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1. Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965 [1]. After the pioneering work of
Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among other
fields, a progressive developments is made in the field of fuzzy topology [1-10]. The concept of
fuzzy topology may have very important applications in quantum particle physics particularly in
connections with both string and g theory which were given and studied by Elnaschie [11-14].
One of the most important problems in fuzzy topology is to obtain an appropriate concept of
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intuitionistic fuzzy metric space. This problem has been investigated by Park [15-16]. They have

introduced and studied a notion of intuitionistic fuzzy normed/metric space, and later Lael and

Nourouzi [39] presented the modified version of the notion of intuitionistic fuzzy normed space.
We recall it as follows.

Definition 1.1 [17]. 4 binary operation *:[0,1]x[0,1]—[0,1] is a continuous t-norm if it
satisfies the following conditions:

(a)* is associative and commutative;

(b)* is continuous;

(c) a*1=afor all a€0,1];

(d) a*b<c<d whenever a<c and b<d, for each a, b, ¢, d€[0,1].

Example 1.2 [16]. Two typical examples of continuous t-norm are a*b=ab and a*b=min(a;b).

Definition 1.3 [17]. A binary operatione.:/0,1]%[0,1]—[0,1] is a continuous t-conorm if it
satisfies the following conditions:

(a)#is associative and commutative;

(b)eis continuous;

(c) a#0=afor all a€[0, 1];

(d) aeb<ced whenever a<c and b<d, for each a, b, ¢, d€[0, 1].

Example 1.4 [16]. Two typical examples of continuous t-conorm are a¢b=min(a+b,1) and
aeb=max(a, b).

Definition 1.4 [39]. A 5-tuple (X.M,N,*,#) is called an intuitionistic fuzzy normed space (IFNS)
if X is an arbitrary (non-empty) set,* is a continuous t-norm,¢ a continuous t-conorm and M,N are
fuzzy sets on X*(0,2) satisfying the following conditions for each x,y,z €X and t, s$>0,

(@) M(x, t)=0 for all non-positive t;

(b) M(x, t)=1 if and only if x=0;

(c) M(cx, )=M(x, t/|c|) for c#0;

(d) M(x,t)*M(y,s)<M(x+y,t+s);

()] %LrgM(x, t)=1and }:i_r)l(l)M(x, t) =0;

(f) N(x, t)=1 for all non-positive t;

(9) N(x, )=0 if and only if x=0;

(h) N(cx, t)=N(x, t/|c|) for c+0;

(i) N(x+y, t+s)<N(x, t)#N(y, S);

() %%N(x, t)=0and lti_r)r(}N(x, t) = 1.

Then (M;N) is called an intuitionistic fuzzy norm on X. For more details, we refer to [19-27].

For the following notions, we refer to [16].
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Let (X,M,N,*,#) be an IFNS. Then, a sequence x={xx} is said to be intuitionistic fuzzy

(1) convergent to AEX if lim M(Xk-A, t)=1 and lim N(xk-A, t)=0 for all t>0. Thus we can said that
Xk IS convergence to A in the intuitionistic fuzzy normed space (X,M,N,*,#) for k—oo and denote by
(M, N)-lim x=A.

(if) Cauchy sequence if for all t€(0,00) and p€&/, lim M(Xk+p-Xk, t)=1 and lim N(Xk+p-X, t)=0.
Therefore, an intuitionistic fuzzy normed space (X,M,N,*,#) is said to be complete if every
intuitionistic fuzzy Cauchy sequence is intuitionistic fuzzy convergent in (X,M,N,*,+).

