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Introduction
By studying the class SH and its geometric subclasses in 1984, Clunie and Sheil-Small [1] and

Jahangiri and Silverman [5] were able to determine certain coefficient limitations. Afterwards,
numerous papers on SH and its subclasses have been published. The current study, which is a
follow-up to previous research, examines how sense-preserving, univalent, and nearly convex
harmonic functions can be constructed by using the Alexander integral transforms of specific
analytic functions (that is, those that are starlike or convex of positive order) as starting points.
The co-analytic portion of f must be identically zero for SH to reduce to the class S of
normalized analytic univalent functions in U.

Let H represent as follows: the family of continuous complex-valued harmonic functions
1. inthe open unit disk, which are harmonic

U={z:z € Cand|z|] < 1}
2. Assume that A is the subclass of H that consists of functions that have analytic properties
within U. Since h and g are members of A, a function harmonic in U can be expressed
asf=h+g.

3. For fto be locally univalent and sense-preserving in U,|h'(2)| > |g'(2)I.

4. Without losing generality, we can write

h(z) = z+ X5, azFand g(z) = X5, by z". (1.1)

5. Define SH as the family of harmonic, univalent, and sense-preserving functions f = h + g in

U, where f(0) = £,(0)—1 =0
SHO is a subclass of SH that includes all functions with the condition
fz(0)= by = 0.

Assume SH reduces to the class S of normalized analytic univalent functions in U, if the Co-analytic
portion of f is exactly zero.
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I.  ForfeS, the differential operator D™ (n € N, = N U {0}) of f was introduced by Salagean

[9]
Il. For f = h+ g given by (1.1), Jahangiri et al. [8] defined the modified Salagean operator of f as
D"f(z) = D™h(z) + (—1)"D"g(z) (1.2)
Where

D h(z) = z + Zk"akzk,
k=2

And
D"g(z) = Y-, k"byz*. (n=1,2...) (1.3)
One can write f(z) < g(z), where g: U — C is the subordinate function of
f:U—C.

I.  Ifacomplex-valued function w exists that maps U into itself and has
w (0) =0, such that

f(z) = g(w(z)) foreveryzinU. (1.4)
I1. if the function g is univalent in U, then we have the following equivalence:
f(z2) <g(2) & f(0) =g (0) and f(U) c g(V). (1.5)
1. The Hadamard product (or convolution) of functions fi and f, of the form
@) = z+ 35, a,,2" + X, bepz™. (2€ U L€ {1, 2}) (1.6)
is defined by
(fi * £2)(@) = 2+ Xnp @102 + Xy by by nz™. (z € U). (1.7)

Denote by SHJ(n,A, B) the subclass of SH® consisting of functions f of the form (4.1) that
satisfy the situation

Dqrf(z) 1+ Az
f(z) 1+ Bz

where Dy f (2) is defined by (4.3).
2. Main results
A necessary and sufficient convolution condition for the harmonic functions in SHQ (n, 4, B) is given
by the first theorem.
Theorem 2.1:
A function f belongs to the class SH3 (n, A, B)if and only if f f € SJ and

f@) *o(z;§) #0(Se€C,[§l=1)

(-B<A<B<I) (1.8)

(1.9)

where

C2y _ (B=A)§z+(1+48)z*  {2+(A+B)§}Z—(1+A4¢)Z?
¢z ="z a2 zeU
(1.10)
Proof:

Let f € S9. Then SH2(n, 4, B) if and only if Dﬁfg) <=2 (1.11)

Or equivalently

Dy f(2) 1+ A¢§ _
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Since

f = h + g for some analytic functions h, g and
zh'(2) = h(z) * —2—=h(2) = h(2) * 1ZTZ (1.12)

1-2)%’

We have
(1 + BS) Dyf(2) — (1 + AS)f(2)
=(1 + BE)zh'(2) — (1+ ADh(2) - [(1 + BE)zg' (@) + (1 + AE)g(2)

_ (1+B§)z (1+48§)z,  —7—~  (1+B§)Z | (1+4§)z
- h(Z) *( (1_2)2 1-z ) g(Z) * ( (1_2)2 + 1—-z ) (113)

=f@)* o(z;9)
Thus, (1.9) and (1.11) are equal hence the proof is completed

After that, we provide the adequate coefficient bounded for the function in SH)(n, 4, B).
The following corollary results from solving Theorem 1 for B= -A=1

Corollary 2.2:
A function f belongs to the class SH2(n, A, B)if and only if f € SH° and
f@) * 9(z;8) #0(EG€C,|S]=1) (1.14)
where
Loy 28z+(1-§)z%  22-(1+§)7?
p(z;¢) = 1 Gy 2€U (1.15)

Next we give the sufficient coefficient bounded for function in SHZ(n, A, B).

