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Abstract 

 The network graph is a tool to study various complex systems in real 

world situations such as social networks, food webs, internet etc. In this 

work, we study the statistical parameters of the random pentagonal chain 

network, PGn like dispersion and asymmetry. We establish the explicit 

formulas for the expected value, variance and skewness of the Wiener 

index. Further, we obtain that the index obeys normal distribution 

asymptotically. 

Keywords: Wiener index, Random Pentagonal Chain, Expected value, 

Variance, Skewness, Normal distribution. 
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1. Introduction  

The theory of complex networks [14, 19] is encouraged by experiential or observed phenomena 

of real networks. One of the basic and most effective tool to study the complex networks or 

random networks/chains is the theory of graph. The advantage to model the networks to a graph 

reduces the intricacy of the problem in a practical way and become more tractable. Nowadays, 

complex networks have become an utmost area in scientific research, especially in the field of 

statistics, mathematics, physics, chemistry and information science.  

Topological index is a numerical value associated with the chemical structure which investigate 

the related properties and connected informations [1, 9, 11, 13, 23]. In recent years, there exist a 

legion of topological indices in the literature. Suppose G represents a simple undirected graph 

with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺) [3, 7]. The degree of the vertex 𝑣 is denoted by 𝑑(𝑣). 

The length of the shortest path between any two vertices 𝑢 and 𝑣 represents the distance between 

the vertices 𝑢 and 𝑣, denoted by 𝑑(𝑢, 𝑣). The Wiener index 𝑊(𝐺), introduced by Wiener [22] in 
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1947, is the first distance based topological index which has many applications and high 

correlations with physicochemical properties of the molecular compounds. 𝑊(𝐺) is the sum of 

the distances between all pairs of vertices in a graph G, denoted by  

 𝑊(𝐺) = ∑ 𝑑(𝑢, 𝑣)

{𝑢,𝑣}⊆𝑉𝐺

 (1.1)
 

Yang and Zhang [24] and Ma et al. [12] obtained explicit formulas of 𝑊(𝐺) and 𝐸(𝑊(𝐺)) for a 

class of random hexagonal chain networks, respectively. In 2016, Chen et al. studied the 

relationships between the Wiener index and other distance- based topological indices in the tree – 

like polyphenyl systems. In 2020, Alaeiyan et al. [2] obtained the exact formulas for the Wiener 

polarity index of nanostar dendrimers. Due to high correlation of Wiener index with the 

physicochemical properties of the compounds, researchers from mathematics, statistics and 

chemistry were more attracted. For more applications of this index, interested readers can refer to 

[4-6, 10, 16-18, 20, 21, 27-36].  

A random pentagonal chain networks are finite 2-connected graphs composed by connecting 

edges at the ends of the pentagons. A pentagonal chain 𝑃𝐺𝑛 with 𝑛 pentagons is obtained by 

connecting a new pentagon randomly by an edge to a pentagonal chain 𝑃𝐺𝑛−1 as shown in Fig 2. 

The pentagonal chains for 𝑛 = 1, 2, 3 are shown in Fig 1. However, for 𝑛 ≥ 3, there are two 

ways of attaching terminal pentagons which are describes as 𝑃𝐺𝑛
1 and 𝑃𝐺𝑛

2, as shown in Fig 3. At 

each step for 𝑘 = 3, 4, … , 𝑛, the random chain is stochastic and let us choose one of the two 

possibilities : 

(i) 𝑃𝐺𝑘−1 → 𝑃𝐺𝑘
1 with probability 𝑝1, 

(ii) 𝑃𝐺𝑘−1 → 𝑃𝐺𝑘
2 with probability 𝑝2 = 1 − 𝑝1, 

where 𝑝1 and 𝑝2 are constants and steady with the parameter 𝑘. 

 

Motivated by [25, 26], 𝑍𝑛
1 and 𝑍𝑛

2 are two random variables to represent our choices. If our 

choice is 𝑃𝐺𝑛
𝑖 , we put 𝑍𝑛

𝑖 = 1, otherwise 𝑍𝑛
𝑖 = 0(𝑖 = 1, 2). One holds that  

 𝑷(𝑍𝑛
𝑖 = 1) = 𝑝𝑖 , 𝑷(𝑍𝑛

𝑖 = 0) = 1 − 𝑝𝑖, 𝑖 = 1, 2    (1.2) 

and  𝑍𝑛
1 + 𝑍𝑛

2 = 1.  

