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Introduction 

This work is concerned with A(z)-harmonic tasks. The answer to the Beltrami equation 

(1) 

Known as the analytical task of A(z). It is widely knowledge that the link between equation (1) 

and Quasiconformal mappings is direct. There is a common misconception that A(z) is a measu-

rable task and that | A (z)|C1 virtually anyin which in the area DC. Actual part of the Equation 

for the Solution (1) 

 

The composition comprises of an opening and three body paragraphs. In the first paragraph, we 

provide a basic overview of the A(z)- analytic tasks, which will be covered in greater detail in 

𝜕𝑓(𝑧)

𝜕𝑧
− 𝐴(𝑧)

𝜕𝑓(𝑧)

𝜕𝑧
= 0 

𝑢(𝑧) = 𝑅𝑒𝑓(𝑧) 
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𝑢𝑗 ∈ ℎ𝐴(𝐷) 

subsequent sections on the A(z)- harm-onic task. In the next paragraph, we define A ( z ) harm-

onic tasks, introduce the comparable Laplace operator ∆ A u, and describe the taskal features, 

Poisson integral formula, and mean value theorem for A(z)-harmonic tasks. The third paragraph 

discusses Harnack's inequality and theorem on monoto-nically sequences of A(z)-harmonic tasks  

 

 

1. Preliminary information 

Both the solution to equation (1) and the quasiconformal homeomorphisms of Flat areas have 

been thoroughly investigated. We limit ourselves here to work citations ([1, 6, 8, and 11]) and 

the formulation of the three theorems given below: 

First theorem: For each complex-measurable ℂ task, There is a one of homeom-orphic X(z) 

solution to the first equation that fixes the coordinates 0,1 as: 

Observe that in the case of the last task is exclusively in the Area D⊂C definied, it may extend to 

the entire by putting it outside A=0, hence the first formulation of the 1st theorem applies for 

every area  

 

 

 

Second Theorem formulation [3]: in which is homeomorphic task, exhausts the collection of 

all generalized equation solutions (1). Solution according to the first Theorem, and Φ(ξ) is a 

homeomorphic task in area X.  

Furthermore, in the case of the f(z) contains isolated singular points, (D). So, a holomorphic task                       

possess the same types for isolated singularities. 

Nota bene:  

According to Theorem 2, the A-analytic task f performs internal mapping. 

That is, it transforms one open set to another. 

Therefore, the maximum principle holds true for these tasks; given each confined area D⊂C, the 

modulus of f = constant reaches its maximum value only on that area Boundaries, 

for example   

Whenever the task is not 0, the minimal principle also holds. 

 For example  

𝑋(𝑧)  

𝑓(𝑧) = Φ 𝑋(𝑧) , 

𝐴(𝑧) ∶  𝐴 ∞ < 1 

 𝑓(𝑧) < max
𝑧∈𝜕𝐷

 𝑓(𝑧) , 𝑧 ∈ 𝐷 

 𝑓(𝑧) > min
𝑧∈𝜕𝑧

 𝑓(𝑧) , z∈ 𝐷 

D ⊂ C 

Φ = 𝑓𝑜𝑥−1  
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𝐷𝐴 =
𝜕

𝜕𝑧
− 𝐴 (𝑧)

𝜕

𝜕𝑧 
 ,   𝐷 𝐴 =

𝜕

𝜕𝑧 
− 𝐴(𝑧)

𝜕

𝜕𝑧
. 

Third Theorem [6]. In the case of a task A(z) is based on  a group of m-smooth class tasks 

A(z)∈C^m (D), so,  each f solution for equation number1 and as belongs to the same class,   

here, let only consider the case in which A(z) stands for an anti-analytic task ∂A=0 in an area 

D⊂C also       

 

 

                                                         

   so we can get :                        

In the case of (1) is correct, so,  the class of is A(z) - analytic function 𝑓 ∈ 𝑂𝐴(𝐷) is defined by 

the fact that 𝐷 𝐴𝑓 = 0. It follows from Theorem 3 that the anti-analytic function 𝑂𝐴(𝐷) ⊂

𝐶∞(𝐷) is endlessly smooth (D). 

