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Abstract 

This paper presents a comprehensive approach to rice crop yield prediction 

using MATLAB code for data visualization and analysis. We collected and 

analyzed data at key stages of the rice crop growing cycle, including 

planting, vegetative growth, reproductive growth, and maturity. Through 

the visualization of sample data and prediction of yield values, we gained 

insights into the factors influencing rice productivity and identified trends 

and variations across different stages of growth. Our analysis highlights the 

utility of MATLAB code in agricultural decision-making, allowing farmers 

and practitioners to optimize management strategies for enhanced crop 

yield potential. By integrating technological advancements into agricultural 

research and practice, we contribute to the advancement of sustainable rice 

cultivation practices and global food security efforts. 
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Introduction 

Agricultural productivity is not only essential for ensuring food security but also for 

sustaining economies and livelihoods worldwide. Among various crops, rice holds particular 

significance as a staple food for a large portion of the global population. However, the 

inherently uncertain and complex nature of agricultural systems presents challenges for 

accurately predicting rice yields. Traditional statistical methods often struggle to capture the 

intricate relationships between environmental factors, crop management practices, and yield 

outcomes. In recent years, there has been a growing interest in leveraging advanced 

computational techniques, such as fuzzy logic, to improve the accuracy and reliability of crop 

yield forecasting. Fuzzy logic offers a flexible and intuitive framework for modeling 

uncertainty and vagueness inherent in agricultural systems. Unlike traditional binary logic, 

which relies on crisp distinctions between true and false, fuzzy logic allows for the 

representation of imprecise and uncertain information using linguistic variables and fuzzy 

sets. This makes it well-suited for capturing the complex and nonlinear relationships between 

input variables and crop yields, which are often influenced by a multitude of factors such as 

weather conditions, soil properties, pest infestations, and agronomic practices. 
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The application of fuzzy logic in crop yield forecasting, particularly for rice, has garnered 

significant attention from researchers and practitioners alike. By integrating domain-specific 

knowledge of rice cultivation with fuzzy logic modeling techniques, researchers aim to 

develop accurate and robust predictive models that can provide valuable insights for farmers, 

policymakers, and other stakeholders. These models take into account various factors such as 

temperature, rainfall, soil moisture, nutrient levels, and pest prevalence, thereby enabling 

more informed decision-making in rice cultivation. 

Several studies have demonstrated the efficacy of fuzzy logic approaches in rice yield 

prediction. Researchers have explored different methodologies, including fuzzy time series 

models, fuzzy inference systems, and hybrid approaches combining fuzzy logic with other 

machine learning techniques. These studies have shown promising results in terms of 

prediction accuracy and robustness, highlighting the potential of fuzzy logic for enhancing 

crop yield forecasting in rice production systems. 

In this paper, we present a comprehensive investigation into the application of fuzzy logic for 

accurate crop yield forecasting, focusing specifically on rice cultivation. We review existing 

literature, discuss the theoretical foundations of fuzzy logic modeling, and present case 

studies and experiments illustrating the effectiveness of fuzzy logic approaches in rice yield 

prediction. Additionally, we highlight the practical implications of our research and discuss 

future directions for advancing fuzzy logic-based forecasting techniques in agriculture. 

Through this work, we aim to contribute to the ongoing efforts to improve agricultural 

productivity and ensure food security in rice-growing regions worldwide. 

 

Fuzzy AHP: 

Fuzzy Analytic Hierarchy Process (Fuzzy AHP) is an extension of the Analytic Hierarchy 

Process (AHP) that incorporates fuzzy logic to handle uncertainty and imprecision in 

decision-making processes. AHP is a multi-criteria decision-making method developed by 

Thomas Saaty, which allows decision-makers to systematically compare and prioritize 

alternatives based on a set of criteria. However, traditional AHP assumes crisp values for 

pairwise comparisons of criteria, which may not accurately represent real-world situations 

where judgments are subjective and uncertain. 

In Fuzzy AHP, linguistic variables and fuzzy numbers are used to express the imprecise 

judgments of decision-makers. Fuzzy sets are employed to represent the degrees of 

membership and uncertainty associated with each criterion's importance. This allows 

decision-makers to express their preferences in a more flexible and intuitive manner, 

considering the vagueness and ambiguity inherent in decision-making processes. 