 

Figure 1.  Three types of random chain networks. 

 

The set of statistical parameters to measure a distribution are called moments. There are some 

more measures apart from central value and dispersion which are skewness and kurtosis. 

Skewness(𝜇3) refers to lack of symmetry or which describes asymmetry. The importance of the 

concept of skewness is based upon the assumption of the normal distributions. 
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Figure 2. A random chain networks 𝑷𝑮𝒏 

 

 

Figure 3.  The two types of local arrangements in random chain networks 

 

In this article, we determine the explicit formulas of 𝐸(𝑊(𝑃𝐺𝑛)), 𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛)) and 

𝜇3(𝑊(𝑃𝐺𝑛)) of random chain based on some known results. Furthermore, asymptotic behavior 

of expected value of Wiener index is also considered and prove that the random variable 

𝑊(𝑃𝐺𝑛) asymptotically obey normal distributions.  

 For this results, we must ensure that the following Hypothesis hold.  

 

Hypothesis 1. It is randomly and independently to choice a way attaching the new terminal 

pentagon 𝑂𝑛+1 to 𝑃𝐺𝑛, 𝑛 = 2, 3,… To be more precisely, the sequences of random variables 

{𝑍𝑛
1, 𝑍𝑛

2}𝑛=2
∞  are independently and must satisfy Eq. (1.2). 

 

Hypothesis 2. For 𝑖 ∈ {1, 2}, we put 0 < 𝑝𝑖 < 1.  

Under the conditions of Hypothesis 1 and 2.  

(a)The analytical expressions of the variance and skewness of 𝑊(𝑃𝐺𝑛) are obtained; 

(b)When 𝑛 → ∞, we verify that the random variable 𝑊(𝑃𝐺𝑛) asymptotically obey normal 

distributions. It is evident to see that  

 

lim
𝑛 → ∞

sup
𝑎 ∈ 𝑹

|𝑷(
𝑋𝑛 − 𝐸(𝑋𝑛)

√𝑉𝑎𝑟 (𝑋𝑛)
≤ 𝑎) − ∫

1

√2𝜋
𝑒
−𝑧2

2
𝑑𝑧

𝑎

−∞

| = 0 

where 𝐸(𝑋𝑛) and 𝑉𝑎𝑟(𝑋𝑛) represent the expectation and variance of this random variable 𝑋𝑛, 

respectively.  

In this paper, assume that 𝑓(𝑥) and 𝑔(𝑥) are two functions of 𝑥. Then  

(i) 𝑓(𝑥) ≍ 𝑔(𝑥) if lim
𝑥→∞

 
𝑓(𝑥)

𝑔(𝑥)
= 1. 

(ii) 𝑓(𝑥) = 𝑂(𝑔(𝑥)) if lim
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
= 0. 
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2. Results 

For the random chain networks 𝑃𝐺𝑛, 𝑊(𝑃𝐺𝑛) is the random variable. Here, we determine the 

explicit formulas of  𝐸(𝑊(𝑃𝐺𝑛)), 𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛)) and 𝜇3(𝑊(𝑃𝐺𝑛)). In addition, we show the 

asymptotic behavior of expected value and prove the index obeys normal distributions 

asymptotically.  

 In fact, 𝑃𝐺𝑛 is obtained by adding a new terminal pentagon 𝑂𝑛 to 𝑃𝐺𝑛−1 by an edge, where 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 are the vertices of 𝑂𝑛 arranged in clockwise direction. For all 𝑣 ∈ 𝑉𝑃𝐺𝑛−1, we 

have  

1. 𝑑(𝑥1, 𝑣) = 𝑑(𝑢𝑛−1, 𝑣) + 1, 𝑑(𝑥2, 𝑣) = 𝑑(𝑢𝑛−1, 𝑣) + 2, 

 𝑑(𝑥3, 𝑣) = 𝑑(𝑢𝑛−1, 𝑣) + 3, 𝑑(𝑥4, 𝑣) = 𝑑(𝑢𝑛−1, 𝑣) + 3, and 𝑑(𝑥5, 𝑣) = 𝑑(𝑢𝑛−1, 𝑣) + 2. 

2. 𝑃𝐺𝑛−1 has 5(𝑛 − 1) vertices. 

3. ∑ 𝑑(𝑥𝑘 , 𝑥𝑖)
5
𝑖=1 = 6, ∀ 𝑘 = 1, 2, 3, 4, 5. 