Fourth Theorem.  𝟏𝟏 . (𝐴𝑛𝑎𝑙𝑜𝑔𝑢𝑒 𝑜𝑓 𝐶𝑎𝑢𝑐ℎ𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚). In the case of in which 𝐷 ⊂ ℂ is an 

area contain piecewise smoothly boundaries 𝜕𝐷, and in the case of the area 𝐷 is connected as a 

fixed point 𝜉 ∈ 𝐷 simply, so, : 

 

  

 

 

 

is accurately specified in an area D, in which  γ(ξ , z) has been a smooth curve involving the 

points, ξ , z∈D. An integral of 

is a, because the area D is merely connected, and A (z) stands for a holomorphic function. 

It has been integration path, and corresponds with an anti-derivative,  

Theorem 5.  𝟏𝟎 . In the event that D is merely a connected and convex region, the kernel-style 

task 

                                                                                                                              (2) 

 𝑓(𝑧)(𝑑𝑧 + 𝐴(𝑧)𝑑𝑧 ) = 0

 

𝜕𝐷

 

𝑓 ∈ 𝐶𝑚(𝐷). 

𝑘(𝑧, 𝜉) =
1

2𝜋𝑖
∙

1

𝑧 − 𝜉 +  𝐴 (𝜏)
 

𝛾(𝜉 ,𝑧)
              𝑑𝜏

 

𝐼´(𝑧) = 𝐴 (𝑧) 

I (z) =  𝐴  

γ(ξ ,z) 
(τ)d(τ)  

 𝐴(𝑧) ≤ 𝐶 < 1, (0 < 𝐶 < 1), ∀𝑧 ∈ 𝐷 

𝜓(𝑧, 𝜉) = 𝑧 − 𝜉 +  𝐴 (𝜏)
 

𝛾(𝜉 ,𝑧)
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Is there A(z)-analytic task out of a point in which z=ξ In the case of so, so,  k∈ O_A (D∖{ξ}) is 

an answer; also, z=ξ the task k(z,ξ) is easy task at z=ξ. 

Proof. A simple check shows that the task  

 

      The task 𝜓(𝜉, 𝑧) = 𝑧 – 𝜉 + 𝐴 (𝜏)𝑑𝜏 
 

𝛾(𝜉 ,𝑧)
                  has a unique simple zero at the point 𝑧 = 𝜉. In fact, 

 𝜉, 𝑧  is a segment which connects the points 𝜉, 𝑧 ∈ 𝐷, so,   

and since  𝐴(𝑧) ≤ 𝑐 < 1, we have  

the task 𝜓(𝑧, 𝜉) has only one zero and it is simple at the point 𝑧 = 𝜉, therefore, k (z, 𝜉) is 

holomorphic in 𝐷 ∖ {𝜉} . 𝑧 = 𝜉 is its simple pole. 

Remark 1. Notably, area D has been convex; 𝐾 (z, 𝜉)  possesses a simple single-pole point z = 

𝜉. In the case of region D C has not been Convex and it is merely simple-Linked, regardless of 

the tasks:   

 

 

 Theorem 6:  Let 𝐷 ⊂ ℂ be any arbitrary convex area, and let 𝐺 ⊂ 𝐷 be any arbitrary 

subarea with a smooth or piecewise smooth border ∂G.  