Moreover, Fuzzy AHP extends the AHP framework by incorporating techniques such as 

alpha cut and lambda functions to facilitate sensitivity analysis. Alpha cut analysis 

determines the level at which fuzzy numbers are truncated, providing insights into the degree 

of uncertainty in decision-making. Lambda function allows for assessing the sensitivity of 

decisions to changes in alpha levels, enabling decision-makers to understand the robustness 

and stability of their choices. Overall, Fuzzy AHP provides a powerful framework for 

decision-makers to handle uncertainty, vagueness, and imprecision in multi-criteria decision-

making processes, making it particularly suitable for complex real-world applications where 

judgments are subjective and uncertain. 
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Literature Review 

The rapid advancements in artificial intelligence (AI) have yielded significant progress across 

various fields. Particularly, deep learning has evolved alongside the exponential growth of 

data, presenting new opportunities [21]. In agricultural contexts, this necessitates the adoption 

of advanced methodologies to conceptualize, assess, and manage complex information 

systems effectively [22–24]. Crop yield prediction, considered a pattern recognition 

challenge, has emerged as a domain where AI demonstrates remarkable proficiency [25]. 

In recent years, deep learning has seen widespread adoption and has shown promise in 

various applications. While traditional artificial neural network (ANN)-based approaches 

have been utilized for yield estimation, deep learning offers distinct advantages such as 

efficient dimension reduction and improved learning capacity for identifying nonlinear 

functions. For instance, Chen et al. introduced an LSTM deep learning model for predicting 

agricultural environments based on current environmental parameters [28]. Similarly, deep 

learning techniques have been employed in crop detection and analysis, as demonstrated by 

Kang et al.'s robust defective image labeling algorithm for real-time apple detection in 

orchards [29]. 

Weed detection and discrimination are crucial for enhancing crop yield, and deep learning-

based approaches have been proposed for precision agriculture. For example, Kounalakis et 

al. proposed deep learning-based robotic weed recognition applications for use in grasslands 

[9, 10]. Furthermore, Ferreira et al. introduced an unsupervised deep learning technique for 

semi-automatic data labeling in weed discrimination [30]. Additionally, controlling plant 

diseases is essential for sustainable agriculture, and deep learning techniques offer a new 

perspective for plant disease identification [31, 33, 34]. 

Despite the advancements made by deep learning approaches in crop development, there is a 

need for further improvements in robustness and the development of fast and accurate 

learning frameworks. Our proposed work aims to address these requirements by introducing a 

fuzzy neural network (FNN), which combines fuzzy systems and neural networks. FNN 

serves as an effective tool for representing dynamic input-output characteristics, offering a 

promising approach to meet the evolving needs of agricultural systems. 

 

Methodology 

Our research methodology involves the integration of the K-means clustering algorithm and 

the Fuzzy Analytic Hierarchy Process (Fuzzy AHP) model to predict rice crop yield 

effectively. This approach aims to leverage both clustering techniques and fuzzy logic-based 

decision-making to capture the complex relationships and uncertainties inherent in rice 

cultivation systems. 

In the first step of our methodology, we collect relevant data pertaining to various factors 

influencing rice crop yield, including meteorological data (temperature, precipitation, 

humidity), soil characteristics (moisture content, pH, nutrient levels), agricultural 

management practices (irrigation, fertilization), and historical yield records. This data serves 

as the foundation for our predictive modeling efforts. 

Next, we employ the K-means clustering algorithm to partition the collected data into distinct 

clusters based on similarities in the input features. By clustering similar data points together, 

we aim to identify patterns and underlying structures within the dataset that may influence 
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rice yield variability. This step helps in identifying homogeneous groups of data points, 

which can aid in understanding the underlying characteristics of different regions or farming 

practices. 

Following the clustering process, we utilize the Fuzzy AHP model to assess the relative 

importance of different factors or criteria in determining rice crop yield within each cluster. 

Fuzzy AHP allows decision-makers to express their preferences and judgments in a flexible 

and intuitive manner, accounting for the inherent uncertainty and vagueness in agricultural 

decision-making. 