 

Theorem 2.1: For n ≥ 1, the analytic expression of 𝐸(𝑊(𝑃𝐺𝑛)) for the random chain networks 

is  

𝐸(𝑊(𝑃𝐺𝑛)) =
5

6
 (15 − 5𝑝1)𝑛

3 + 
1

2
 (25𝑝1 + 10)𝑛

2 −
1

6
(50𝑝1 + 15)𝑛. 

Proof: By Eq. (1.1), we have  

𝑊(𝑃𝐺𝑛+1) = ∑ 𝑑(𝑢, 𝑣) + ∑  ∑ 𝑑(𝑣,𝑥𝑖∈𝑉𝑂𝑛+1𝑣∈𝑉𝑃𝐺𝑛{𝑢,𝑣}⊆𝑉𝑃𝐺𝑛
 𝑥𝑖) + ∑ 𝑑(𝑥𝑖 , 𝑥𝑗) {𝑥𝑖,𝑥𝑗}⊆ 𝑉𝑂𝑛+1

  

 = 𝑊(𝑃𝐺𝑛) + ∑ (5𝑑(𝑢𝑛, 𝑣) + 11)𝑣∈𝑉𝑃𝐺𝑛
+ 

1

2
 ∑  ∑ 𝑑(𝑥𝑖 , 𝑥𝑗)

5
𝑗=1

5
𝑖=1  

 = 𝑊(𝑃𝐺𝑛) +  5∑ 𝑑(𝑢𝑛, 𝑣) + 55𝑛 + 15𝑣∈𝑉𝑃𝐺𝑛
 (2.1)  

For the random chain networks 𝑃𝐺𝑛, we obtain that ∑ 𝑑(𝑢𝑛, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛
 is a random variable. 

Let  

𝐴𝑛 = 𝐸 ( ∑ 𝑑(𝑢𝑛, 𝑣)

𝑣∈ 𝑉𝑃𝐺𝑛

). 

By using the above formula and Eq. (2.1), 𝐸(𝑊(𝑃𝐺𝑛+1)) of the random chain network is  

 𝐸(𝑊(𝑃𝐺𝑛+1)) = 𝐸(𝑊(𝑃𝐺𝑛)) + 5𝐴𝑛 + 55𝑛 + 15 (2.2) 

Then, the following two cases arise: 

Case 1. 𝑃𝐺𝑛 → 𝑃𝐺𝑛+1
1 . 

In this case, 𝑢𝑛 (of 𝑃𝐺𝑛) coincides with the vertex labeled 𝑥2 or 𝑥5 (of 𝑂𝑛). Therefore, 

∑ 𝑑(𝑢𝑛, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛
 can be written as ∑ 𝑑(𝑥2, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛

 or ∑ 𝑑(𝑥5, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛
 with probability 𝑝1.  

Case 2. 𝑃𝐺𝑛 → 𝑃𝐺𝑛+1
2 . 

In this case, 𝑢𝑛 (of 𝑃𝐺𝑛) coincides with the vertex labeled 𝑥3 or 𝑥4 (of 𝑂𝑛). Therefore, 

∑ 𝑑(𝑢𝑛, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛
 can be written as ∑ 𝑑(𝑥3, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛

 or ∑ 𝑑(𝑥4, 𝑣)𝑣∈ 𝑉𝑃𝐺𝑛
 with probability 

𝑝2 = 1 − 𝑝1.  

By applying the expectation operator together with the above cases,  

𝐴𝑛 = 𝑝1  ∑ 𝑑(𝑥2, 𝑣) + 

𝑣∈𝑉𝑃𝐺𝑛

𝑝2  ∑ 𝑑(𝑥3, 𝑣)

𝑣∈𝑉𝑃𝐺𝑛

 

where  
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∑ 𝑑(𝑥2, 𝑣) =  ∑ (𝑑(𝑢𝑛−1, 𝑣) + 2) + ∑ 𝑑(𝑥2, 𝑣)

𝑣∈𝑂𝑛𝑣∈𝑉𝑃𝐺𝑛−1𝑣∈𝑉𝑃𝐺𝑛

 

 = ∑ 𝑑(𝑢𝑛−1, 𝑣) + 10(𝑛 − 1) + 6.

