The Study Analogue of Harnack's Theorem and Some Properties of $A(z)$ Harmonic Functions

*Jaafar Jabbar Qasim
Department of Mathematics - College of Education, Al-Mustansiriyah University
jaaferjabber1@gmail.com
** Ahmed Khalaf Radhi
Department of Mathematics - College of Education, Al-Mustansiriyah University,
**dr_ahmedk@yahoo.com

Article Info
Page Number: 1374-1384
Publication Issue:
Vol. 71 No. 3 (2022)

Abstract

In this paper we provide a definition of $A(z)$ - tasks of harmonic and Devoted some properties of $A(z)$-harmonic task, and analogue of Harnack's Theorem.

Keywords: $A(z)$-analytic task, $A(z)$-harmonic task.

Article History

Article Received: 12 January 2022
Revised: 25 Febuary 2022
Accepted: 20 April 2022
Publication: 09June 2022

Introduction

This work is concerned with $\mathrm{A}(\mathrm{z})$-harmonic tasks. The answer to the Beltrami equation

$$
\begin{equation*}
\frac{\partial f(z)}{\partial \bar{z}}-A(z) \frac{\partial f(z)}{\partial z}=0 \tag{1}
\end{equation*}
$$

Known as the analytical task of $\mathrm{A}(\mathrm{z})$. It is widely knowledge that the link between equation (1) and Quasiconformal mappings is direct. There is a common misconception that $\mathrm{A}(\mathrm{z})$ is a measurable task and that $|\mathrm{A}(\mathrm{z})| \mathrm{C} 1$ virtually anyin which in the area DC. Actual part of the Equation for the Solution (1)

$$
u(z)=\operatorname{Ref}(z)
$$

The composition comprises of an opening and three body paragraphs. In the first paragraph, we provide a basic overview of the $\mathrm{A}(\mathrm{z})$ - analytic tasks, which will be covered in greater detail in
subsequent sections on the $\mathrm{A}(\mathrm{z})$ - harm-onic task. In the next paragraph, we define $\mathrm{A}(\mathrm{z})$ harmonic tasks, introduce the comparable Laplace operator $\Delta \mathrm{A} u$, and describe the taskal features, Poisson integral formula, and mean value theorem for $\mathrm{A}(\mathrm{z})$-harmonic tasks. The third paragraph discusses Harnack's inequality and theorem on monoto-nically sequences of $A(z)$-harmonic tasks

$$
u_{j} \in h_{A}(D)
$$

1. Preliminary information

Both the solution to equation (1) and the quasiconformal homeomorphisms of Flat areas have been thoroughly investigated. We limit ourselves here to work citations ([1, 6, 8, and 11]) and the formulation of the three theorems given below:

First theorem: For each complex-measurable \mathbb{C} task, There is a one of homeom-orphic $\mathrm{X}(\mathrm{z})$ solution to the first equation that fixes the coordinates 0,1 as:
Observe that in the case of the last task is exclusively in the Area $\mathrm{D} \subset \mathrm{C}$ definied, it may extend to the entire by putting it outside $\mathrm{A}=0$, hence the first formulation of the $1^{\text {st }}$ theorem applies for every area

$$
\begin{array}{cc}
A(z):\|A\|_{\infty}<1 & \mathrm{D} \subset \mathrm{C} \\
f(z)=\Phi[X(z)], &
\end{array}
$$

$$
X(z)
$$

Second Theorem formulation [3]: in which is homeomorphic task, exhausts the collection of all generalized equation solutions (1). Solution according to the first Theorem, and $\Phi(\xi)$ is a homeomorphic task in area X.
Furthermore, in the case of the $f(z)$ contains isolated singular points, (D). So, a holomorphic task possess the same types for isolated singularities.
Nota bene:

$$
\Phi=f o x^{-1}
$$

According to Theorem 2, the A-analytic task f performs internal mapping.
That is, it transforms one open set to another.
Therefore, the maximum principle holds true for these tasks; given each confined area $\mathrm{D} \subset \mathrm{C}$, the modulus of $\mathrm{f}=$ constant reaches its maximum value only on that area Boundaries,
for example $\quad|f(z)|<\max _{z \in \partial D}|f(z)|, z \in D$
Whenever the task is not 0 , the minimal principle also holds.

