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Abstract 

The new class of harmonic functions that are defined in this work through 

the usage of subordination is being introduced. For this class of functions we 

find compactness, convexity, and radii of starlikeness, together with 

necessary and sufficient requirements. We may also derive distortion 

theorems and coefficient estimates for this class of functions by employing 

extreme point theory. 
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Introduction 

By studying the class SH and its geometric subclasses in 1984, Clunie and Sheil-Small [1] and 

Jahangiri and Silverman [5] were able to determine certain coefficient limitations. Afterwards, 

numerous papers on SH and its subclasses have been published. The current study, which is a 

follow-up to previous research, examines how sense-preserving, univalent, and nearly convex 

harmonic functions can be constructed by using the Alexander integral transforms of specific 

analytic functions (that is, those that are starlike or convex of positive order) as starting points. 

The co-analytic portion of f must be identically zero for SH to reduce to the class S of 

normalized analytic univalent functions in U. 

Let H represent as follows: the family of continuous complex-valued harmonic functions 

1. in the open unit disk, which are harmonic  

  U =  {z ∶  z ∈  C and |z|  <  1} 

2. Assume that A is the subclass of H that consists of functions that have analytic properties 

within U. Since h and g are members of A, a function harmonic in U can be expressed  

as f = h + 𝑔̅. 

3. For f to be locally univalent and sense-preserving in U,|ℎ′(𝑧)| > |𝑔′(𝑧)|. 

4. Without losing generality, we can write  

h(z)  =  z + ∑ 𝑎𝑘𝑧𝑘∞
𝑘=2  and g(z)  = ∑ 𝑏𝑘𝑧𝑘∞

𝑘=2  .                 (1.1) 

5. Define SH as the family of harmonic, univalent, and sense-preserving functions 𝑓 = ℎ + 𝑔̅ in 

U, where  𝑓(0)  =  𝑓𝑧(0) − 1 =  0     

SH0 is a subclass of SH that includes all functions with the condition                                          
 𝑓𝑧̅(0) =  𝑏1  =  0 . 

 Assume SH reduces to the class S of normalized analytic univalent functions in U, if the Co-analytic 

portion of f is exactly zero. 
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I. For f ∈ S, the differential operator 𝐷𝑛 (𝑛 ∈  ℕ0 =  𝑁 ∪  {0}) of f was introduced by Salagean 

[9].  

II. For 𝑓 = ℎ + 𝑔̅ given by (1.1), Jahangiri et al. [8] defined the modified Salagean operator of f as  

𝐷𝑛𝑓(𝑧)  =  𝐷𝑛ℎ(𝑧)  +  (−1)𝑛𝐷𝑛𝑔(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅                            (1.2) 

Where  

𝐷𝑛ℎ(𝑧)  =  𝑧 +  ∑ 𝑘𝑛𝑎𝑘𝑧𝑘

∞

𝑘=2

 , 

And  

𝐷𝑛𝑔(𝑧)  =  ∑ 𝑘𝑛𝑏𝑘𝑧𝑘∞
𝑘=2 .        ( n=1,2…)                 (1.3) 

One can write f(z) ≺ g(z), where g: U → C is the subordinate function of  

f: U → C. 

I. If a complex-valued function w exists that maps U into itself and has  

w (0) = 0, such that  

f(z) = g(w(z))  for every z in U.                (1.4)  

II. if the function g is univalent in U, then we have the following equivalence:  

f (z) ≺ g (z) ⇔ f (0) = g (0) and f(U) ⊂ g(U).      (1.5) 

III. The Hadamard product (or convolution) of functions f1 and f2 of the form  

𝑓𝑡(𝑧) =  𝑧 +  ∑ 𝑎𝑡,𝑛𝑧𝑛∞
𝑛=2  + ∑ 𝑏𝑡,𝑛𝑧𝑛̅̅ ̅̅ ̅̅ ̅̅∞

𝑛=2 . (z ∈ U, t ∈ {1, 2})            (1.6) 

is defined by  

(𝑓1  ∗  𝑓2)(𝑧)  =  𝑧 +  ∑ 𝑎1,𝑛𝑎2,𝑛𝑧𝑛∞
𝑛=2  + ∑ 𝑏1,𝑛𝑏2,𝑛𝑧𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∞

𝑛=2 . (𝑧 ∈  𝕌).      (1.7)                                                                             

Denote by  𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) the subclass of SH0 consisting of functions f of the form (4.1) that 

satisfy the situation  

Dℋf(z)   

f (z)
≺

1 + Az 

 1 + Bz
               (−B ≤ A < B ≤ 1)                      (1.8) 

where 𝐷𝐻𝑓 (𝑧) is defined by (4.3).  