𝑣∈𝑉𝑃𝐺𝑛−1

 

∑ 𝑑(𝑥3, 𝑣) =  ∑ (𝑑(𝑢𝑛−1, 𝑣) + 3) + ∑ 𝑑(𝑥3, 𝑣)

𝑣∈𝑂𝑛𝑣∈𝑉𝑃𝐺𝑛−1𝑣∈𝑉𝑃𝐺𝑛

 

 = ∑ 𝑑(𝑢𝑛−1, 𝑣) + 15(𝑛 − 1) + 6.

𝑣∈𝑉𝑃𝐺𝑛−1

 

Then, we obtain 

𝐴𝑛 = 𝑝1 [∑ 𝑑(𝑢𝑛−1, 𝑣) + 10(𝑛 − 1) + 6𝑣∈𝑉𝑃𝐺𝑛
] +  (1 − 𝑝1) [∑ 𝑑(𝑢𝑛−1, 𝑣) +𝑣∈𝑉𝑃𝐺𝑛−1

 15(𝑛 − 1) + 6]  

 = 𝐴𝑛−1 + 𝑝1(10𝑛 − 4) + (1 − 𝑝1)(15𝑛 − 9)  

 = 𝐴𝑛−1 + (15 − 5𝑝1)𝑛 + (−9 + 5𝑝1).  

For 𝑛 = 1, the boundary condition is  

𝐴1 = 𝐸 ( ∑ 𝑑(𝑢1, 𝑣)

𝑣∈ 𝑉𝑃𝐺1

) = 6. 

Using the above condition and recurrence relation with respect to 𝐴𝑛,  

 𝐴𝑛 = (
15

2
−
5

2
𝑝1) 𝑛

2 + (
5

2
𝑝1 −

3

2
)𝑛. (2.3) 

From Eq. (2.2), it holds that  

𝐸(𝑊(𝑃𝐺𝑛+1)) = 𝐸(𝑊(𝑃𝐺𝑛)) + 5𝐴𝑛 + 55𝑛 + 15  

 = 𝐸(𝑊(𝑃𝐺𝑛)) + 5 [(
15

2
−
5

2
𝑝1) 𝑛

2 + (
5

2
𝑝1 −

3

2
) 𝑛] + 55𝑛 + 15. 

For 𝑛 = 1, we obtain 𝐸(𝑊(𝑃𝐺1)) = 15. Similarly, according to the recurrence relation related to 

𝐸(𝑊(𝑃𝐺𝑛)), we have  

𝐸(𝑊(𝑃𝐺𝑛)) =
5

6
 (15 − 5𝑝1)𝑛

3 + 
1

2
 (25𝑝1 + 10)𝑛

2 −
1

6
(50𝑝1 + 15)𝑛. 

Also,  

𝐸(𝑊(𝑃𝐺𝑛))~
5

6
 (15 − 5𝑝1)𝑛

3. 

i.e. 𝐸(𝑊(𝑃𝐺𝑛)) is asymptotic to a cubic in 𝑛 as 𝑛 → ∞. 

Theorem 2.2: Suppose Hypothesis 1 and 2 are correct, then the variance of the Wiener index is 

denoted by  

𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛)) =  
1

30
(𝑣1𝑛

5 − 5𝑟1𝑛
4 + 10𝑣2𝑛

3 + (65𝑟1 − 30𝑣1 − 45𝑣2)𝑛
2 

 +(59𝑣1 + 65𝑣2 − 120𝑟1)𝑛 + (60𝑟1 − 30𝑣1 − 30𝑣2)). 

where 

 (𝑈𝑚) = 𝑣1, 𝑉𝑎𝑟(𝑉𝑚) = 𝑣2, 𝐶𝑜𝑣(𝑈𝑚, 𝑉𝑚) = 𝑟1. 

Proof: Let 𝐵𝑛 = 5∑ 𝑑(𝑢𝑛 , 𝑣).𝑣∈𝑉𝑃𝐺𝑛
 Then by Eq. (2.1), we obtain  
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 𝑊(𝑃𝐺𝑛+1) = 𝑊(𝑃𝐺𝑛) + 𝐵𝑛 + 55𝑛 + 15 (2.4) 

 Recalling that 𝑍𝑛
1 and 𝑍𝑛

2 are random variables for the choice to construct 𝑃𝐺𝑛+1 by 𝑃𝐺𝑛. Now 

the next two facts are: 

Fact 1 𝐵𝑛𝑍𝑛
1 = (𝐵𝑛−1 + 50𝑛 − 20)𝑍𝑛

1. 