Therefore, the formula (3) applies to any task f(z) ∈ 𝑂𝐴(𝐺) ∩ 𝐶(𝐺 )  

 (3)                     

 

Proof.  Fixing a point z ∈ 𝐺 and small circle U (z , 𝜀 )  ⊂  𝐺 , 𝜀 > 0, the following theorem 

 𝜓(𝑧, 𝜉) = 𝑧 – 𝜉 +𝐼(𝑧)     = 𝑧 – 𝜉 + 𝐴 (𝜏)𝑑𝜏
 

𝛾(𝜉  ,𝑧)
                 , 

is 𝐴(𝑧) – analytic in 𝐷: 

                                 
𝜕

𝑧 
  𝑧 –  𝜉 + 𝐼(𝑧)       

𝜕

𝑧 
𝐼(𝑧)       = 

𝜕𝐼(𝑍)

𝜕𝑧

      
 𝐴 (𝑧)

𝜕

𝑧
  𝑧 –  𝜉 + 𝐼(𝑧)        

i.e. 𝜓(𝑧, 𝜉) ∈ 𝑂𝐴(𝐷). 

  𝑧 – 𝜉 + 𝐴 (𝜏)𝑑𝜏
 

𝛾(𝜉  ,𝑧)
                  = 𝑧 – 𝜉 + 𝐴 (𝜏)𝑑𝜏

 

 𝜉 ,𝑧   
                 

 𝑧 –  𝜉 +  𝐴 (𝜏)𝑑𝜏
 

𝛾(𝜉  ,𝑧)
                  ≥   𝑧 − 𝜉  –    𝐴 (𝜏)𝑑𝜏

 

 𝜉 ,𝑧   
 ≥ 

≥   𝑧 − 𝜉 −    𝐴(𝜏) 
 

 𝜉 ,𝑧  
  𝑑𝜏 ≥   𝑧 − 𝜉 − 𝑐 ∙   

 

 𝜉 ,𝑧   
  𝑑𝜏 = (1 − 𝑐)  𝑧 − 𝜉 > 0, 

𝑧 ≠  𝜉. 

  𝑓(𝑧) =  𝐾 (𝜉 , 𝑧 ) 𝑓(
 

𝜕𝐺
𝜉 ) (𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  )   , z ∈ 𝐺  .                                  

𝜓(𝜉, 𝑧) = 𝜉 – z + 𝐴 (𝜏)𝑑𝜏
 

𝛾(𝑧 ,𝜉)
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holds: (4) 

   
 

𝟐.   A(z)−harmonic task 

As stated earlier, the A(z)-harmonic task is the real component of A(z)-analytical tasks. The 

imaginary component of the analytical task is harmonic. A(z)-harmonic tasks exist when A(z) 

represents anti-analytic tasks. 

 

Theorem 7: The real component of the analytic task f(z) ∈ 𝑂𝐴(𝐺) satisfies the following 

equations. 

∆𝐴𝑢 = 0                                                           (4) 

in which  

 
Note Theorem 7 gives the following determinations for the A(z)-harmonic task. 

 

Definition 1.  

In area G, a task of twice differentiable function 𝑢 ∈ 𝐶2(𝐺), 𝑢 ∶ 𝐺 → 𝑅 is A(z)-harmonic if, 

called  A(z)−harmonic, it is a solution to the differential equation (4). 

ℎ𝐴(𝐺)is the symbol for a class for A(z)-harmonic tasks in area (G), and both the real and 

imaginary components of the A(z)-analytic task 𝑓(𝑧) ∈ 𝑂𝐴(𝐺) are A(z)-harmonic tasks. 

Likewise, the opposite is true for Areas with a simple link. 

 Theorem 8.   f(z)∈ 𝑂𝐴(𝐺, such that u =Re f, exists in the case of the task 𝑢(𝑧) ∈  ℎ𝐴(𝐺), (G), in 

which G is a simply connected area. 

For  A(z)-harmonic tasks, theoretically,  operator A(z)−has the similar role as u operator 

concerning harmonic and subharmonic tasks (Namely, we must provide the integral principle. 

Assume G⊂C to be the convex area, and let 

correspond to the appropriately defined task for G. 