2. Main results  

A necessary and sufficient convolution condition for the harmonic functions in 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) is given 

by the first theorem. 

Theorem 2.1: 

A function f belongs to the class 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵)if and only if  f  𝑓 ∈ 𝑆𝐻

0  and  

𝑓(𝑧)  ∗  𝜑( 𝑧 ;  𝜉 )  ≠ 0 ( 𝜉 ∈ ℂ , | 𝜉| =  1)                        

(1.9) 

where  

𝜑(𝑧; 𝜉) =
(𝐵−𝐴)𝜉𝑧+(1+𝐴𝜉)𝑧2

(1−𝑧)2 −
{2+(𝐴+𝐵)𝜉}𝑧̅−(1+𝐴𝜉)𝑧̅2

(1−𝑧̅)2    z ∈ 𝕌                                               

(1.10) 

Proof: 

Let 𝑓 ∈  𝑆𝐻
0 . Then 𝑆𝐻𝛿

0(𝑛, 𝐴, 𝐵) if and only if 
Dℋf(z)   

f (z)
≺

1 + Az 

 1 + Bz
,                               (1.11)         

Or equivalently  
Dℋf(z)   

f (z)
≠

1 + A𝜉 

 1 + B𝜉
, (𝜉 ∈  ℂ, |𝜉 |  =  1).  

http://philstat.org.ph/


Mathematical Statistician and Engineering Applications 
ISSN:2094-0343 

2326-9865 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 13521 

Since 

𝑓 =  ℎ +  𝑔 ̅ for some analytic functions h, g and  

𝑧ℎ′(𝑧) = ℎ(𝑧) ∗
𝑧

(1−𝑧)2,ℎ(𝑧) = ℎ(𝑧) ∗
𝑧

1−𝑧
              (1.12) 

We have  

 (1 +  𝐵𝜉 ) 𝐷ℋ𝑓(𝑧)  − (1 +  𝐴𝜉 )𝑓(𝑧)  

= (1 +  𝐵𝜉 ) 𝑧ℎ′(𝑧) − (1 + 𝐴𝜉)ℎ(𝑧) – [ (1 +  𝐵𝜉 ) 𝑧𝑔′(𝑧)̅̅ ̅̅ ̅̅ ̅̅ + (1 +  𝐴𝜉 )𝑔(𝑧) ̅̅ ̅̅ ̅̅ ̅ 

=  ℎ(𝑧) ∗ (
(1 + 𝐵𝜉 )𝑧 

(1−𝑧)2 −
(1 + 𝐴𝜉 )𝑧 

1−𝑧
) −  𝑔(𝑧) ̅̅ ̅̅ ̅̅ ̅ ∗  (

(1 + 𝐵𝜉 )𝑧̅ 

(1−𝑧)2 +
(1 + 𝐴𝜉 )𝑧̅ 

1−𝑧
)  (1.13) 

= 𝑓(𝑧) ∗  𝜑( 𝑧 ;  𝜉)   

 Thus, (1.9) and (1.11) are equal hence the proof is completed  

 After that, we provide the adequate coefficient bounded for the function in 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵). 

The following corollary results from solving Theorem 1 for B= -A= 1   

Corollary 2.2: 

A function f belongs to the class 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵)if and only if  𝑓 ∈  𝑆𝐻𝑜  and  

𝑓(𝑧)  ∗  𝜑( 𝑧 ;  𝜉)  ≠ 0 (𝜉 ∈ 𝐶 , |𝜉| =  1)          (1.14) 

where  

𝜑(𝑧; 𝜉) =
2𝜉𝑧+(1−𝜉)𝑧2

(1−𝑧)2 −
2𝑧̅−(1+𝜉)𝑧̅2

(1−𝑧̅)2 , z ∈ 𝕌      (1.15) 

Next we give the sufficient coefficient bounded for function in S𝐻𝛿
0(n, A, B). 