Theorem 2.3:
A function f = h+ g besothat hand g are given by

f(z) = Z(anzn + b,z") (a; = 1,|b,] <1, z € )
n=0

Thenf € SHY(n,A,B) if

n=1(Ynl lanl + 18n] [bn]) < 2(B- A) (1.16)
Where
Yo =@ +B) -1+ 4)
bp = M +B)+ 1+ A4) (1.17)
Proof :

For f(z) = z, the theorem's validity is readily apparent. Accordingly, for n> 2, we assume that
a, # 0,b, # 0. Since

IR’ (2] > |9'(@)| (z € U).
By lu,l =1, vyl =1

we obtain
%2 n,%z n(n=2,3,..)
Classes of harmonic functions that are defined by convolution are obtained by (1.16)
n=2(lan| +nlby|) < 1- by (1.18)
Moreover
|h'(2)| —19'(2)|

> 1= by — Xpanlan|lzI®™t + X3, n|by|lzI"!

oo

> 1= b= ) nlan] +[baDlz"

n=2
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21 — by — |z|255,(nfas| + nlby[)(1 = by)(1—|z]) (1.19)
> 0(zel)

Thus, by |h'(2)| > |g'(2)| (z € U). The function fis locally univalent as well as sense preserving
in U. Also, for z;,z,€U, z; # z, we have

2, = [Zhoy 2t 27

<yr_ilzi ¥z " <n(n=23,..). (1.20)
Hence, by (1.18) we get

| f (z1) = f (22)]

2 | h(z1) = h(z)] = 19 (z1) — 9(2)

Z — 22 +Zan(zfl_22)‘ - ‘Zb (z—z3)
n=2
(o8]
> 1z, - 7 —ZlanIIZ?—Z?I)—ZIanIZ?—Z?
n=2

Z1 -z3

=

= |2 = 7l (1= by — Zizla,l 211 2| - 3a, Ibl [22]) (1.21)
> |z = 2(1 = b = Tila(nlan| + nlby]))

=0
Which proves univalent. On the other f € SH2(n, 4, B) if and only if there exists a complex-valued
function

w,w(0) =0, |lw@)| < 1(z € D)

such that
Dy f(z) _ 1+Aw(2)
f(z)  1+Bw(2)’ . (2€U) (1.22)

or equivalently

| Dy f(z)—f(z)
BDj f(z)—Af(z)

< 1(z € U). (1.23)
Thus, it suffices to demonstrate that
|Dscf (2) = f(2)| — |BDyf(2) — Af (2)| < 0
(ze U\ {0}).
Indeed, letting |z| = r (0 <r < 1) we have
IDyf(z) — £(z) | -|BDy f(z) — Af(2)|

—|Z ,(n—1Da,z" — ¥ ,(n+1)b,z" | |(B A)z+ Y7 (Bn—A)a,z" — Y- ,(Bn+
A))b,z" |

<Y (n—Dla,lr™ + Xo-1(n+ Db, |r™ — (B-A) r+X7_,(Bn — A)|a,|r™ + Xo-.(Bn +
A)|b, |r™

<t { Xa=1(Ival lan| + 84| [bu]) 77 1-2(B - A)} <0.
hence f € SHJ (n, A, B)and so the proof is complete.
Motivated by Silverman [10] we denote by §* {1 € (0,1)} the class of functions f € H, of form

f(2) —Z(anz + D7)
(a,=1, |b1|<1 z € U)
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such that a, = —|an|, bn = (=1)}|bn| (n =2, 3, . . .); that is,
f=h+g,
h(z) =z—- Z|an|2"
n=2
9@ = (-D*E7.lbalZ", (z € tU).O (1.24)
r

f=z- Eolanlz" + (-1)*X741b, 2",
Define Ry(n, A, B) which denotes the class of functions f €SH that
Dy f(z) — 1+ Aw(z)

zZ 1+ Bw(z)
Moreover, let us define

S9(n, A,B)=3°NSY% (n, A, B),

S;(n, A, B)=3°N 85 (n, A, B),

S§(n, A, B) =31 N SE (n, A, B),

Now, we show that condition (1.16) is also the sufficient condition for a function f € J° to be in
class S3(n, A, B).