Proof. If 𝑍𝑛
1 = 0, it is obvious. Then we only take into account 𝑍𝑛

1 = 1, which implies 𝑃𝐺𝑛 →

 𝑃𝐺𝑛+1
1 . In this case, 𝑢𝑛 coincides with 𝑥2 or 𝑥5, see Fig 3. 

 𝐵𝑛 = 5 ∑ 𝑑(𝑥2, 𝑣)

𝑣∈𝑉𝑃𝐺𝑛

 

 = 5 ∑ 𝑑(𝑥2, 𝑣)

𝑣∈𝑉𝑃𝐺𝑛−1

+ 5 ∑ 𝑑(𝑥2, 𝑣)

𝑣∈𝑉𝑂𝑛

 

 = 5 ∑ (𝑑(𝑢𝑛−1, 𝑣)

𝑣∈𝑉𝑃𝐺𝑛−1

+ 𝑑(𝑢𝑛−1, 𝑥2)) + 30  

 = 𝐵𝑛−1 + 50𝑛 − 20. 

Thus, we conclude the desired fact.  

Fact 2 𝐵𝑛𝑍𝑛
2 = (𝐵𝑛−1 + 75𝑛 − 45)𝑍𝑛

2. 

 Similarly, by taking into account 𝑃𝐺𝑛 → 𝑃𝐺𝑛+1
2 , we get the Fact 2. 

Notice that 𝑍𝑛
1 + 𝑍𝑛

2 = 1, from the above two facts, it holds that  

 𝐵𝑛 = 𝐵𝑛(𝑍𝑛
1 + 𝑍𝑛

2)  

 = (𝐵𝑛−1 + 50𝑛 − 20)𝑍𝑛
1 + (𝐵𝑛−1 + 75𝑛 − 45)𝑍𝑛

2 

 = 𝐵𝑛−1 + (50𝑍𝑛
1 + 75𝑍𝑛

2)𝑛 − (20𝑍𝑛
1 + 45𝑍𝑛

2) 

 = 𝐵𝑛−1 + 𝑛𝑈𝑛 − 𝑉𝑛 

where for each 𝑛,  

 𝑈𝑛 = 50𝑍𝑛
1 + 75𝑍𝑛

2, 𝑉𝑛 = 20𝑍𝑛
1 + 45𝑍𝑛

2.  

Therefore, by Eq. (2.4), it follows that  

𝑊(𝑃𝐺𝑛) = 𝑊(𝑃𝐺1) + ∑ 𝐵𝑙 + ∑ (55𝑙 + 15)𝑛−1
𝑙=1

𝑛−1
𝑙=1   

 = 𝑊(𝑃𝐺1) +∑(∑(𝐵𝑚+1 − 𝐵𝑚) + 𝐵1) +∑(55𝑙 + 15)

𝑛−1

𝑙=1

𝑙−1

𝑚=1

𝑛−1

𝑙=1

 

 = 𝑊(𝑃𝐺1) +∑∑(𝐵𝑚+1 − 𝐵𝑚) + (𝑛 − 1)𝐵1 +∑(55𝑙 + 15)

𝑛−1

𝑙=1

𝑙−1

𝑚=1

𝑛−1

𝑙=1

 

 = 𝑊(𝑃𝐺1) +∑  ∑((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1) + 𝑂(𝑛
2) (2.5)

𝑙−1

𝑚=1

𝑛−1

𝑙=1

 

By direct calculation, we have  

𝑣1 = 502𝑝1 + 75
2(1 − 𝑝1) − (50𝑝1 + 75(1 − 𝑝1))

2
, 

𝑣2 = 20
2𝑝1 + 45

2(1 − 𝑝1) − (20𝑝1 + 45(1 − 𝑝1))
2
, 

𝑟1 = 50.20. 𝑝1 + 75.45. (1 − 𝑝1) − (50𝑝1 + 75(1 − 𝑝1))(20𝑝1 + 45(1 − 𝑝1)). 