Theorem 2.3:  

A function 𝑓 =  ℎ + 𝑔̅   be so that h and g are given by  

𝑓(𝑧) = ∑(𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛̅̅ ̅̅ ̅̅

∞

𝑛=0

) (𝑎1 = 1, |𝑏1| < 1, 𝑧 ∈ 𝕌) 

Then f ∈  S𝐻𝛿
0(𝑛, 𝐴, 𝐵) if  

∑ (|γn| |an|  +  |δn| |bn|)∞
𝑛=1  ≤  2(B –  A)          (1.16) 

Where 

𝛾𝑛   =  (𝑛 (1 +  𝐵)  −  (1 +  𝐴)) 

                                  𝛿𝑛  =   (𝑛 (1 +  𝐵)  +  (1 +  𝐴))                         (1.17) 

Proof : 

 For 𝑓(𝑧) = 𝑧, the theorem's validity is readily apparent. Accordingly, for n≥ 2, we assume that 

 𝑎𝑛 ≠  0, 𝑏𝑛 ≠  0 .  Since  

|ℎ′(𝑧)|  >  |𝑔′(𝑧)| (𝑧 ∈  𝕌).                                   

By |un| ≥ 1, |vn| ≥ 1 

we obtain  
|γn| 

𝐵−𝐴
≥  n,

|δn| 

𝐵−𝐴
≥  n (n = 2, 3, ...)                         

Classes of harmonic functions that are defined by convolution are obtained by (1.16)  
∑ (n|an|  + n|bn|)  ≤  1 −   b1

∞
𝑛=2                   (1.18) 

Moreover 

|ℎ′(𝑧)|  − |𝑔′(𝑧)| 
≥  1 −   𝑏1 − ∑ 𝑛|𝑎𝑛||𝑧|𝑛−1∞

𝑛=2  + ∑ 𝑛|𝑏𝑛||𝑧|𝑛−1∞
𝑛=2   

≥  1 −   𝑏1 − ∑ 𝑛(|𝑎𝑛| + |𝑏𝑛|)|𝑧|𝑛−1

∞

𝑛=2
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≥ 1 − 𝑏1 − |𝑧| ∑ (𝑛|𝑎𝑛|∞
𝑛=2 +  𝑛|𝑏𝑛|)(1 −   𝑏1)(1 − |𝑧|)      (1.19)                                           

≥  0 (𝑧 ∈ 𝕌) 

Thus, by |ℎ′(𝑧)|  >  |𝑔′(𝑧)| (𝑧 ∈  𝕌). The function f is locally univalent as well as sense preserving 

in 𝕌. Also, for 𝑧1, 𝑧2𝜖𝕌, 𝑧1 ≠ 𝑧2 we have      

|
𝑧1

𝑛−𝑧2
𝑛

𝑧1− 𝑧𝑧
| =  |∑ 𝑧1

𝑘−1𝑧2
𝑛−𝑘𝑛

𝑘=1 |   

≤ ∑ |𝑧1|𝑘−1|𝑧2|𝑛−𝑘𝑛
𝑘=1  < n (n = 2,3, ...).        (1.20) 

Hence, by (1.18) we get  

| 𝑓 (𝑧1)  −  𝑓 (𝑧2)|  
≥  | ℎ(𝑧1)  −  ℎ(𝑧2)|  −  | 𝑔 (𝑧1)  −  𝑔(𝑧2)| 

≥  |𝑧1  −  𝑧2 + ∑ 𝑎𝑛(𝑧1
𝑛−𝑧2

𝑛)

∞

𝑛=2

| − |∑ 𝑏𝑛(𝑧1
𝑛−𝑧2

𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
∞

𝑛=2

|     

≥  |𝑧1  −  𝑧2|  − ∑|𝑎𝑛||𝑧1
𝑛−𝑧2

𝑛|)

∞

𝑛=2

− ∑|𝑏𝑛|

∞

𝑛=2

|𝑧1
𝑛−𝑧2

𝑛|   

=  |𝑧1  − 𝑧2| (1 − 𝑏1 −  ∑ |𝑎𝑛| |
𝑧1

𝑛−𝑧2
𝑛

𝑧1− 𝑧2
|∞

𝑛=2   − ∑ |𝑏𝑛| |
𝑧1

𝑛−𝑧2
𝑛

𝑧1− 𝑧𝑧
|𝛼

𝑛=2 )     (1.21) 

 > |𝑧1  −  𝑧2|(1 − 𝑏1 −  ∑ (𝑛|𝑎𝑛|∞
𝑛=2 +  𝑛|𝑏𝑛|)) 