The Cauchy functional equation f(x+y)=f(x)+f(y) is more of interest and an useful functional
equation in real, complex Banach and fuzzy spaces. In 1978 T.M. Rassias proved this equation
Ifc+y)-f(X)-f(y)I<e(IxIp+lylp) for an approximately additive mapping f from a normed vector space
E into a Banach space E":

Theorem 1.5 [18]. Let f be an approximately additive mapping from a normed vector space E
into a Banach space E', i.e. f satisfies the inequality

If(x+y)-f(X)-f()I<e(Ixlp+lylp)
for all x,y €E, where ¢ and p are constants with €>0 and 0<p<I. Then the mapping ).:E—E' defined

by A(x) = lim, f(22n”x)

is the unique additive mapping which satisfies |f (x)-A(x)I<_2¢ . IxIP, ¥x€eE.
2-2

Remark 1.6 [28]. Let (X,M,N,*,#) be an intuitionistic fuzzy normed space with the conditions
M(x, t)>0 and N(x, t)<1 implying x=0 for all t&].. (1.1)

Let Ixl,=inf{t>0:M(x, t)>a and N(x, t)<I-a}, for all a.€0,1). Then {1.la:a€0,1)} is an ascending
Sfamily of norms on X in the sense that Ixl,<lxlg for all Xx€X whenever a<p. These norms are called o-
norms on X corresponding to intuitionistic fuzzy norm (M, N).

In 2011, S.A. Mohiuddine, M. Cancan, H. Sevli determined a stability result concerning the
Cauchy functional equation f(x+y)=f(x)+f(y) in intuitionistic fuzzy normed spaces [29] by
following theorem:

Theorem 1.7 [29]. Let (M,N) and (M'\N') satisfy (1.1). Assume also that (X,M,N) and (Y,M'N')
are intuitionistic fuzzy normed space and intuitionistic fuzzy Banach space, respectively. Moreover,
let {2 X—Y be a g-approximately additive function in the sense that for some 0<q<1

M'(f (x+y)-f (X)-f (v), t+s)>M(x, t9)*M(y, s%) and

N'(f (x+y)-f (X)-f (v), t+5)<N(x, t9)eN(y, s, (1.2)

for all x,y eX and t&(0,).

Then there exists a unique additive mapping f*:X—Y such that
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M (7 (x)— f(x),t)<M [x,((zjq)t]%],

NY( ()~ T (x),t) =N [x,((z_jq)t]%}

for all xeX and t&(0,«).

By utilizing Theorem 1.6 and Theorem 1.7, we obtain the intuitionistic fuzzy stability of
generalized additive functional equations by fixed point technique in next section.

For more information about generalized additive functional equations, the readers can see [30-
37].

(1.3)

2. Stability of generalized additive functional equation:
In 2013, Jang, Park and Cho defined a generalized additive set-valued functional equation,
which is related to the following generalized additive functional equation [31]:

f (% +..+%)=(n-1)f (x1+n_+1xnlj+ ) (2.1)

for a fixed n&/~{1}, and proved the Hyers-Ulam stability of the generalized additive set-valued
functional equation.

In 2014, Sun Young Jang defined another version of generalized additive set-valued functional
equations as

X, +..+X X, +...+X + X X, +...+ X
(At g o (St (2t )
n— n—

=2[ F(x)+ F(%)+.t F(x,)] (2.2)
which is related f (% +tx)=(n—1)F (X1+---+Xn_1)+ f(x,) for a fixed n&/~{1}, and they proved
1 " n n—l n

the Hyers-Ulam stability of the generalized additive set-valued functional equations by using of the
fixed point method. [32]

The theory of set-valued functions has been much related to the Control theory and the
mathematical economics. Now we intend to determine intuitionistic fuzzy stability for generalized
additive functional equations via fixed point technique by using stability result of the Cauchy
functional equation f(x+y)=f(x)+f(y) in intuitionistic fuzzy normed spaces.

We rewrite Theorem 1.7 as follows:

Noation 2.1:Let (X,M,N) be an intuitionistic fuzzy normed space, (Y,M’,N’) an intuitionistic
fuzzy Banach space. Let also (M,N) and (M, N’) satisfy (1.1). Suppose f:X—Y is a g-approximately

"X
Zj:l,i¢j i
1

additive function in the sense (for some 0<g<1) and vy, = , for all xi,yieX, i=1,...,n. Thus

we have Cauchy functional equation f(xi+y;)=f(xi)+f(yi) such that:
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M f[MHI]_ F(x)-f [M}HS > M (x,9)*M LM“J
n-1 n-1 n-1
and

N'| f [—Z"“*"X’ +% |- f(x)-f [—Zj“#"x’ t+s|<N (xi,t‘q)oN {—Z"“*"X’ 59|

n-1
(2.3)
for all x;,yi€X, i=1,...,n and t&(0, ).