Theorem 2.4

A function f = h+ g besothat hand g are given by

@)=Y (@nz" + Bz (a1 = 1,1 <1 z€ V)
n=0

Then f € SHY(n, A, B) if

Zn=1(lynllanl + 18,11by|) < 2(B - A)

Wherey, = (n(1 + B) — (1 + A))
5, =@+ B)+ (1 + A4)

Proof :
With respect to Theorem 2.3,

We have to prove “only if” part, i.e., each function from the class SH (n, 4, B) satisfies the condition
(1.23). If f € SHY(n, A, B), then it is of the form (1.1) with (1.7) and satisfies (1.16) or equivalently

Y= {(n—Dlan|z™+(n+1)|bp| 2™}

2(B-A)z- L7 {(Bn—A)|an|z"+(Bn+A4)|by|2™} <L(zel)
Forz=1r(0<r<1), we have
0 _ n-1
Y= {(n=Dlan|+n+1)|by|r™ "1} <1 (1.25)

2(B-A)-L3-,{(Bn-A)|an|+(Bn+A4)|bp|r"~1}

It is clear that the denominator of the left-hand side cannot vanish for r € (0, 1). Moreover, it is
positive for r =0, and in consequence for r € (0, 1).

we have {Z%_,(Iynllanl + lynllba)} < 2(B — A) (0 <r<1). (1.26)
The sequence of partial sums {Sn} associated with the series

m=o(Ynl lan] + |6n] |bnl) is a nondecreasing sequence. Moreover, by (1.26) it is bounded by B —
A. Hence, the sequence {Sn} is convergent and

n=2(IYnl [an] + |84 [bn])
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:1EE;SH
<B-A (1.27)
which yields the assertion Y071 (|ynl |an] + [84] |bn]) < 2(B — A)
The following result may be proved in the same way as Theorem 2.4.
Corollary 2.5
A function f belongs to the class SHY (n, 4, B) if and only if
Dsdmam [(@)* 9(2;8) #0(E €C, 1] = 1) (1.28)
Where ¢( z; &) is defined by 1.10
Corollary 2.6
A function f € SHQ(n, A, B) of form
f(2) = En-o(@nz™ + byz™) (ay = 1,101 < 1, Z € U)

Satisfies the condition YX%_,(|yn| |an] + [8a] |bn]) <2(B—A4) ZE€U
(1.29)
Corollary 2.7
A function f € 7° belongs to the class SH)(n, A4, B) ifand only if f € S9 and
f(z) = (z;§) #0(§€C,[¢l=1) (1.30)
where

n=2(l¥nl [an| + [84] [by|) <2(B—A) z€U (1.31)
Corollary 2.8
A function f € 7° and f € 7' be a function of form f = h+ g ifandonlyif f € SH° and

f=h+g,
h(z) =z— Zlanlzn
n=2
g (@) = (“D*EF,Ib"Z", (z € U). (1.32)

Then (1.1) f € Ry (A, B) if and only

. 2B-A+1

L X n(lag] + [byl) <A
2B—-A+1

Il Z&in?(Jag| + [byl) <222

3. Extreme points

In SHJ(n, A, B), the standard topology is represented by a metric that states that a sequence {f;,}
converges to f if and only if it does so uniformly on every compact subset of U. Weierstrass and
Montel's theorems imply that this topological space is complete.

Definition 3.1:

Let F be a subclass of the class SH'TS . A function f € F is called an extreme point of F if
the condition

f=vA+ Q- eF0O<y<1 (1.33)

implies f, = f, = f. We shall use the notation E F to denote the set of all extreme points of F. It is
Clearthat EF c F

We say that F is locally uniformly bounded if for each r, 0 <r < 1, there is a real constant M = M (r)
so that

| f (@) < M(f € F,|z| £ ). (1.34)
Definition 3.2:
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A class F is deemed convex if

vF+A-9)geEF(FgeF0<y<1).
(1.35)

Additionally, the intersection of every closed convex subset of H that contains F is defined as
the closed convex hull of F. The closed convex hull of F is indicated by coF.

A real-valued functional J: H — R is called convex on a convex class F c H if

Jf+A-vg =vi() + A -nNJ@F.g€¥F0 =y =1). (1.36)

The Krein—Milman theorem is fundamental in the theory of extreme points. In particular, it implies
the following lemma.
Lemma 3.1
Let F be a non-empty compact convex subclass of the class H and J:H — R be a real-valued,
continuous and convex functional on F. Then
max {J (f):f € F} = max{J (f):f € EF}.
(1.37)

Since H is a complete metric space, Montel’s theorem implies the following lemma.
Lemma 3.2
Aclass F c H is compact if and only if F is closed and locally uniformly bounded.
Lemma 3.3:
A class SH'T{is non empty compact subset of the class 7 then SH'TS (n, A, B) is non —empty and
COSH'TS = co SHy. (1.38)
4. Radii of starlikeness and convexity
We say that a function f € H,, is starlike of order a in U(r) if

%(argf(peit)) >a,0<t<2m 0<p<r<]l. (1.39)