≥ 0 

Which proves univalent. On the other 𝑓 ∈ 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) if and only if there exists a complex-valued 

function  

𝜔, 𝜔(0)  =  0, |𝜔(𝑧)|  <  1 (𝑧 ∈  𝕌) 

such that  

𝐷ℋ𝑓(𝑧)

𝑓(𝑧)
=

1+𝐴𝜔(𝑧)

1+𝐵𝜔(𝑧)
, (z ∈ 𝕌)           (1.22) 

or equivalently   

|
Dℋf(z)−f(z) 

BDℋ  f(z)−Af(z) 
| <  1 (z ∈  𝕌).          (1.23) 

 Thus, it suffices to demonstrate that 

|𝐷ℋ𝑓(𝑧) − 𝑓(𝑧)| − |𝐵𝐷ℋ𝑓(𝑧) − 𝐴𝑓(𝑧)| < 0 

(z ∈ 𝕌 \ {0}).  

Indeed, letting |z| = r (0 < r < 1) we have  

|Dℋf(z) − f(z) | -|BDℋ  f(z) − Af(z)|  

=|∑ (𝑛 − 1)𝑎𝑛𝑧𝑛 − ∑ (𝑛 + 1)𝑏̅𝑛𝑧̅𝑛∞
𝑛=1  ∞

𝑛=2 |–|(𝐵 − 𝐴)𝑧 + ∑ (𝐵𝑛 − 𝐴)𝑎𝑛𝑧𝑛 −  ∑ (𝐵𝑛 +∞
𝑛=1

∞
𝑛=2

𝐴))𝑏̅𝑛𝑧̅𝑛 | 

≤ ∑ ( 𝑛 − 1)|𝑎𝑛|𝑟𝑛 +  ∑ (𝑛 + 1)|𝑏𝑛|𝑟𝑛∞
𝑛=1 −∞

𝑛=2  (B-A) r +∑ (𝐵𝑛 − 𝐴)|𝑎𝑛|𝑟𝑛 +  ∑ (𝐵𝑛 +∞
𝑛=1

∞
𝑛=2

𝐴)|𝑏𝑛|𝑟𝑛  

≤ r { ∑ (|γn| |an|  +  |δn| |bn|)∞
𝑛=1  𝑟𝑛−1-2(B – A)} < 0.  

hence 𝑓 ∈ 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵)and so the proof is complete. 

Motivated by Silverman [10] we denote by 𝔍𝜆  {𝜆 ∈ (0,1)} the class of functions 𝑓 ∈ ℋ0 of form 

𝑓(𝑧) = ∑(𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛̅̅ ̅̅ ̅̅

∞

𝑛=1

) 

 (𝑎1=1, |𝑏1| < 1, z ∈ 𝕌) 
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such that 𝑎𝑛 = −|𝑎𝑛|, 𝑏𝑛 = (−1)𝜆|𝑏𝑛| (𝑛 = 2, 3, . . .); that is,  

𝑓 = ℎ +  𝑔̅, 

ℎ (𝑧)  = 𝑧 − ∑|𝑎𝑛|𝑧𝑛

∞

𝑛=2

 

𝑔 (𝑧)  =  (−1)𝜆 ∑ |𝑏𝑛|𝑧̅𝑛∞
𝑛=1 , (𝑧 ∈  𝕌).      (1.24) 

Or  

𝑓 =  𝑧 −  ∑ |𝑎𝑛|𝑧𝑛∞
𝑛=2 + (−1)𝜆 ∑ |𝑏𝑛|𝑧̅𝑛∞

𝑛=1 , 

Define 𝑅Η(𝑛, 𝐴, 𝐵) which denotes the class of functions 𝑓 ∈SH that 

   
Dℋf(z)

z
=

1 + Aω(z) 

 1 + Bω(z)
 

Moreover, let us define  

𝒮ℐ
0(n, 𝐴, 𝐵) = ℑ0 ∩ 𝒮ℋ

0  (n, 𝐴, 𝐵), 

𝒮ℐ
∗(n, 𝐴, 𝐵) = ℑ0 ∩ 𝒮ℋ

∗  (n, 𝐴, 𝐵), 

𝒮ℐ
𝑐(n, 𝐴, 𝐵) = ℑ1 ∩ 𝒮ℋ

𝑐  (n, 𝐴, 𝐵), 

Now, we show that condition (1.16) is also the sufficient condition for a function 𝑓 ∈   ℑ0   to be in 

class 𝑆ℑ
0(𝑛, 𝐴, 𝐵). 