To implement the Fuzzy AHP model, we define a hierarchical structure of criteria relevant to 

rice crop yield prediction, such as weather conditions, soil quality, crop management 

practices, and socio-economic factors. We then solicit expert opinions or domain knowledge 

to assign fuzzy linguistic variables and fuzzy pairwise comparison matrices to quantify the 

relative importance of these criteria within each cluster. 

Once the Fuzzy AHP model is established for each cluster, we aggregate the fuzzy pairwise 

comparison matrices to obtain overall priority weights for the criteria within each cluster. 

These priority weights reflect the relative importance of each factor in influencing rice crop 

yield outcomes, accounting for the uncertainties and ambiguities inherent in agricultural 

decision-making. 

Finally, we use the aggregated priority weights obtained from the Fuzzy AHP model, along 

with the clustering results from the K-means algorithm, to develop predictive models for rice 

crop yield within each cluster. These models incorporate the prioritized criteria identified 

through the Fuzzy AHP analysis, allowing for more accurate and context-aware predictions 

tailored to the specific conditions and characteristics of each cluster. 

By integrating the K-means clustering algorithm with the Fuzzy AHP model, our research 

methodology offers a comprehensive and robust approach to rice crop yield prediction. This 

methodology enables us to capture the complexities and uncertainties of rice cultivation 

systems, providing valuable insights for farmers, agricultural planners, and policymakers to 

optimize crop production and ensure food security in rice-growing regions. 

 

Multiple Stage Prediction: 

Other studies may consider multiple stages of the crop growing cycle for yield prediction. 

This approach involves collecting data at different key stages of rice growth, such as planting, 

vegetative growth, reproductive growth, and maturity. Data collected at each stage may 

include various factors such as weather conditions (temperature, precipitation), soil properties 

(moisture content, nutrient levels), agronomic practices (irrigation, fertilization), and 

physiological characteristics of the crop (growth stage, biomass accumulation). 
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Result And Discussion 

 
Figure 1: Multi stage results 

 

The first set of graphs displays the sample data collected at each stage of the rice crop 

growing cycle: planting, vegetative growth, reproductive growth, and maturity. Each bar 

represents the values of various factors (e.g., meteorological data, soil characteristics) 

collected at that particular stage. By examining these graphs, we can observe the trends and 

variations in the data across different stages of the crop growth cycle. Moving on to the 

second graph, it represents the predicted yield (in kg/ha) at each stage of the rice crop 

growing cycle. The predicted yield values are calculated based on the average values of the 

sample data collected at each stage. Each bar corresponds to the predicted yield at a specific 

stage, with the x-axis labels indicating the respective stages (planting, vegetative growth, 

reproductive growth, and maturity). In terms of comparison across stages, we can analyze the 

predicted yield values to identify stages with higher or lower predicted yields. For instance, if 

the predicted yield increases steadily from planting to maturity stages, it suggests successful 

crop growth and development throughout the season. Conversely, if there are fluctuations or 

declines in predicted yield at certain stages, it may indicate factors such as environmental 

stress, nutrient deficiencies, or pest infestations affecting crop productivity. 
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Figure 2: Comparison Result 

The graph illustrates the comparison between predicted and actual rice crop yields over the 

years 2020 to 2023. In terms of the predicted versus actual yield trend, both predicted and 

actual yields exhibit an increasing trend over the years, with slight fluctuations between 

adjacent years. The predicted yield values, represented by blue circles, generally follow a 

similar pattern to the actual yield values, represented by red circles, across the four years. 

A closer analysis of the error percentage, calculated as the relative difference between actual 

and predicted yields, provides insights into the accuracy of the predictive model. When the 

predicted yield closely matches the actual yield, the error percentage is low, indicating high 

accuracy. Conversely, larger error percentages suggest greater discrepancies between 

predicted and actual yields, highlighting potential areas for improvement in the predictive 

model. 

Examining specific years, such as 2020, reveals instances where the predicted yield closely 

aligns with the actual yield, as indicated by relatively low error percentages. However, in 

subsequent years, such as 2022 and 2023, there are slightly higher error percentages, 

indicating some degree of deviation between predicted and actual yields. 