$$
\text { For example } \quad|f(z)|>\min _{z \in \partial z}|f(z)|, z \in D
$$

Third Theorem [6]. In the case of a task $\mathrm{A}(\mathrm{z})$ is based on a group of m-smooth class tasks $A(z) \in C^{\wedge} m(D)$, so, each f solution for equation number1 and as belongs to the same class, here, let only consider the case in which $\mathrm{A}(\mathrm{z})$ stands for an anti-analytic task $\partial \mathrm{A}=0$ in an area DᄃC also $\quad|A(z)| \leq C<1,(0<C<1), \forall z \in D$ $D_{A}=\frac{\partial}{\partial z}-\bar{A}(z) \frac{\partial}{\partial \bar{z}}, \quad \bar{D}_{A}=\frac{\partial}{\partial \bar{z}}-A(z) \frac{\partial}{\partial z}$.

$$
f \in C^{m}(D)
$$

so we can get :
In the case of (1) is correct, so, the class of is $\mathrm{A}(\mathrm{z})$ - analytic function $f \in O_{A}(D)$ is defined by the fact that $\bar{D}_{A} f=0$. It follows from Theorem 3 that the anti-analytic function $O_{A}(D) \subset$ $C^{\infty}(D)$ is endlessly smooth (D).
Fourth Theorem. [11]. (Analogue of Cauchy theorem). In the case of in which $D \subset \mathbb{C}$ is an area contain piecewise smoothly boundaries ∂D, and in the case of the area D is connected as a fixed point $\xi \in D$ simply, so, :

$$
\begin{aligned}
& \int_{\partial D} f(z)(d z+A(z) d \bar{z})=0 \\
& \psi(z, \xi)=z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau)} \\
& I(\mathrm{z})=\int_{\gamma(\xi, \mathrm{z})} \bar{A}(\tau) d(\tau)
\end{aligned}
$$

is accurately specified in an area D , in which $\gamma(\xi, \mathrm{z})$ has been a smooth curve involving the points, $\xi, z \in D$. An integral of
is a, because the area D is merely connected, and $\mathrm{A}(\mathrm{z})$ stands for a holomorphic function.
It has been integration path, and corresponds with an anti-derivative,
Theorem 5. [10]. In the event that D is merely a connected and convex region, the kernel-style task

$$
\begin{gather*}
I^{\prime}(z)=\bar{A}(z) \tag{2}\\
k(z, \xi)=\frac{1}{2 \pi i} \cdot \frac{1}{z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau)} d \tau}
\end{gather*}
$$

Is there $A(z)$-analytic task out of a point in which $z=\xi$ In the case of so, so, $k \in O _A(D \backslash\{\xi\})$ is an answer; also, $\mathrm{z}=\xi$ the task $\mathrm{k}(\mathrm{z}, \xi)$ is easy task at $\mathrm{z}=\xi$.
Proof. A simple check shows that the task

$$
\psi(z, \xi)=z-\xi+\overline{I(z)}=z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau) d \tau}
$$

is $A(z)$ - analytic in $D:$

$$
\frac{\partial}{\bar{z}}[z-\xi+\overline{I(z)}] \frac{\partial}{\bar{z}} \overline{I(z)}=\frac{\overline{\partial I(Z)}}{\partial z} \bar{A}(z) \frac{\partial}{z}[z-\xi+\overline{I(z)}]
$$

i.e. $\psi(z, \xi) \in O_{A}(D)$.

The task $\psi(\xi, z)=z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau) d \tau}$ has a unique simple zero at the point $z=\xi$. In fact, $|\xi, z|$ is a segment which connects the points $\xi, z \in D$, so,

$$
z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau) d \tau}=z-\xi+\overline{\int_{|\xi, z|} \bar{A}(\tau) d \tau}
$$

and since $|A(z)| \leq c<1$, we have
$\left|z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau) d \tau}\right| \geq|z-\xi|-\left|\int_{|\xi, z|} \bar{A}(\tau) d \tau\right| \geq$
$\geq|z-\xi|-\int_{|\xi, z|}|A(\tau)||d \tau| \geq|z-\xi|-c \cdot \int_{|\xi, z|}|d \tau|=(1-c)|z-\xi|>0$,
$z \neq \xi$.
the task $\psi(z, \xi)$ has only one zero and it is simple at the point $z=\xi$, therefore, $\mathrm{k}(\mathrm{z}, \xi)$ is holomorphic in $D \backslash\{\xi\} . z=\xi$ is its simple pole.