 𝐾 (𝜉 , 𝑧 ) 𝑓(

 

𝜕𝐺

𝜉 ) (𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  ) 

                        =  𝐾 (𝜉 , 𝑧 ) 𝑓(
 

 𝜉−𝑧 =𝑐
𝜉 ) (𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  ), 

but according to the Stokes formula we have: 

  𝐾 (𝜉 , 𝑧 ) 𝑓(
 

 𝜉−𝑧 = 𝜀
𝜉 ) (𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  ) =    𝑓(𝜉)𝑤 (𝜉 , 𝑧 ) 

 

 𝜉−𝑧 = 𝜀
= 

   𝑑  𝑓(𝜉)𝑤 (𝜉 , 𝑧 ) 
 

 𝜉−𝑧 ≤𝜀
 =   𝑑𝑓(𝜉)𝑤 (𝜉 , 𝑧 ) +

 

 𝜉−𝑧 ≤𝜀

  𝑓(𝜉)𝑑𝑤 (𝜉 , 𝑧 ) 
 

 𝜉−𝑧 ≤𝜀
  

⟶  0 +  𝑓(𝑧)  =  𝑓(𝑧) , 𝑓𝑜𝑟 𝜀 ⟶  0                                  ∎ 

 ∆𝐴 =
𝜕

𝜕𝑧
 

1

1− 𝐴 2
[(1 +  𝐴2 )

𝜕𝑢

𝜕𝑧
− 2𝐴

𝜕𝑢

𝜕𝑧
] +

𝜕

𝜕𝑧
 

1

1− 𝐴 2
[(1 +  𝐴2 )

𝜕𝑢

𝜕𝑧
− 2𝐴 𝜕𝑢

𝜕𝑧
] . 

 𝜓(𝑧, 𝜉) = 𝑧 − 𝜉 +   𝐴  

𝛾(𝜉 ,𝑧)
(𝜏)𝑑𝜏                   
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Theorem 9. Poisson's formula (by Poisson's Theorem) holds in the case of a task u(z) has been 

A(z)-harmonic in the lemniscate L(a,R)⊂D, continuous in its closure, specifically u(z)∈h_A 

(L(a,R))∩C(L ̅(a,R)) 

(5)                

  

Other side in the case of the tasks φ(ξ) continuous at the boundaries of the lemniscate 𝐿(𝑎, 𝑅) ⊂

𝐷, So,  the Task: 

 
Is the Lemniscate a Solution to the Dirichlet Problem:  

𝐿(𝑎, 𝑟): ∆𝐴𝑢 = 0 ∀ 𝑧 ∈ 𝐿(𝑎, 𝑅) , 𝑢 𝜕𝐿(𝑎, 𝑅) = 𝜑. 

Theorem 10.  in the case of task u is an 𝐴(𝑧) –harm-onic in a Lemn-iscate 

 

so,  the following equality holds for any r < 𝑅:  

                                           

Proof. Since 𝑢 ∈  ℎ𝐴(𝐿(𝑧, 𝑅)) so,  there is a task 𝑓(𝑧) ∈ 𝑂𝐴(𝐿(𝑧, 𝑅)) for which 𝑢(𝑧) = 𝑅𝑓(𝑧). 

we expand the task 𝑓(𝑧) in the area 𝐿(𝑧, 𝑅) in a 

Taylor series                                              

If  𝑟 < 𝑅,  the Series converges uniformly in a lemniscate   𝜓(𝜉, 𝑧) ≤ 𝑟. 

 

 

Compute the following Integrals: 

𝑢(𝑧) =
1

2𝜋𝑟
 φ(ξ)

𝑟2−  𝜓(𝜉 ,𝑎) 2

  𝜓(𝜉 ,𝑧) 2   𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  
 

  𝜓(𝜉 ,𝑎) =𝑅
            (6) 

𝐿(𝑧, 𝑅) = {𝜉 ∈ 𝐺:   𝜓(𝑧, 𝜉) < 𝑅
 } ⊂ 𝐺 

f (z)=  𝑐𝑛
∞
𝑛=0 𝜓𝑛(ξ , 𝑧). 

