3  ≤  θ 2 =  θ 1. First we prove that θ s ≤ λ. Without any loss of generality, we may 

suppose that 

                        K ⊂ B = { z ∈ CN : |z1| 
2 + |z2| 

2 + ... + |zN | 2 ≤ 1 . 

Then 

  E1
n  ≤ E1

n (g, B). 

Now following Janik ([3], p. 324), we have 

                       E1
n (g, B) ≤ r-n s (r, g)         r ≥ 2,   n ≥ 0, 

or   

      𝐸𝑛
1 ≤ 𝑟−𝑛exp {𝛼−1[𝜆̅𝛽(log 𝑟)]} 

Putting r = exp{ β −1  [α(n)/λ]}  in the above inequality, we get 

  𝐸𝑛
1 ≤ exp {𝑛 − 𝑛𝛽−1[𝛼(𝑛)/𝜆̅]} 

or   

  
𝛼(𝑛)

𝛽(1−
1

𝑛
[log{𝐸𝑛

1}])
≤ 𝜆̅ 

Since 𝛽(1 + 𝑥) ≃ 𝛽(𝑥) as 𝑥 → ∞, proceeding to limits as 𝑛 → ∞, we get 
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   θ1 ≤ λ, 

or   

   θs ≤ λ, 

Now we will prove that λ ≤ θs. Let ψ(n) = Es |k| /E
s |k1 | . Then ψ(n) → ∞ as n → ∞.  

Now as in the proof of Theorem 2.1, here we have 

  log [𝐸𝑛
𝑠]−1 ≤ 𝑛log 𝜓(|𝑘1|) + 𝑂(1) ≤ 𝑛𝛽−1{𝛼(|𝑘1|)/𝜆′} + 𝑂(1), 

or   

  −
1

𝑛
log 𝐸𝑛

𝑠 ≤ [𝛽−1{𝛼(|𝑘1|)/𝜆′}][1 + 𝑜(1)], 

or   

or  
−

1

𝑛
log 𝐸𝑛

𝑠 ≤ [𝛽−1{𝛼(𝑛)/𝜆′}][1 + 𝑜(1)]

𝜆′ ≤
𝛼(𝑛)

𝛽{log[𝐸𝑛
𝑠 ]−1/𝑛}

[1 + 𝑜(1)].
 

 

Now taking limits as n → ∞, we get λ ≤ θs 

  Now let f be a bounded function defined on K and such that for s = 1, 2, 3 

   𝜃𝑠 = 𝑙𝑖𝑚
𝑛→∞

 𝑠𝑢𝑝
𝛼(𝑛)

𝛽[log{𝐸𝑛
𝑠 }−1/𝑛]

 

Then for every d1> θs and for sufficiently large value of n , we have 

   
𝛼(𝑛)

𝛽[log{𝐸𝑛
𝑠 }−1/𝑛]

≤ 𝑑1 , 

or    0 ≤ 𝐸𝑛
𝑠 ≤ exp [−𝑛𝛽−1 {

1

𝑑1
𝛼(𝑛)}]. 

Proceeding to limits as n → ∞, we get 

  𝑙𝑖𝑚
𝑛→∞

 [𝐸𝑛
𝑠]1/𝑛 = 0. 

So by the result of Janik ([2], Prop. 3.1), we infer that the function f can be continuously 

extended to an entire function. Let us put 

  𝑔 = 𝑙0 + ∑  ∞
𝑛=1 (𝑙𝑛 − 𝑙𝑛−1), 

where {ln} is the sequence of Lagrange interpolation polynomials of f as defined earlier. Now 

we claim that g is the required continuation of f and ρ(α, β, g) = θs. As in the proof of this 

Theorem given above, we have 

    λ ≤ θs . 

Now using the inequalities (2.4), (2.5) and the proof of first part given above, we have λ(α, β, 

g) = θs , as claimed. This completes the proof of the Theorem 2.2. 
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