Refer to ref. [25, 26], by the properties of variance, Eq. (2.5) and exchanging the order of 𝑙 and 

𝑚, we have directly 
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𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛)) = 𝑉𝑎𝑟 [∑  ∑((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑙−1

𝑚=1

𝑛−1

𝑙=1

] 

 = 𝑉𝑎𝑟 [∑  ∑ ((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑛−1

𝑙=𝑚+1

𝑛−2

𝑚=1

] 

 = 𝑉𝑎𝑟 [∑((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)(𝑛 − 𝑚 − 1)

𝑛−2

𝑚=1

] 

 = ∑(𝑛 − 𝑚 − 1)2𝑉𝑎𝑟((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑛−2

𝑚=1

 

 = ∑(𝑛 − 𝑚 − 1)2𝐶𝑜𝑣((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1, (𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑛−2

𝑚=1

 

 = ∑(𝑛 −𝑚 − 1)2((𝑚 + 1)2𝐶𝑜𝑣(𝑈𝑚+1, 𝑈𝑚+1) − 2(𝑚 + 1)𝐶𝑜𝑣(𝑈𝑚+1, 𝑉𝑚+1)

𝑛−2

𝑚=1

 

 +𝐶𝑜𝑣(𝑉𝑚+1, 𝑉𝑚+1)) 

 = ∑(𝑛 − 𝑚 − 1)2((𝑚 + 1)2𝑣1 − 2(𝑚 + 1)𝑟1 + 𝑣2)

𝑛−2

𝑚=1

 

By computing, we get the result. 

 

Theorem 2.3: Suppose Hypothesis 1 and 2 are correct, then the skewness of the Wiener index is 

denoted by 

𝜇3(𝑊(𝑃𝐺𝑛)) =
1

420
(3𝑠1𝑛

7 + (−147𝑟3 + 294𝑚1𝑟1)𝑛
6 + (63𝑟2 − 126𝑚2𝑟1)  

𝑛5 + (−105𝑠2 + 210𝑟3 − 420𝑚1𝑟1)𝑛
4 + (−413𝑠1 + 630𝑠2 − 1365𝑟2 + 1260  

𝑟3 − 2520𝑚1𝑟1 + 2730𝑚2𝑟1)𝑛
3 + (1260𝑠1 − 1365𝑠2 + 3780𝑟2 − 63𝑟3 + 126  

𝑚1𝑟1 − 7560𝑚2𝑟1)𝑛
2 + (−1270𝑠1 + 1260𝑠2 + 42𝑟2 + 1260𝑟3 − 2520𝑚1𝑟1  

−84𝑚2𝑟1)𝑛 + (420𝑠1 − 420𝑠2 + 1260𝑟2 − 1260𝑟3 + 2520𝑚1𝑟1 − 2520𝑚2  

𝑟1)), where,  

𝐸(𝑈𝑚) = 𝑚1, 𝐸(𝑉𝑚) = 𝑚2, 𝑉𝑎𝑟(𝑈𝑚) = 𝑣1, 𝑉𝑎𝑟(𝑉𝑚) = 𝑣2,  

𝐶𝑜𝑣(𝑈𝑚 , 𝑉𝑚) = 𝑟1, 𝐶𝑜𝑣(𝑈𝑚, 𝑉𝑚
2) = 𝑟2, 𝐶𝑜𝑣(𝑈𝑚

2 , 𝑉𝑚) = 𝑟3,  

 𝜇3(𝑈𝑚) = 𝑠1, 𝜇3(𝑉𝑚) = 𝑠2. 

Proof: By direct calculation, we have 

𝑚1 = 50. 𝑝1 + 75. (1 − 𝑝1), 

𝑚2 = 20. 𝑝1 + 45. (1 − 𝑝1), 

𝑣1 = 502𝑝1 + 75
2(1 − 𝑝1) − (50𝑝1 + 75(1 − 𝑝1))

2
, 

𝑣2 = 20
2𝑝1 + 45

2(1 − 𝑝1) − (20𝑝1 + 45(1 − 𝑝1))
2
, 

𝑟1 = 50.20. 𝑝1 + 75.45. (1 − 𝑝1) − (50𝑝1 + 75(1 − 𝑝1))(20𝑝1 + 45(1 − 𝑝1)), 

𝑟2 = 50. 20
2. 𝑝1 + 75. 45

2. (1 − 𝑝1) − (50𝑝1 + 75(1 − 𝑝1))(20
2𝑝1 + 45

2(1 − 𝑝1)),  

𝑟3 = 50
2. 20. 𝑝1 + 75

2. 45. (1 − 𝑝1) − (50
2𝑝1 + 75

2(1 − 𝑝1))(20𝑝1 + 45(1 − 𝑝1)),  
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𝑠1 = 50
3. 𝑝1 + 75

3. (1 − 𝑝1) − 3(50
2𝑝1 + 75

2(1 − 𝑝1)). (50𝑝1 + 75(1 − 𝑝1)) + 2  

(50𝑝1 + 75(1 − 𝑝1))
3, 

𝑠2 = 20
3. 𝑝1 + 45

3. (1 − 𝑝1) − 3(20
2𝑝1 + 45

2(1 − 𝑝1)). (20𝑝1 + 45(1 − 𝑝1)) +  

2(20𝑝1 + 45(1 − 𝑝1))
3
. 