𝑢(𝑧) =
1

2
( 𝑓 (z) +  𝑓 (z)       ) =

1

2
    𝑐𝑛𝜓𝑛(ξ , 𝑧) + 𝑐𝑛𝜓𝑛(ξ , 𝑧)               ∞

𝑛=0                       (7) 

using        𝑑𝜓(𝜉, 𝑧) = 𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  = 𝑟𝑖𝑒𝑖𝑡𝑑𝑡,  0 ≤ 𝑡 ≤ 2𝜋       

and              𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  = 𝑟𝑑𝑡 ,       

𝑢(𝑧) =
1

2𝜋𝑟
 u(ξ)  𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  

 

  𝜓(𝜉 ,𝑧) =𝑟
. 

𝑢(𝑧) =
1

2𝜋𝑟
 u(ξ)

𝑟2−  𝜓(𝜉 ,𝑎) 2

  𝜓(𝜉 ,𝑧) 2   𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  
 

  𝜓(𝜉 ,𝑎) =𝑅
.            
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Integrating the part-equality (15) in a perimeter for lemniscate yields a subsequent equivalence: 

 

Theorem 11. (Fubini’s Theorem). In the case of 𝑓(𝑥, 𝑦) is continuous throughout the rectangular 

region, 𝑅: 𝑎 ≤ 𝑥 ≤ 𝑏,   𝑐 ≤ 𝑦 ≤ 𝑑, (𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅),so,  

Theorem 12.  Task 𝑢 ∈ 𝐶(𝐺) , the subsequent Statements have been Comparable: 

Proof. 1 ⟹ 2 based on a mean magnitude, A theory (10). 2 3 stems based on Fubini's familiar 

formula. Hypothesis ( 11): 

 

  𝜓𝑛(𝜉, 𝑧)  𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  = 𝑟𝑛+1  𝑒𝑡𝑖𝑛2𝜋

0

 

  𝜓(𝜉 ,𝑧) =𝑟
𝑑𝑡 =     

0,            𝑛 ≥ 1  
2𝜋𝑟,        𝑛 = 0

 

  𝜓𝑛(ξ , 𝑧)             𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  = 𝑟𝑛+1  𝑒−𝑡𝑖𝑛2𝜋

0

 

  𝜓(𝜉 ,𝑧) =𝑟
𝑑𝑡 =     

0,            𝑛 ≥ 1  
2𝜋𝑟,        𝑛 = 0

 

 u(ξ)  𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  
 

  𝜓(𝜉 ,𝑧) =𝑟
= 𝜋𝑟(𝑐0 + 𝑐 0) = 2𝜋𝑟𝑢(𝑧)                  ∎ 

 𝑓(𝑥, 𝑦)𝑑𝐴 =

 

𝑅

  𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =   𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥.

𝑑

𝑐

𝑏

𝑎

𝑏

𝑎

𝑑

𝑐

 

1) 𝑢 ∈ ℎ𝐴(𝐷); 

2) for any 𝑧 ∈ 𝐺 and 𝐿(𝑧, 𝑟) ⊂⊂ G the following equality holds 

𝑢(𝑧) =
1

2𝜋𝑟
 u(ξ)  𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  

 

  𝜓(𝜉 ,𝑧) =𝑟
; 

3) 𝑓𝑜𝑟 any 𝑧 ∈ 𝐺 and 𝐿(𝑧, 𝑟) ⋐G the following equality holds 

 𝑢(𝑧) =
1

𝜋𝑟2  u(ξ)dμ
 

  𝜓(𝜉 ,𝑧) ≤𝑟
                                     (8) 

 𝑊ℎ𝑒𝑟𝑒 dμ(1 −   𝐴(𝜉) 2)
𝑑𝜉 ⋀𝑑𝜉 

2𝑖
. 