From a management perspective, the comparison between predicted and actual yields 

provides valuable insights for agricultural decision-making. Farmers and practitioners can use 

this information to assess the performance of their crop management strategies and make 

adjustments to optimize yield potential. By identifying discrepancies between predicted and 

actual yields, stakeholders can refine predictive models and improve their ability to forecast 

crop productivity accurately. 

The graph serves as a visual representation of the predicted and actual rice crop yields over a 

four-year period, offering insights into the performance of the predictive model and 

informing decision-making in agricultural practices. 

Moreover, the predicted yield values provide valuable insights for agricultural decision-

making. Farmers and agricultural practitioners can use this information to adjust their 

management strategies and optimize crop yield potential based on the predicted yield trends 
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at different stages of the crop growth cycle. This can include decisions regarding irrigation 

scheduling, fertilization practices, and pest management interventions to enhance overall crop 

productivity and profitability. 

 

Conclusion 

In conclusion, our study demonstrates the application of MATLAB code to visualize and 

analyze data collected at various stages of the rice crop growing cycle, leading to the 

prediction of rice crop yield. By examining the sample data across different stages - planting, 

vegetative growth, reproductive growth, and maturity - and predicting yield values, we gain 

valuable insights into the factors influencing rice productivity. 

Through the interpretation of result graphs, we identify trends and variations in the data, 

enabling us to make informed decisions regarding agricultural management practices. The 

comparison of predicted yield values across stages highlights the dynamics of crop growth 

and development, shedding light on potential stressors or areas for improvement. 

Furthermore, the predicted yield values serve as a useful tool for agricultural decision-

making, allowing farmers and practitioners to optimize management strategies to enhance 

crop yield potential. This includes adjustments to irrigation scheduling, fertilization practices, 

and pest management interventions tailored to the specific needs of the crop at different 

stages of growth. Overall, our analysis underscores the importance of leveraging data 

visualization and predictive modeling techniques to enhance agricultural productivity and 

sustainability. By integrating technological advancements such as MATLAB code into 

agricultural research and practice, we can empower stakeholders to make informed decisions 

that drive positive outcomes in rice cultivation and contribute to global food security. 

 

References 

1. Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky 

B, Fujimori S, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Mason D’Croz D, Paltsev S, 

Rolinski S, Tabeau A, van Meijl H, von Lampe M, Willenbockel D (2014) The future of 

food demand: understanding differences in global economic models. Agric Econ 45:51–67  

2. Patrı´cio DI, Rieder R (2018) Computer vision and artificial intelligence in precision 

agriculture for grain crops: a systematic review. Comput Electron Agric 153:69–81  

3. Bruno B, Cammarano D, Carfagna E (2013) Review of crop yield forecasting methods and 

early warning systems. In: Proceedings of the first meeting of the scientific advisory 

committee of the global strategy to improve agricultural and rural statistics, Vol. 41  

4. Jin X, Zhao K, Ji J, Qiu Z, He Z, Ma H (2018) Design and experiment of intelligent 

monitoring system for vegetable fertilizing and sowing. J Supercomput pp 1–17  

5. Elavarasan D, Vincent DR, Sharma V, Zomaya AY, Srinivasan K (2018) Forecasting yield 

by integrating agrarian factors and machine learning models: a survey. Comput Electron 

Agric 155:257–282  

6. Hund L, Schroeder B, Rumsey K, Huerta G (2018) Distinguishing between model—and 

data-driven inferences for high reliability statistical predictions. Reliab Eng Syst Saf 

180:201–210  

7. Xing Lu, Li L, Gong J, Ren C, Liu J, Chen H (2018) Daily soil temperatures predictions 

for various climates in United States using data-driven model. Energy 160:430–440  



Mathematical Statisticianand Engineering Applications 

ISSN:2094-0343 

2326-9865 

2269 

 
Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

8. Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B (2019) Analysis of 

transfer learning for deep neural network based plant classification models. Comput 

Electron Agric 158:20–29  

9. Elavarasan D, Vincent PMD (2020a) Crop yield prediction using deep reinforcement 

learning model for sustainable agrarian applications. IEEE Access 8:86886–86901  

10. Elavarasan D, Vincent DR (2020b) Reinforced XGBoost machine learning model for 

sustainable intelligent agrarian applications. J Intell Fuzzy Syst 39(5):7605–7620  

11. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new 

perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828  

12. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 

61:85–117  

13. Qiao J, Wang G, Li X, Li W (2018) A self-organizing deep belief network for nonlinear 

system modelling. Appl Soft Comput 65:170–183  

14. Ali A, Yangyu F (2017) Automatic modulation classification using deep learning based 

on sparse autoencoders with nonnegativity constraints. IEEE Signal Process Lett 

24(11):1626–1630  

15. Ding S, Su C, Yu J (2011) An optimizing BP neural network algorithm based on genetic 

algorithm. Artif Intell Rev 36:153–162  

16. Chen CLP, Zhang C, Chen L, Gan M (2015) Fuzzy restricted boltzmann machine for the 

enhancement of deep learning. IEEE Trans Fuzzy Syst 23(6):2163–2173  

17. Islam MA, Anderson DT, Pinar A, Havens TC, Scott G, Keller JM (2019) enabling 

explainable fusion in deep learning with fuzzy integral neural networks. IEEE Trans 

Fuzzy Syst  

18. Sarabakha A, Kayacan E (2019) Online deep fuzzy learning for control of nonlinear 

systems using expert knowledge. IEEE Trans Fuzzy Syst  

19. Samsonovich AV (2019) Socially emotional brain-inspired cognitive architecture 

framework for artificial intelligence. Cognit Syst Res 60:57–76  

20. Ryan K, Agrawal P, Franklin S (2019) The pattern theory of self in artificial general 

intelligence: a theoretical framework for modeling self in biologically inspired cognitive 

architectures. Cognit Syst Res 62:44–56  

21. Wason R (2018) Deep learning: evolution and expansion. Cogn Syst Res 52:701–708  

22. Moreno R, Corona F, Lendasse A, Gran˜a M, Galva˜o LS (2014) Extreme learning 

machines for soybean classification in remote sensing hyperspectral images. 

Neurocomputing 128:207–216  

23. Zhang S, Huang W, Zhang C (2019) Three-channel convolutional neural networks for 

vegetable leaf disease recognition. Cogn Syst Res 53:31–41  

24. Zhu X, Zhu M, Ren H (2018) Method of plant leaf recognition based on improved deep 

convolutional neural network. Cogn Syst Res 52:223–233  

25. Nevavuori P, Narra N, Lipping T (2019) Crop yield prediction with deep convolutional 

neural networks. Comput Electron Agric 163:104859  

26. Haghverdi A, Washington-Allen RA, Leib BG (2018) Prediction of cotton lint yield from 

phenology of crop indices using artificial neural networks. Comput Electron Agric 

152:186–197. https:// doi.org/10.1016/j.compag.2018.07.021  



Mathematical Statisticianand Engineering Applications 

ISSN:2094-0343 

2326-9865 

2270 

 
Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

27. Abrougui K, Gabsi K, Mercatoris B, Khemis C, Amami R, Chehaibi S (2019) Prediction 

of organic potato yield using tillage systems and soil properties by artificial neural 

network (ANN) and multiple linear regressions (MLR). Soil Tillage Res 190:202–208  

28. Byakatonda J, Parida BP, Kenabatho PK, Moalafhi DB (2018) Influence of climate 

variability and length of rainy season on crop yields in semiarid Botswana. Agric Forest 

Meteorol 248:130–144  

29. Chen S, Li B, Cao J, Mao Bo (2018) Research on agricultural environment prediction 

based on deep learning. Procedia Comput Sci 139:33–40  

30. Kounalakis T, Triantafyllidis GA, Nalpantidis L (2019) Deep learning-based visual 

recognition of rumex for robotic precision farming. Comput Electron Agric 165:104973  

31. dos Santos Ferreira A, Freitas DM, da Silva GG, Pistori H, Folhes MT (2019) 

Unsupervised deep learning and semi-automatic data labeling in weed discrimination. 

Comput Electron Agric 165:104963  

32. Yang L, Yi S, Zeng N, Liu Y, Zhang Y (2017) Identification of rice diseases using deep 

convolutional neural networks. Neurocomputing 267:378–384  

33. Lee SH, Goe¨au H, Bonnet P, Joly A (2020) New perspectives on plant disease 

characterization based on deep learning. Comput Electron Agric 170:105220  

 