Then there exists a unique additive mapping f*:X—Y such that

M*(F7(x)—f(x).t)<M [x[(zf)tf]

N'(f7 (%)= f(x)t)=N [X((Z;)IJ%J

for all xieX, i=1,...,n and t&(0, ).

(2.4)

In this section, we deal with the stability problem via the fixed point method in intuitionistic
fuzzy norm space. Before proceeding further, we should recall the following results related to the
concept of fixed point.

Definition 2.2:Let X be a set. A function d:X x X—[0,x] is called a generalized metric on X if d
satisfies

(1) d(x,y)=0 if and only if x=y;

(2) d(x,y)=d(y, x) for all x,y&X;

(3) d(x,z)<d(x,y)+d(y,z) for all x,y, z€X.

Note that the distinction between the generalized metric and the usual metric is that the range of
the former includes the infinity.

Theorem 2.3 [29]. (Banach’s Contraction Principle). Let (x, d) be a complete generalized
metric space and consider a mapping J:x—y as a strictly contractive mapping, that is d(Jx,
JY)SLd(XY), VXY €y for some (Lipschitz constant) L<I. Then

(i) The mapping J has one and only one fixed point x*=J(x*);

(i) The fixed point x*is globally attractive, that is lim J"x=x* n—o for any starting point x €;

(iii) One has the following estimation inequalities for all x &y and n>0:

d(J”x, x*) < Ld(x, x*) (2.5)

d (3", x*) s(l_led(J”x, J"x) (2.6)
d(x x*) g(l_led(x, ») (2.7)

Theorem 2.4 [38]. (The Alternative of Fixed Point). Suppose we are given a complete

generalized metric space (x, d) and a strictly contractive mapping J:y—y, with Lipschitz constant L.
Then, for each given element x &, either
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d(@@"x, I"*ix)=+o0, P>0 (2.8)
or
d(I"x, I"*Lx)<+oo Ph>ne (2.9)
for some natural number n . Moreover, if the second alternative holds then
(i) The sequence (J"x) is convergent to a fixed point x*of J;
(i) x*is the unique fixed point of J in the set X ={x €X, d(J"x, x )<+x}

%, x%) <[ X, JX) VX e X
(iii) (% x) _(1—LJd( =)V x(2.10)

Theorem 2.5. Let (M, N) and (M', N') satisfy (1.1) and (X, M, N) and (Y,M', N') be two
intuitionistic fuzzy normed space and intuitionistic fuzzy Banach space, respectively. Suppose that
f.‘X—>Yis a g-approximately additive function in the sense that for some 0<g<1

(B o (Bt (B o et )]
>*H[

n-1 n-1
and

) B 3]

N’(f [LZX’H+ xn)+ f(w+xﬁj+...+ f (X2+"'+X” +x1j—2[f (%) + f (%) +.t f (xn)},tj

n-— n-1 n-1

Al ()

for all xieX, i=1,...,n and t(: Z'}:ltj) € (0,).