By the properties of skewness, Eq. (2.5) and exchanging the order of 𝑙 and 𝑚, we have directly 

𝜇3(𝑊(𝑃𝐺𝑛)) = 𝜇3 [∑  ∑((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑙−1

𝑚=1

𝑛−1

𝑙=1

] 

 = 𝜇3 [∑  ∑ ((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑛−1

𝑙=𝑚+1

𝑛−2

𝑚=1

] 

= 𝜇3 [∑((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)(𝑛 − 𝑚 − 1)

𝑛−2

𝑚=1

] 

 = ∑(𝑛 − 𝑚 − 1)3𝜇3((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

𝑛−2

𝑚=1

 

= ∑(𝑛 −𝑚 − 1)3[

𝑛−2

𝑚=1

 𝐸 (((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)
3
) − 3𝐸 (((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1)

2
) 

𝐸((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1) + 2(𝐸((𝑚 + 1)𝑈𝑚+1 − 𝑉𝑚+1))
3 ] 

= ∑(𝑛 −𝑚 − 1)3[(𝑚 + 1)3𝜇3(𝑈𝑚+1) − 𝜇3(𝑉𝑚+1) + 3(𝑚 + 1)𝐶𝑜𝑣(𝑈𝑚+1,

𝑛−2

𝑚=1

 

𝑉𝑚+1
2 ) − 3(𝑚 + 1)2𝐶𝑜𝑣(𝑈𝑚+1

2 , 𝑉𝑚+1) + 6(𝑚 + 1)2𝐸(𝑈𝑚+1)𝐶𝑜𝑣(𝑈𝑚+1, 𝑉𝑚+1) 

−6(𝑚 + 1)𝐶𝑜𝑣(𝑈𝑚+1, 𝑉𝑚+1)𝐸(𝑉𝑚+1)] 

= ∑(𝑛 −𝑚 − 1)3[(𝑚 + 1)3𝑠1 − 𝑠2 + 3(𝑚 + 1)𝑟2 − 3(𝑚 + 1)2 + 6(𝑚 + 1)2𝑚1𝑟1

𝑛−2

𝑚=1

 

−6(𝑚 + 1)𝑚2𝑟1] 

By computing, we get the result. 

 

Theorem 2.4: For 𝑛 → ∞,𝑊(𝑃𝐺𝑛) asymptotically obeys normal distribution. One has 

lim
𝑛 → ∞

 

sup
𝑎 ∈ 𝑹

|𝑷(
𝑋𝑛−𝐸(𝑋𝑛)

√𝑉𝑎𝑟 (𝑋𝑛)
≤ 𝑎) − ∫

1

√2𝜋
𝑒
−𝑧2

2
𝑑𝑧𝑎

−∞
| = 0. 

Proof: Firstly, for any 𝑛 ∈ 𝑵, let  

𝑼𝒏 = ∑  ∑(𝑚 + 1)𝑈𝑚+1,  𝑽𝒏

𝑙−1

𝑚=1

𝑛−1

𝑙=1

=∑  ∑ 𝑉𝑚+1, 𝜑(𝑧) = 𝐸(𝑒𝑧(𝑈𝑚−𝑚1)).

𝑙−1

𝑚=1

𝑛−1

𝑙=1

 

 

By these notations, we have  

𝑒𝑧(𝑼𝒏−𝐸(𝑼𝒏)) = 𝑒𝑧 ∑  ∑ (𝑚+1)(𝑈𝑚+1 −𝑚1)
𝑙−1
𝑚=1

𝑛−1
𝑙=1  

 = 𝑒𝑧∑  ∑ (𝑚+1)(𝑈𝑚+1 −𝑚1)
𝑛−1
𝑙=𝑚+1

𝑛−2
𝑚=1  
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  = 𝑒𝑧∑  (𝑛−𝑚−1)(𝑚+1)𝑛−2
𝑚=1 (𝑈𝑚+1 −𝑚1). 