Theorem 2.4 

A function 𝑓 =  ℎ + 𝑔̅   be so that h and g are given by  

𝑓(𝑧) = ∑(𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛̅̅ ̅̅ ̅̅

∞

𝑛=0

) (𝑎1 = 1, |𝑏1| < 1  𝑧 ∈ 𝕌) 

Then 𝑓 ∈  𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) if  

∑ (|γn||an| +  |δ𝑛||𝑏𝑛|)∞
𝑛=1 ≤  2(B –  A)   

Where 𝛾𝑛    =  (𝑛 (1 +  𝐵)  −  (1 +  𝐴)) 

𝛿𝑛  =  (𝑛 (1 +  𝐵)  +  (1 +  𝐴))                            

 Proof : 

 With respect to Theorem 2.3,  

We have to prove “only if” part, i.e., each function from the class 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) satisfies the condition 

(1.23). If 𝑓 ∈ 𝑆ℋ𝛿
0(𝑛, 𝐴, 𝐵), then it is of the form (1.1) with (1.7) and satisfies (1.16) or equivalently        

|
∑ {(𝑛−1)|𝑎𝑛|𝑧𝑛+(𝑛+1)|𝑏𝑛|𝑧̅𝑛}∞

𝑛=1

2(𝐵−𝐴)𝑧−∑ {(𝐵𝑛−𝐴)|𝑎𝑛|𝑧𝑛+(𝐵𝑛+𝐴)|𝑏𝑛|𝑧̅𝑛}∞
𝑛=1

| < 1, (𝑧 ∈ 𝕌) 

For z = r (0 ≤ r < 1), we have 

∑ {(𝑛−1)|𝑎𝑛|+(𝑛+1)|𝑏𝑛|𝑟𝑛−1}∞
𝑛=1

2(𝐵−𝐴)−∑ {(𝐵𝑛−𝐴)|𝑎𝑛|+(𝐵𝑛+𝐴)|𝑏𝑛|𝑟𝑛−1}∞
𝑛=1

< 1                           (1.25) 

It is clear that the denominator of the left-hand side cannot vanish for r ∈ (0, 1). Moreover, it is 

positive for r = 0, and in consequence for r ∈ (0, 1).  

we have  {∑ (|γn||an| +  |γn||bn|)}𝛼
𝑛=2  ≤  2(B −  A ) (0 < r < 1).     (1.26)  

The sequence of partial sums {Sn} associated with the series  

∑ (|γn| |an|  +  |δn| |bn|)∞
𝑛=2  is a nondecreasing sequence. Moreover, by (1.26) it is bounded by B − 

A. Hence, the sequence {Sn} is convergent and  

∑ (|γn| |an|  +  |δn| |bn|)∞
𝑛=2   
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= lim
𝑛→∞

𝑠𝑛 

≤ B – A              (1.27) 

which yields the assertion ∑ (|γn| |an|  +  |δn| |bn|) ≤ 2(B − A)∞
𝑛=1  

The following result may be proved in the same way as Theorem 2.4.  

Corollary 2.5 

A function f belongs to the class 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) if and only if   

𝐷𝑆𝐻𝛿
0(𝑛,𝐴,𝐵) 𝑓(𝑧) ∗  𝜑( 𝑧 ;  𝜉)  ≠ 0 (𝜉 ∈ 𝐶 , |𝜉| =  1)                  (1.28) 

Where 𝜑( 𝑧 ;  𝜉) is defined by 1.10 

Corollary 2.6 

A function 𝑓 ∈  𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) of form       

 𝑓(𝑧) = ∑ (𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛̅̅ ̅̅ ̅̅∞
𝑛=0 ) (𝑎1 = 1, |𝑏1| < 1, 𝑍 ∈ 𝕌) 

Satisfies the condition ∑ (|γn| |an|  +  |δn| |bn|)𝛼
𝑛=2 ≤ 2(𝐵 − 𝐴)       Z ∈ 𝕌    

(1.29) 

Corollary 2.7 

A function 𝑓 ∈ ℐ𝑜 belongs to the class 𝑆𝐻𝛿
0(𝑛, 𝐴, 𝐵) if and only if    𝑓 ∈  𝑆𝐻

0  and  

𝑓(𝑧)  ∗  𝜑( 𝑧 ;  𝜉 )  ≠ 0 (𝜉 ∈ ℂ , |𝜉| =  1 )             (1.30) 

where  
∑ (|γn| |an|  +  |δn| |bn|)∞

𝑛=2  ≤ 2(B − A)       z ∈ 𝕌      (1.31) 