Remark 1. Notably, area D has been convex; $K(\mathrm{z}, \xi)$ possesses a simple single-pole point z = ξ. In the case of region D C has not been Convex and it is merely simple-Linked, regardless of the tasks:

$$
\psi(\xi, z)=\xi-\mathrm{z}+\overline{\int_{\gamma(z, \xi)} \bar{A}(\tau) d \tau}
$$

Theorem 6: Let $D \subset \mathbb{C}$ be any arbitrary convex area, and let $G \subset D$ be any arbitrary subarea with a smooth or piecewise smooth border $\partial \mathrm{G}$.
Therefore, the formula (3) applies to any task $\mathrm{f}(\mathrm{z}) \in O_{A}(G) \cap C(\bar{G})$

$$
\begin{equation*}
f(z)=\int_{\partial G} K(\xi, z) f(\xi)(d \xi+A(\xi) d \bar{\xi}), \text { z } \in G \tag{3}
\end{equation*}
$$

Proof. Fixing a point $\mathrm{z} \in G$ and small circle $\mathrm{U}(\mathrm{z}, \varepsilon) \subset G, \varepsilon>0$, the following theorem
holds: (4)

$$
\begin{array}{r}
\int_{\partial G} K(\xi, z) f(\xi)(d \xi+A(\xi) d \bar{\xi}) \\
=\int_{|\xi-z|=c} K(\xi, z) f(\xi)(d \xi+A(\xi) d \bar{\xi}),
\end{array}
$$

but according to the Stokes formula we have:

$$
\begin{aligned}
& \int_{|\xi-z|=\varepsilon} K(\xi, z) f(\xi)(d \xi+A(\xi) d \bar{\xi})=\int_{|\xi-z|=\varepsilon} f(\xi) w(\xi, z)= \\
& \int_{|\xi-z| \leq \varepsilon} d[f(\xi) w(\xi, z)]=\int_{|\xi-z| \leq \varepsilon} d f(\xi) w(\xi, z)+ \\
& \int_{|\xi-z| \leq \varepsilon} f(\xi) d w(\xi, z) \\
& \rightarrow 0+f(z)=f(z), \text { for } \varepsilon \rightarrow 0
\end{aligned}
$$

2. $A(\mathrm{z})$-harmonic task

As stated earlier, the $\mathrm{A}(\mathrm{z})$-harmonic task is the real component of $\mathrm{A}(\mathrm{z})$-analytical tasks. The imaginary component of the analytical task is harmonic. $\mathrm{A}(\mathrm{z})$-harmonic tasks exist when $\mathrm{A}(\mathrm{z})$ represents anti-analytic tasks.

Theorem 7: The real component of the analytic task $\mathrm{f}(\mathrm{z}) \in O_{A}(G)$ satisfies the following equations.

$$
\begin{equation*}
\Delta_{A} u=0 \tag{4}
\end{equation*}
$$

in which

$$
\Delta_{A}=\frac{\partial}{\partial z}\left[\frac{1}{1-|A|^{2}}\left[\left(1+\left|A^{2}\right|\right) \frac{\partial u}{\partial z}-2 A \frac{\partial u}{\partial z}\right]\right]+\frac{\partial}{\partial z}\left[\frac{1}{1-|A|^{2}}\left[\left(1+\left|A^{2}\right|\right) \frac{\partial u}{\partial z}-2 \bar{A} \frac{\partial u}{\partial z}\right]\right] .
$$

Note Theorem 7 gives the following determinations for the $\mathrm{A}(\mathrm{z})$-harmonic task.

Definition 1.