Then there exists a unique additive mapping f*:X—Y such that

ot Fes ]

and

e {Fe )

X(= Z?zlxj)e X and all t(z Z?:ltj)e(O,oo).

for all

Proof. By Theorem 1.7, we will have

) B e P R N = Ol

for all x;eX, i=1,...,n and t€(0,).
Therefore by definition of the intuitionistic fuzzy normed space (X, M, N), we have:
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" x X e
f[zn’fl%(xl) ”[Z'nlffj+<x2)J+....+f[Z‘,L‘T’+(xn>Jf(x1>f<x2)---f(xn>
M’ i . "
» 22X ¢ L o f s o+t 4ot
n-1 n-1 n-1 "7 n

s oS el B )
aaCIERERt)
And also

N'[f {%ﬂu X,J— f(x)-f [%th< N (X"(EJ%J‘N {%Gjﬂ

for all xieX, i=1,...,n and te(0,).
Hence by definition of the intuitionistic fuzzy Banach space (Y,M', N'), we observe that

f{ZJ 2% +(X )J+f[m+(xz)J+_m+ f {W+(XH)J— f (Xl)— f (Xz)—...— f (Xn)

[ =2 ’J f Z:“*Z '] [Z?nl'_jTXjJ,Hther...Hn
s ) o Z ) ) o B )
.N{Xn,@%].N{zzﬂxj@%J
Suppose now

t)*Q[M(x,,(gj%]w[%@m

for all X(: ZLX]) =X and all t(z ZLH) €(0.0)

(o (B

for all X(:Zzlxi)exandaut(zzll) <(0.)

Now we consider the set E:={g:X—Y, g(0)=0} together with the mapping de defined on ExE by
de(91,92) =inf{a=0:M(g1(X)-02(x), at)=A(x, 1) and N(g1(x)-02(X), at)<B(x, 1)}, (2.11)
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for all x(: zr;zlxj)e X and all t(z Zr;:ltj)e(o,oo). It is easy to see that de(g1,92) is a

complete generalized metric space.

: Vi "X (VA
el B

since 1>M(x,t)>0 for all x€X, t€(0,00).

A (B )
And B(x,at)=0<

since 1>N(x,t)>0 for all x€X, t€(0,0).
Let 91,02, g3€E, de(g, h)<a:1 and de(h, k)<ao. Thus for all xeX, t€(0,):
M(g1(x)-g2(x), a1t)>A(X, t), M(g2(x)-ga(X), azt)>A(x, t);
and
N(91(x)-92(x), ait)<B(x, t), N(g2(x)-ga(x), a:t)<B(x, ).
These imply that
M(91(x)-93(x), (a1+az)y)>M (91 (X)-g2(X), art)*M(g2(x)-ga(X), azt)>A(x, 1),
and
N(91(x)-ga(x), (a1+a2)))<N(01 (X)-ga(x), at)®N(gz2(x)-gs(X), az)<B(x, 1),
for each xeX, t€(0,00). And the triangle inequality for de will conclude on based definition of de
and de(91,92)<ai+az. The rest of the conditions follow directly from the definition.
Now, we define the linear mapping J:E—F such that

Jg(x) = ﬁg ((n+1)x) for fixed integer number n.

Obviously, J is a strictly contractive self-mapping of E with the Lipschitz constant (n+1)*<1.
Suppose now g1,g2€E be given such that de(g1,92)<a (for all a€(0,:)). So
M(91 (x)-g2(x), at)>A(x, 1), and N(g1 (x)-g2(x), at)<B(x, 1),
for all xeX and t>0, n+1>a>0. It follows from (2.11) that
de(Jg91,J92)=inf{a=>0:M(Jg1(X)-J02(x), at)>A(x, t) and N(Jg1(X)-JQ2(x), at)<B(x, t)}

. azO:M(ﬁgl((n+1)x)—$g2((n+1)x),at)2A((n+1)x,t) &

1 1
N(mgl((”ﬂ)X)—mgz((n +1)x),atjs B((N+1)x.t)
= inf {azO: M (g, ((n+1)x)— g, ((n+Dx),(n+D)at) = A(x,t) & N(g,((n+1)x)-g,((M+Dx),(n +1)at)sB(x,t)}

a 20: M(g,(x)-g,(x).a )ZA( 1] N (9, (x)- gz(x),at)sB[x,(nil)J (2.12)
M {390 - 38,00.-25¢ =M =0, (0410 0, (0 +Dx).