Analogously, we say that a function f € H, is convex of order a in U(r) if
% (argf(peit)) >a,0<t<2m 0<p<r<l.
It is easy to verify that for a function f € T (¢) the condition (1.39) is equivalent to the following
Re 2® < o (zeu (n) (1.40)

_ f(@
or equivalently

Dyf(z)— (1 + ) f(2)
D | < 1zeu () (141)

Let B be a subclass of the class Ho. We define the radius of starlikeness R}, (B)and the radius of
convexity RS (B)for the class B by

R% (B)::}rellf;(sup {r € (0,1] : fis starlike of order in U(r)}),

RS, (B)::}relg(sup{r € (0,1] fis convex of order in U(r)}),

Theorem 4.1
The radius of starlikeness of order o for the class S5 (n; A, B) is given by

1
1—

R (S%(n; A, B)) = inf {—“ min {121 @}}“ (1.42)
nz

B-A n—a’n+a
where yn and dnare defined by (1.17).
Proof :
Let f € S9(n; A, B) be of the form (1.1) with (1.7). Then, for
|z| =r <1 we have
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Dyf(z)—- (1+ ) f(z) |_ | —az +35 {(n—-1-a)|ay|z® —(n+1+a)|by|Z™}
Dyf(z)+ (1— ) f (2) - (2-a)z +Z;’1°=2{(n+1—oc)|anlzn—(n+1+oz)|bn|2n
a+Y2 {(n—1-a)|ay | +(n+1+a)|by|[r?"1}
~ 2—a-Y {(n+1-a)|ay|r+(n+1+a)|byrP 1}
Thus, the condition (1.40) is true if and only if
z( | n|+n+“|b Drit < 1, (1.43)
Theorem l we have
(o] n 811
(2ol g, |+ Lolyp ) < g, (1.44)
where v, and 6, are defined by (1.17). Thus, the condition (1.43) is true if

n-a 1_ lynl nta 1 _ |8nl
1—ocrn <BA10zrn < (n_23 D)

that is, if
r < { 1B__(Z min{ [¥nl M})E (n=2,3..)).

n—-o ' n+a

It follows that the function f'is starlike of order a in the disk U (r *), where r *

r* = inf{ 113_01: min{ [¥n| ,M})ﬁ. (1.45)

n=2 - n—-o n+a

The functions y,, &, of the form (1.17) realize equality in (1.44), and the radius r* cannot be larger.
Thus we have (1.42). The following result may be proved in much the same way as Theorem 4.1.

5 Applications

It is clear that if the class

F = {f, € H: n € N}is locally uniformly bounded, then

coF ={¥721 YofaiZn=1 Yo =1, vn = 0(n € N)} . (1.46)
Corollary 5.1

S”(nAB)—{Z (Ynhp + 8,80) : Z (Yn+6,)=1,6,=0,8, vy, =0,n € N

where hy, gn are defined by (1.22).

B-A
hTL = Z—- nn_lyn Zn I}
— B-4 -n
g, = z+ e (ze V) (1.47)

For each fixed value of n € N, z €U, the following real-valued functionals are continuous and convex
onH:

J () =laal, J (F) = [bnl,
JO=11@IJ () =Dy f(2)| (f € H). (1.48)
Moreover, for y> 1, 0 <r < 1, the real-valued functional
I0 =G [|fre®y| do)r (fe ) (1.49)
is also continuous and convex on H..

Therefore, by Lemma 3.1 Theorem 4.2 we have the following corollaries.

Corollary 5.2
Letfe Sg?[ (n- A, B) be a function of the form (1.1). Then
lan| < |bn| |5 | (n =2,3,...), (1.50)
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where yn, 6n are defined by (1.17). The result is sharp. The functions hn, gn of the form (1.47)
are the extremal functions.

Corollary 5.3

Letfe Sp(m;AB)|z| =r < 1

Then
B-A B-A
sy | S @ Sr e
2(B-A)

i 2B-A) o
luz|(1+2B—A)

2 < <
resDpflz) <r+ luz|(1+2B—A)

where u, are defined by (1.2). The result is sharp. The functions hn, gn of the form (1.47) are the
extremal functions.

Corollary 5.4
Let0<r<1,y>1.Iff€ S;.(q; A B) then

2 . 2 . A
= 11 e[ do < - [ [ha(re™)]" o,

— [T IDxf(2)|Y d0 < [ IDychy(2))]Y db
where hy is the function defined by (1.47).

Conclusion

In the chapter new classes of univalent harmonic functions are introduced. Necessary and
sufficient conditions for defined classes of functions are obtained. Some topological properties,
radii of convexity and starlikeness, and extreme points of the classes are also considered. By
using extreme points theory we obtained coefficients estimates, distortion theorems, and integral
mean inequalities for these classes of functions.
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