 
1

𝜋𝑟2  u(ξ)dμ
 

  𝜓(𝜉 ,𝑧) ≤𝑟
=

1

𝜋𝑟2  𝑑𝑡  u(ξ)  𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  =
 

  𝜓(𝜉 ,𝑧) =𝑡

𝑟

0
          

 = 
1

𝜋𝑟2  2𝜋𝑡𝑢(𝑧)𝑑𝑡 = 𝑢(𝑧)
𝑟

0
. 
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here we are using the following obvious equality, 

 

Fix a lemniscate 𝐿(𝑎, 𝑅) ⊂  𝐺 to prove that 3⟹1is true. Apply the poisson formula (5) to the 

task 

Using the auxiliary task 𝑢1 = 𝑣 − 𝑢, in which 𝑢1 𝜕𝐿(𝑎,𝑅)
= 0.  

To every 𝐿(𝑧, 𝑟) ⊂⊂ 𝐿(𝑎, 𝑅), equality (8) holds since 𝑣(𝑧) ∈ ℎ𝐴(𝐿(𝑎, 𝑅)) and 𝑢(𝑧) fulfil the 

Theorem condition. From the following can be inferred the required statement. 

Lemma 1. in the case of the mean value condition 3 for task 𝑢 ∈ 𝐶(𝐺), u≢ const, has been True, 

i.e. for every z∈G and 𝐿(𝑎, 𝑅) ⊂⊂ G , the equivalence (8) holds, so,  u(z) cannot attain its 

maximum or minimum magnitude within G. 

Proof. Indeed, presume: 

 ∃𝑧0 ∈ 𝐺 ∶ 𝑢(𝑧0) = sup
𝐺

𝑢(𝑧), 

fix    𝐿 = 𝐿(𝑧0, 𝑟) ⊂ 𝐺, 

and write the equality (8) 

 

 dμ (1 −   𝐴(𝜉) 2)
𝑑𝜉 ⋀𝑑𝜉 

−2𝑖
=

𝑖

2
(𝑑𝜉 + 𝐴(𝜉)𝑑𝜉 ) ⋀(𝑑𝜉 + 𝐴 (𝜉)𝑑𝜉 ) = 

 =
𝑖

2
 𝑑𝜓(𝜉, 𝑧)⋀𝑑𝜓 (𝜉, 𝑧) = 𝑑𝑡 ⨂  𝑑𝜓(𝜉, 𝑧)  = 𝑑𝑡⨂   𝑑𝜉 + 𝐴(𝜉)𝑑𝜉  . 

𝑣 ∈ ℎ𝐴(𝐿(𝑎, 𝑅)) ∩ 𝐶(𝐿 (𝑎, 𝑅)) :v|𝜕𝐿(𝑎 ,𝑅) = 𝑢|𝜕𝐿(𝑎 ,𝑅) 

 𝑢(𝑧0) =
1

𝜋𝑟2  u(ξ)dμ
 

𝐿
=

1

𝜋𝑟2  u(ξ)dμ
 

𝐿∩{𝑢(𝜉)=𝑢(𝑧0)}
+

1

𝜋𝑟2  u(ξ)dμ
 

𝐿∩{𝑢(𝜉)<𝑢(𝑧0)}
 

 =
1

𝜋𝑟2  u(𝑧0)dμ
 

𝐿∩{𝑢(𝜉)=𝑢(𝑧0)}
+

1

𝜋𝑟2  u(ξ)dμ
 

𝐿∩{𝑢(𝜉)<𝑢(𝑧0)}
 

 =
1

𝜋𝑟2  u(𝑧0)dμ
 

𝐿  
−

1

𝜋𝑟2  u(𝑧0)dμ
 

𝐿∩{𝑢(𝜉)<𝑢(𝑧0)}
+

1

𝜋𝑟2  u(ξ)dμ
 

𝐿∩{𝑢(𝜉)<𝑢(𝑧0)}
 

  = 𝑢(𝑧0) −
1

𝜋𝑟2   𝑢(𝑧0) − 𝑢(𝜉) dμ
 

𝐿∩{𝑢(𝜉)<𝑢(𝑧0)}
 .                      (9) 