M (g, ((n+1)x)—g,( (n+1)x at)> A((n+1)x,at).
and

a t):
n+l ) (2.13)

Vol. 71 No. 3s3 (2022) 149

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2094-0343

2326-9865

1 1
N (ng(x) - ng(x),niﬂtj =N (m g, ((n+ l)x)—mg2 ((n +1)x),%tj =

N (g, ((n+1)x)—g,((n+1)x),at) <B((n+1)x,at).
for all xeX and t>0, n+1>a>0. It follows from (2.11), (2.12), (2.13) and (2.14) that

M (ng(x) - ng(x),ﬁtj > A((n+1)x,at)

N (ng(x) _ ng(x),ﬁtj <B((n+1)x.at)

(2.14)

a
= dE(ng,ng) < de(gpgz)

a
d , a=d.(Jg,,Jg,)<—<1
e(9,,9,) < a=d:(Jg,,J9,) n+1<

On the other hands, from Jf (x) = ﬁ f ((n+1)x) and (2.11), we have
+

eI =inflaz0:-M(Jf(x)-fx), at)2A(x, ) & N(Jf(x)/(x), a)<B(x, )}
inf {azo: M (nl+1 f((n+1)x)— f (x),atjz A(x,t)&N (nil f((n+)x)— f (x),atjg B(x,t)}

Now by Theorem 2.1, it follows that de(f,Jf)<1.
Using the fixed point alternative we deduce the existence of a fixed point of J, that is, the

existence a unique generalized Cauchy-Jensen type additive set-valued mapping f*:X—Y such that

f7(x) :% f"(nx) or nf*(x)=f*(nx), for all ne.

Now by Notation 1, we can see that f*(x+y)=f*(x)+f*(y) and thus for x:Z X EX 4
B an
X
o j=Li=j ) )
Yi o1
f*(xl+...+xnl +an+ 1t*(xl+...+xnz+xn +xn1)+...+ f*(x2+...+xn +le
n-1 n-1 n-1

()t £ (%) f*(x1+...+xn_lj+ f*(xl+"'+xn‘2+xnj+...+ f*(x2+...+xnj
n-1 n-1 n-1

So
f*[x1+...+xnl+(n—1)xn]+ f*(xl+"'+xn2+(nl_1)x“+x”j+...+ f*[(n—l)x1+xi+...+xnj
n-— n-

n-1
()t £ ()4 Xt X ), opr[ Xt X+ X ) e (Xt t X,
n-1 n-1 n-1

:Zn:f*(xi)Jr ! i Fr(X ot X+ Xy e+ X))

n-1) ;45

Therefore,

il:f*[(n—l)xi+__lzn;_xjj
2 S e )

150
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n . 1 n
=2 f (X')+(n—1) 2 [(n—l)f (x,)]
S () D () =2[ () + (k) et £ (%,)]
These imply that
f*(lr']"_lr“l+xnj+f*( L "'n_”l‘z ”+xn1j+...
+f*(xz+n"_:xn+xlj:2[f*(xl)+f*(x2)+...+f*(xn)]
for all xeX. Moreover, we have de(J™f, f*)—0, for m—oo:which implies
_ f((n+1)m x) X
(M,mzm—llm[MJ:f (x)
for all xeX. And
de(f".)=inf{a=>0:M(f" (X)-f{x), at)>A(x, t) and N(f"(X)-f(x), at)<B(x, 1)},
dE(f*,f)sl_[lljdE(Jf,f)=[n:1)dE(Jf,f)sn:1.
n+1
This implies that
« 1
M[f*(x)—f(x), (”n”jtj > A(x 1) N(f (%)= (x), [n%jt) < B(x 1)
and
. n
. > Al x [ N(f - f(x),t) < B| x| —
ELIGORICIDE A( , (Mlﬂ (£(x)-f(x).t) < (x (n+ljtJ

and
for all xeX, n=1,2,... and t€(0,0).m

Conclusion:
In this paper, by using the fixed point alternative, we proved the stability of the Hyers-Ulam-
Rassias type theorem in the intuitionistic fuzzy stability space.
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