 

Corollary 2.8 

A function 𝑓 ∈ ℐ𝑜 and 𝑓 ∈ ℐ′ be a function of form  𝑓 =  ℎ + 𝑔̅   if and only if  𝑓 ∈  𝑆𝐻𝑜  and  

𝑓 = ℎ +  𝑔̅, 

ℎ (𝑧)  = 𝑧 −  ∑|𝑎𝑛|𝑧𝑛

∞

𝑛=2

 

𝑔 (𝑧)  =  (−1)𝜆 ∑ |𝑏𝑛|𝑧̅𝑛∞
𝑛=2 , (𝑧 ∈  𝕌).       (1.32) 

Then (1.1) 𝑓 ∈ ℛℐ  (𝐴, 𝐵) if and only  

I. if ∑ n( |an|  +  |bn|) ≤𝛼
𝑛=1

2𝐵−A+1 

1+B
   

II. ∑ n2( |an|  +  |bn|) ≤𝛼
𝑛=1

2𝐵−A+1 

1+B
   

3. Extreme points  

In Sℋ𝛿
0(n, A, B), the standard topology is represented by a metric that states that a sequence {𝑓𝑛} 

converges to f if and only if it does so uniformly on every compact subset of U. Weierstrass and 

Montel's theorems imply that this topological space is complete. 

Definition 3.1: 

 Let ℱ be a subclass of the class 𝑆ℋTδ
0  . A function 𝑓 ∈  ℱ is called an extreme point of F if 

the condition  

𝑓 =  𝛾 𝑓1  +  (1 −  𝛾) 𝑓2 (𝑓1, 𝑓2  ∈  ℱ, 0 <  𝛾 < 1)      (1.33) 

 implies f1 = f2 = f. We shall use the notation 𝐸 ℱ  to denote the set of all extreme points of ℱ. It is 

clear that 𝐸 ℱ ⊂  ℱ 

We say that ℱ is locally uniformly bounded if for each r, 0 < r < 1, there is a real constant M = M (r) 

so that  

                       | 𝑓 (𝑧)|  ≤  𝑀 (𝑓 ∈  ℱ, |𝑧|  ≤  𝑟).       (1.34) 

Definition 3.2: 
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A class ℱ is deemed convex if  

                         𝛾 𝑓 +  (1 −  𝛾) 𝑔 ∈  ℱ (𝑓, 𝑔 ∈  ℱ, 0 ≤  𝛾 ≤  1).    

 (1.35) 

Additionally, the intersection of every closed convex subset of H that contains ℱ is defined as 

the closed convex hull of ℱ. The closed convex hull of ℱ is indicated by 𝑐𝑜̅̅ ̅ℱ.  

A real-valued functional 𝒥: ℋ → ℛ is called convex on a convex class ℱ ⊂ ℋ if 

 𝒥 (𝛾𝑓 + (1 − 𝛾)𝑔)  ≤  𝛾𝒥(𝑓)  +  (1 −  𝛾) 𝒥(𝑔) (𝑓, 𝑔 ∈ ℱ, 0 ≤  𝛾 ≤ 1).   (1.36) 

 The Krein–Milman theorem is fundamental in the theory of extreme points. In particular, it implies 

the following lemma.  

Lemma 3.1  

Let ℱ be a non-empty compact convex subclass of the class ℋ and 𝒥: ℋ → ℛ be a real-valued, 

continuous and convex functional on ℱ. Then  

𝑚𝑎𝑥 { 𝒥 (𝑓): 𝑓 ∈  ℱ }  =  𝑚𝑎𝑥 { 𝒥 (𝑓): 𝑓 ∈  𝐸 ℱ }.      

 (1.37) 

    Since ℋ is a complete metric space, Montel’s theorem implies the following lemma.  
Lemma 3.2  

A class ℱ ⊂  𝐻 is compact if and only if ℱ is closed and locally uniformly bounded.  