Since 𝑢(𝑧0) − 𝑢(𝜉) ≥ 0 ∀𝜉 ∈ 𝐿(𝑧0, 𝑟) then from (9) it follows that 

 𝐿(𝑧0, 𝑟) ∩ {𝑢(𝜉) < 𝑢(𝑧0)} = ∅ , i.e. 𝑢(𝜉) ≡ 𝑢(𝑧0) in (𝑧0, 𝑟) . 
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Changing u(z) to  -u(z) reveals that the Minimum principle holds for u(z) under the conditions of 

Lemma 1, i.e., in the case of u(z) is less than u. (z)

 

It suffices to observe, to conclude the proof of Theorem (12), that the auxiliary Task 𝑢1 = 𝑣 − 𝑢, 

for which 𝑢1 ∈ 𝐶(𝐿 (𝑎, 𝑅)) and 𝑢1 𝜕𝐿(𝑎,𝑅)
= 0, the condition (3). Based on Lemma (1), 𝑢1 = 𝑣 −

𝑢 ≡ 0 i.e.  

𝑢(𝑧) ≡ 𝑣(𝑧) ∈  ℎ𝐴(𝐿(𝑎, 𝑅)).                                                                              ∎ 

Corollary 1. (Extremum principle). In the case of the task 𝑢 ∈ ℎ𝐴(𝐷) touches its extreme in G, 

so,  𝑢 ≡ constant. 

Corollary 2. The Dirichlet problem △𝐴 𝑢(𝑧) = 0 𝑧 ∈ 𝐺, 𝑢 ∈ ℎ𝐴(𝐺) ∩ 𝐶(𝐺 ), u 𝜕𝐺 = 𝜑, 𝜑 ∈

𝐶(𝜕𝐺) takes the distinctive solution. 

Proof. Assume two solutions 𝑢1 and 𝑢2 are existing. So,  their difference 𝑣 = 𝑢1 − 𝑢2 ∈ ℎ𝐴(𝐷) 

has been continuous in 𝐷  and v 𝜕𝐷 ≡ 0. Therefore, by extremum standard v 𝐷 ≡ 0, 

For example, 𝑢1 ≡ 𝑢2.     

                                 ∎     

 

3. Equivalence for Harnack’s theorem 

Remark 2. Here, the equivalence for familiar Harnack's Inequality has presented, that is vital in 

proving Harnack's eorem. 

Theorem 13: Assume u (z) has the A(z)-harmonic task in a lemniscate. L (a, R) ⊂ 𝐷 , 

continuous in its closure, specifically  u(z)∈ ℎ𝐴 (L a, R))∩ 𝐶(𝐿(a, R)) , in which 𝐷 ⊂ ℂ  has been 

convex area. In the case of u(z)≥ 0 in a lemniscate L (a, R), so,  it will be right Harnack’s 

inequality. 

∃𝑧0 ∈ 𝐺 ∶ 𝑢(𝑧0) = inf
𝐺

𝑢(𝑧) . 

Then 𝑢(𝜉) ≡ 𝑢(𝑧0)  ∀𝑧 ∈ 𝐺.                                                                  ∎ 
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 Theorem 14. A monotonically increasing series for A(z)-harmonic tasks u_j∈h_A(D). If it 

converges uniformly (in D) to, or meets uniformly to definite A(z)-harmonic tasks 𝑢 ∈ ℎ𝐴(𝐷). 

 

Proof. It suffices to demonstrate the theorem given a monotonically growing sequence such as 

𝑢𝑗 ⟶ 𝑢(𝑧) , 𝑢(𝑧) ∈ (−∞ , +∞  . We correct a random convex area GD In which a lemniscate 

can be defined as (𝑎, 𝑟) = {𝜉 ∈ 𝐺 ∶  𝜓(𝜉, 𝑎) < 𝑟} ⊂ 𝐺, a∈G ,r>0 it can be assuming that 𝑢𝑗 ≥

𝑢1(𝑧) ≥ 0 ∀ 𝑧 ∈ 𝐺 given that u_j≥u_1 (z) and, should it be necessary, adding positive constant. 