In area G, a task of twice differentiable function $u \in C^{2}(G), u: G \rightarrow R$ is $\mathrm{A}(\mathrm{z})$-harmonic if, called $A(\mathrm{z})$-harmonic, it is a solution to the differential equation (4).
$h_{A}(G)$ is the symbol for a class for $\mathrm{A}(\mathrm{z})$-harmonic tasks in area (G), and both the real and imaginary components of the $\mathrm{A}(\mathrm{z})$-analytic task $f(z) \in O_{A}(G)$ are $\mathrm{A}(\mathrm{z})$-harmonic tasks. Likewise, the opposite is true for Areas with a simple link.
Theorem 8. $f(z) \in O_{A}\left(G\right.$, such that $\mathrm{u}=\operatorname{Re} \mathrm{f}$, exists in the case of the task $u(z) \in h_{A}(G)$, (G), in which G is a simply connected area.
For $\mathrm{A}(\mathrm{z})$-harmonic tasks, theoretically, operator $A(\mathrm{z})$-has the similar role as u operator concerning harmonic and subharmonic tasks (Namely, we must provide the integral principle. Assume GᄃC to be the convex area, and let

$$
\psi(z, \xi)=z-\xi+\overline{\int_{\gamma(\xi, z)} \bar{A}(\tau) d \tau}
$$

correspond to the appropriately defined task for G.

Theorem 9. Poisson's formula (by Poisson's Theorem) holds in the case of a task $u(z)$ has been $\mathrm{A}(\mathrm{z})$-harmonic in the lemniscate $\mathrm{L}(\mathrm{a}, \mathrm{R}) \subset \mathrm{D}$, continuous in its closure, specifically $\mathrm{u}(\mathrm{z}) \in \mathrm{h} _\mathrm{A}$ $(\mathrm{L}(\mathrm{a}, \mathrm{R})) \cap \mathrm{C}(\mathrm{L}(\mathrm{a}, \mathrm{R}))$

$$
\begin{equation*}
u(z)=\frac{1}{2 \pi r} \oint_{|\psi(\xi, a)|=R} \mathbf{u}(\xi) \frac{r^{2}-|\psi(\xi, a)|^{2}}{|\psi(\xi, z)|^{2}}|d \xi+A(\xi) d \bar{\xi}| \tag{5}
\end{equation*}
$$

Other side in the case of the tasks $\varphi(\xi)$ continuous at the boundaries of the lemniscate $L(a, R) \subset$ D, So, the Task:

$$
\begin{equation*}
u(z)=\frac{1}{2 \pi r} \oint_{|\psi(\xi, a)|=R} \varphi(\xi) \frac{r^{2}-|\psi(\xi, a)|^{2}}{|\psi(\xi, z)|^{2}}|d \xi+A(\xi) d \bar{\xi}| \tag{6}
\end{equation*}
$$

Is the Lemniscate a Solution to the Dirichlet Problem:

$$
L(a, r): \Delta_{A} u=0 \forall z \in L(a, R), u \mid \partial L(a, R)=\varphi
$$

Theorem 10. in the case of task u is an $A(z)$-harm-onic in a Lemn-iscate

$$
L(z, R)=\{\xi \in G:|\psi(z, \xi)|<R\} \subset G
$$

so, the following equality holds for any $\mathrm{r}<R$:

$$
u(z)=\frac{1}{2 \pi r} \oint_{|\psi(\xi, z)|=r} \mathrm{u}(\xi)|d \xi+A(\xi) d \bar{\xi}|
$$

Proof. Since $u \in h_{A}(L(z, R))$ so, there is a task $f(z) \in O_{A}(L(z, R))$ for which $u(z)=R f(z)$.
we expand the task $f(z)$ in the area $L(z, R)$ in a
Taylor series
$f(\mathrm{z})=\sum_{n=0}^{\infty} c_{n} \psi^{n}(\xi, z)$.
If $r<R$, the Series converges uniformly in a lemniscate $|\psi(\xi, z)| \leq r$.
$u(z)=\frac{1}{2}(f(\mathrm{z})+\overline{f(\mathrm{z})})=\frac{1}{2} \sum_{n=0}^{\infty}\left[c_{n} \psi^{n}(\xi, z)+\overline{c_{n} \psi^{n}(\xi, z)}\right]$
using