then 

 𝐸[𝑒𝑧(𝑼𝒏−𝐸(𝑼𝒏))] = 𝐸[𝑒𝑧∑  (𝑛−𝑚−1)(𝑚+1)𝑛−2
𝑚=1 (𝑈𝑚+1 −𝑚1)] 

 = ∏𝐸(𝑒𝑧(𝑛−𝑚−1)(𝑚+1)(𝑈𝑚+1 −𝑚1))

𝑛−2

𝑚=1

 

 = ∏𝜑(𝑧(𝑛 −𝑚 − 1)(𝑚 + 1)),

𝑛−2

𝑚=1

 (2.6) 

and for some 𝑘 > 0,  

𝑽𝒏 = ∑  ∑ 𝑉𝑚+1 ≤ 𝑘𝑛
2.𝑙−1

𝑚=1
𝑛−1
𝑙=1  (2.7)  

Noting that  

 

𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛)) ≍
1

30
𝑣1𝑛

5, 𝜑(𝑧) = 1 +
𝑣1
2
𝑧2 + 𝑂(𝑧2), 

and 

∑(𝑚 + 1)2(𝑛 − 𝑚 − 1)2 ≍
𝑛5

30
.

𝑛−2

𝑚=1

 

By Taylor’s formula and Eqs. (2.5)-(2.7), we have  

 

lim
𝑛→∞

𝐸 𝑒𝑥𝑝 {𝑧
𝑊(𝑃𝐺𝑛) − 𝐸(𝑊(𝑃𝐺𝑛))

√𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛))
} 

= lim
𝑛→∞

𝐸 𝑒𝑥𝑝

{
 
 

 
 

𝑧
(𝑊(𝑃𝐺1) + 𝑼𝒏 − 𝑽𝒏 + 𝑂(𝑛

2)) − 𝐸(𝑊(𝑃𝐺1) + 𝑼𝒏 − 𝑽𝒏 + 𝑂(𝑛
2))

√𝑣1𝑛
5
2

√30 }
 
 

 
 

 

= lim
𝑛→∞

𝐸 𝑒𝑥𝑝 {𝑧
√30(𝑼𝒏 − 𝐸(𝑼𝒏))

√𝑣1𝑛
5
2

} 

= lim
𝑛→∞

∏𝜑(
√30𝑧(𝑚 + 1)(𝑛 −𝑚 − 1)

√𝑣1𝑛
5
2

)

𝑛−2

𝑚=1

 

 

= lim
𝑛→∞

 𝑒𝑥𝑝{∑ ln𝜑(
√30𝑧(𝑚 + 1)(𝑛 − 𝑚 − 1)

√𝑣1𝑛
5
2

)

𝑛−2

𝑚=1

} 

= lim
𝑛→∞

 𝑒𝑥𝑝 {∑ ln(1 +
𝑣1
2
.
30𝑧2(𝑚 + 1)2(𝑛 − 𝑚 − 1)2

𝑣1𝑛5
+ 𝑂 (

1

𝑛
))

𝑛−2

𝑚=1

} 

= lim
𝑛→∞

 𝑒𝑥𝑝 {∑ (
𝑣1
2
.
30𝑧2(𝑚 + 1)2(𝑛 − 𝑚 − 1)2

𝑣1𝑛5
+ 𝑂 (

1

𝑛
))

𝑛−2

𝑚=1

} 
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= 𝑒
𝑧2

2 . 

 

Assume that I is a complex number with 𝑰2 = 1. We use 𝑰𝑧 instead of 𝑧 and we get 

lim
𝑛→∞

𝐸 𝑒𝑥𝑝 {𝑰𝑧
𝑊(𝑃𝐺𝑛) − 𝐸(𝑊(𝑃𝐺𝑛))

√𝑉𝑎𝑟(𝑊(𝑃𝐺𝑛))
} = 𝑒

−𝑧2

2 . 

Using the above formula ([15], Chapter 1) and probability characteristic functions ([8], Chapter 

15), we get the result. 

 

3. Conclusion 

There are various complex systems in real world which can be dealt with the network graphs. 

Gradually, the complex networks is an upsurge to the researchers in the field of statistics, 

mathematical and information sciences. In recent years, network graphs is very much important 

to tackle the large complex-systems. In this work, we obtain the expected value, variance and 

skewness of Wiener index for a class of random chain networks. It is observed that expected 

value of Wiener index asymptotic to cubic as 𝑛 → ∞. Moreover, Wiener index for random 

pentagonal chain approximately obeys normal distribution.  
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