Using the formula for the mean value (10) so, : 

                                                𝑢𝑗(𝑧) =
1

𝜋𝑟2  𝑢𝑗(ξ)dμ
 

  𝜓(𝜉,𝑎) ≤𝑟
 

 According to Levy's theorem, this equivalence applies to you as well (the priory u is 

feasibly not bounded) 

𝑢(𝑧) =
1

𝜋𝑟2
 u(ξ)dμ

 

  𝜓(𝜉,𝑎) ≤𝑟

 

                                                                     (11) 

 𝑪𝒂se Ι. U represents not bounded task, and the equation reads ∃ a∈G∶u(a)=+∞. In the case of 

this is the case, the left side of equation (10) suggests that the value of u_j (z) as j→ ∞, as 

uniformly evaluated in ∂L(a,ρ),∀ ρ<r, meets to +∞. Here, demonstrating that u(z)≡+∞ in G 

besides u_j (z) as j→ ∞uniformly converges to + in arbitrary L(a,ρ)⊂G is not a difficult task at 

𝑟−𝜌

𝑟+𝜌
𝑢𝑗 (𝑎) ≤ 𝑢𝑗 (𝑧) ≤

𝑟+𝜌

𝑟−𝜌
𝑢𝑗 (𝑎),   𝑧 ∈ 𝜕𝐿(𝑎, 𝜌).                 (10) 

Proof. In L(a, r) The Poisson's formula was written as             (cf. (12) ) 

𝑢𝑗 (𝑧) =
1

2𝜋𝑟
 𝑢𝑗 (𝜉)

𝑟2−  𝜓(𝑧 ,𝑎) 2

  𝜓(𝜉 ,𝑧) 2

 

  𝜓(𝜉 ,𝑎) =𝑟
  𝑑𝜉 + 𝐴(𝜉)𝑑(𝜉  , z ∈  L(a, r), j= 1,2 ⋯ 

This formula implies the following inequality: 

𝑟2−𝜌2

(𝑟+𝜌)2
𝑢𝑗 (𝑎) ≤ 𝑢𝑗 (𝑧) ≤

𝑟2−𝜌2

(𝑟−𝜌)2
𝑢𝑗 (𝑎),   𝑧 ∈ 𝜕𝐿(𝑎, 𝜌) = {  𝜓(𝑧, 𝑎) = 𝜌} 

Which is equivalent to  

                                      
𝑟−𝜌

𝑟+𝜌
𝑢𝑗 (𝑎) ≤ 𝑢𝑗 (𝑧) ≤

𝑟+𝜌

𝑟−𝜌
𝑢𝑗 (𝑎),   𝑧 ∈ 𝜕𝐿(𝑎, 𝜌).             ∎ 
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all. 

 

𝑪𝒂se II  . 𝑢(𝑧) < ∞ ∀ 𝑧 ∈ 𝐺. So,  the right-hand  of (10) indicates that 

                         𝑢𝑗+𝑚(𝑧) − 𝑢𝑗(𝑧) ≤
𝑟+𝜌

𝑟−𝜌
(𝑢𝑗+𝑚(𝑎) − 𝑢𝑗(𝑧))  , 𝑧 ∈ 𝜕𝐿(𝑎, 𝜌). 

 Moreover, the sequence 𝑢𝑗(𝑧) 𝑎𝑠 𝑗 →  ∞ uniformly converges in 𝐿(𝑎, 𝜌), 𝜌 < 𝑟. 

As a consequence of this, in any compact KG, u j (z) uniformly meets u(z), with continuous u(z) 

in G. (11). The both theorems support this proposition (12). As a result, u(z)h A. (G). Because 

GD stands for a fixed arbitrary convex area, u(z) has been A(z) in D.∎ 

 

Conclusions 

1- Study some properties of 𝐴(𝑧) – harmonic tasks. 

2- Proving an analog of the Schwarz inequality for analytic tasks A(z). 

3-Proving the integral formula of Poisson for A (z)-analytic tasks. 

4-Demonstrate an analog of Harnack's theorem for 𝐴(𝑧) - harmonic tasks. 
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