Lemma 3.3:  

A class 𝑆ℋTδ
0is non empty compact subset of the class ℋ  then 𝑆ℋTδ

0 (n, A, B) is non –empty and 

𝑐𝑜̅̅ ̅𝑆ℋTδ
0 = 𝑐𝑜̅̅ ̅ 𝑆ℋδ

0.           (1.38) 

4. Radii of starlikeness and convexity  

We say that a function 𝑓 ∈ ℋ0 is starlike of order α in 𝕌(r) if 
𝜕

𝜕𝑡
(𝑎𝑟𝑔𝑓(𝜌𝑒𝑖𝑡)) > 𝛼, 0 ≤ t ≤ 2π, 0 <ρ< r < 1.       (1.39) 

 Analogously, we say that a function 𝑓 ∈ ℋ0 is convex of order α in 𝕌(r) if 
𝜕

𝜕𝑡
(𝑎𝑟𝑔𝑓(𝜌𝑒𝑖𝑡)) > 𝛼, 0 ≤ t ≤ 2π, 0 <ρ< r < 1. 

 It is easy to verify that for a function 𝑓 ∈  𝑇 (𝜑) the condition (1.39) is equivalent to the following  

𝑅𝑒  
𝐷ℋ𝑓(𝑧)  

𝑓(𝑧) 
 > 𝛼 (z ∈ 𝕌 (r))      (1.40) 

or equivalently      

|
𝐷ℋf(z)− (1 + α) f (z)  

𝐷ℋf(z)+ (1− α) f (z) 
 | <  1 (z ∈ 𝕌 (r))        (1.41) 

Let ℬ be a subclass of the class H0. We define the radius of starlikeness R𝛼
∗  (ℬ)and the radius of 

convexity R𝛼
𝑐  (ℬ)for the class ℬ by 

 R𝛼
∗  (ℬ):= inf

𝑓∈ℬ
(sup {r ∈  (0, 1] ∶  f is starlike of order in 𝕌(r)}),   

R𝛼
𝑐  (ℬ):= inf

𝑓∈ℬ
(sup{r ∈  (0, 1] f is convex of order in 𝕌(r)}), 

Theorem 4.1 

 The radius of starlikeness of order α for the class 𝑆ℋ
𝑜 (n; A, B) is given by  

𝑅𝛼
∗ (𝑆ℋ

0 (𝑛; 𝐴, 𝐵)) = inf
𝑛≥2

{
1−𝛼

𝐵−𝐴
𝑚𝑖𝑛 {

|𝛾𝑛|

𝑛−𝛼
,

|𝛿𝑛|

𝑛+𝛼
}}

1

𝑛−1
       (1.42)  

where γn and δn are defined by (1.17).  

Proof : 

Let 𝑓 ∈  𝑆ℋ
0 (𝑛; 𝐴, 𝐵) be of the form (1.1) with (1.7). Then, for  

|z| = r < 1 we have   
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   |
𝐷ℋf(z)− (1 + α) f (z)  

𝐷ℋf(z)+ (1− α) f (z) 
 |=     |

−αz +∑ {(𝑛−1−𝛼)|𝑎𝑛|∞
𝑛=2 zn −(𝑛+1+𝛼)|𝑏𝑛|z̅n}

(2−α)z +∑ {(𝑛+1−𝛼)|𝑎𝑛|∞
𝑛=2 zn−(𝑛+1+𝛼)|𝑏𝑛|z̅n

|    

 ≤ 
α +∑ {(𝑛−1−𝛼)|𝑎𝑛|∞

𝑛=2 rn  +(𝑛+1+𝛼)|𝑏𝑛|rn−1}

 2−α−∑ {(𝑛+1−𝛼)|𝑎𝑛|∞
𝑛=2 rn+(𝑛+1+𝛼)|𝑏𝑛|rn−1}

 .  

Thus, the condition (1.40) is true if and only if  

∑ (∞
𝑛=2

𝑛−𝛼

1−𝛼
|𝑎𝑛| +

𝑛+𝛼

1−𝛼
|𝑏𝑛|) rn−1 ≤  1,        (1.43)  

Theorem 1, we have  

∑ (∞
𝑛=2

|γn|

𝐵−𝐴
|𝑎𝑛| +

|δn|

𝐵−𝐴
|𝑏𝑛|) ≤  1,         (1.44) 

 where γn and δn are defined by (1.17). Thus, the condition (1.43) is true if 

 
𝑛−𝛼

1−𝛼
 r n−1 ≤ 

|γn|

𝐵−𝐴
, 

𝑛+𝛼

1−𝛼
 r n−1 ≤ 

|δn|

𝐵−𝐴
 (n = 2, 3 . . .),  

that is, if  

 r ≤ {  
1 − α 

B − A
 min {

|γn|

n − α
 ,

|δn|

n+α
})

1

𝑛−1
 (n = 2, 3 . . .). 

 It follows that the function f is starlike of order α in the disk U (r ∗), where r ∗  

 𝑟∗  = inf
𝑛≥2

{  
1 − α 

B − A
 min {

|γn|

n − α
 ,

|δn|

n+α
})

1

𝑛−1
.         (1.45) 

The functions γn, δn  of the form (1.17) realize equality in (1.44), and the radius r∗ cannot be larger. 

Thus we have (1.42).  The following result may be proved in much the same way as Theorem 4.1. 

5 Applications  

It is clear that if the class  

𝐹 =  {𝑓𝑛  ∈  𝐻 ∶  𝑛 ∈  𝑁} is locally uniformly bounded, then  

𝑐𝑜̅̅ ̅F = {∑   γn𝑓𝑛 : ∑   γn ∞
𝑛=1  =  1 ∞

𝑛=1 , γn  ≥  0 (n ∈  ℕ)}  .     (1.46)  

 

Corollary 5.1  

𝑆c
∞(n; A, B) = {∑   (γnhn + δngn) 

∞

𝑛=1

: ∑   (γn + δn) = 1,

∞

𝑛=1

δ1 = 0, δn, γn  ≥ 0, n ∈  ℕ} 

where hn, gn are defined by (1.22).  

  h𝑛 =  z −
𝐵−𝐴

ηn−1γn
𝑧𝑛 , 

g𝑛 =  z +
𝐵−𝐴

η−n−1γn
𝑧̅𝑛              (z∈ 𝕌)        (1.47) 

For each fixed value of n ∈ ℕ, z ∈𝕌, the following real-valued functionals are continuous and convex 

on ℋ: 

 𝒥 (f) = |an|, 𝒥 (f) = |bn|,  

𝒥 (f) = | f (z)| 𝒥 (f) = | 𝐷ℋ f (z)| (f ∈ ℋ).        (1.48)  

Moreover, for γ ≥ 1, 0 < r < 1, the real-valued functional  

𝒥(f) = (
1

2𝜋
 ∫ |𝑓(𝑟𝑒𝑖𝜃)𝛾|

2𝜋

0
  dθ )

1

γ (f ∈ ℋ)        (1.49) 

 is also continuous and convex on ℋ.  

Therefore, by Lemma 3.1 Theorem 4.2 we have the following corollaries.  

Corollary 5.2  

Let f ∈ 𝑆ℋ
0 (n; A, B) be a function of the form (1.1). Then  

|an| ≤   
B − A 

|γn| 
 |bn| ≤ 

B − A 

|δn| 
 (n = 2, 3, . . .),        (1.50)  
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where γn, δn are defined by (1.17). The result is sharp. The functions hn, gn of the form (1.47)  

are the extremal functions.  

Corollary 5.3  

Let f ∈ 𝑆ℋ
0 (n; A, B) |𝑧 |  = 𝑟 <   1 

Then   

r-
B − A 

|u2|(1+2B−A) 
𝑟2 ≤ |f(z)| ≤ r + 

B − A 

|u2|(1+2B−A) 
 𝑟2  

r-
2(B − A )

|u2|(1+2B−A) 
𝑟2 ≤ |𝐷ℋf(z)| ≤ r + 

2(B − A )

|u2|(1+2B−A) 
 𝑟2  

where u2 are defined by (1.2). The result is sharp. The functions hn, gn of the form (1.47) are the 

extremal functions.  

Corollary 5.4 

Let 0 < r < 1, γ ≥ 1. If f ∈ 𝑆ℋ
𝜂 (φ; A, B) then  

1

2𝜋
 ∫ |𝑓((𝑟𝑒𝑖𝜃)|

γ2𝜋

0
 dθ ≤ 

1

2𝜋
 ∫ |h2(𝑟𝑒𝑖𝜃)|

λ2𝜋

0
 dθ,  

1

2𝜋
 ∫ |𝐷ℋf(z)|γ2𝜋

0
 dθ ≤ 

1

2𝜋
 ∫ |𝐷ℋh2(z))|γ2𝜋

0
 dθ 

where h2 is the function defined by (1.47). 

 
Conclusion 

In the chapter new classes of univalent harmonic functions are introduced. Necessary and 

sufficient conditions for defined classes of functions are obtained. Some topological properties, 

radii of convexity and starlikeness, and extreme points of the classes are also considered. By 

using extreme points theory we obtained coefficients estimates, distortion theorems, and integral 

mean inequalities for these classes of functions. 
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