$$
d \psi(\xi, z)=d \xi+A(\xi) d \bar{\xi}=r i e^{i t} d t, 0 \leq t \leq 2 \pi
$$

and

$$
|d \xi+A(\xi) d \bar{\xi}|=r d t
$$

Compute the following Integrals:

$$
\begin{aligned}
& \oint_{|\psi(\xi, z)|=r} \psi^{n}(\xi, z)|d \xi+A(\xi) d \bar{\xi}|=r^{n+1} \int_{0}^{2 \pi} e^{t i n} d t=\left\{\begin{array}{cc}
0, & n \geq 1 \\
2 \pi r, & n=0
\end{array}\right. \\
& \oint_{|\psi(\xi, z)|=r} \overline{\psi^{n}(\xi, z)}|d \xi+A(\xi) d \bar{\xi}|=r^{n+1} \int_{0}^{2 \pi} e^{-t i n} d t=\left\{\begin{array}{cc}
0, & n \geq 1 \\
2 \pi r, & n=0
\end{array}\right.
\end{aligned}
$$

Integrating the part-equality (15) in a perimeter for lemniscate yields a subsequent equivalence:
$\oint_{|\psi(\xi, z)|=r} \mathrm{u}(\xi)|d \xi+A(\xi) d \bar{\xi}|=\pi r\left(c_{0}+\bar{c}_{0}\right)=2 \pi r u(z)$
Theorem 11. (Fubini's Theorem). In the case of $f(x, y)$ is continuous throughout the rectangular region, $R: a \leq x \leq b, \quad c \leq y \leq d,(a, b, c, d \in R)$,so,

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Theorem 12. Task $u \in C(G)$, the subsequent Statements have been Comparable:

1) $u \in h_{A}(D)$;
2) for any $z \in G$ and $L(z, r) \subset \subset G$ the following equality holds

$$
u(z)=\frac{1}{2 \pi r} \oint_{|\psi(\xi, z)|=r} \mathrm{u}(\xi)|d \xi+A(\xi) d \bar{\xi}| ;
$$

3) for any $z \in G$ and $L(z, r) \Subset G$ the following equality holds

$$
\begin{equation*}
u(z)=\frac{1}{\pi r^{2}} \iint_{|\psi(\xi, z)| \leq r} \mathrm{u}(\xi) \mathrm{d} \mu \tag{8}
\end{equation*}
$$

Where $\mathrm{d} \mu\left(1-|A(\xi)|^{2}\right) \frac{d \xi \wedge d \bar{\xi}}{2 i}$.
Proof. $1 \Rightarrow 2$ based on a mean magnitude, A theory (10). 23 stems based on Fubini's familiar formula. Hypothesis (11):

$$
\begin{aligned}
& \frac{1}{\pi r^{2}} \iint_{|\psi(\xi, z)| \leq r} \mathrm{u}(\xi) \mathrm{d} \mu=\frac{1}{\pi r^{2}} \int_{0}^{r} d t \int_{|\psi(\xi, z)|=t} \mathrm{u}(\xi)|d \xi+A(\xi) d \bar{\xi}|= \\
& =\frac{1}{\pi r^{2}} \int_{0}^{r} 2 \pi t u(z) d t=u(z) .
\end{aligned}
$$

here we are using the following obvious equality,

$$
\begin{aligned}
& \mathrm{d} \mu\left(1-|A(\xi)|^{2}\right) \frac{d \xi \wedge d \bar{\xi}}{-2 i}=\frac{i}{2}(d \xi+A(\xi) d \bar{\xi}) \wedge(d \bar{\xi}+\bar{A}(\xi) d \bar{\xi})= \\
& =\frac{i}{2} d \psi(\xi, z) \wedge d \bar{\psi}(\xi, z)=d t \otimes|d \psi(\xi, z)|=d t \otimes|d \xi+A(\xi) d \bar{\xi}|
\end{aligned}
$$

Fix a lemniscate $L(a, R) \subset G$ to prove that $3 \Longrightarrow 1$ is true. Apply the poisson formula (5) to the task
$v \in h_{A}(L(a, R)) \cap C(\bar{L}(a, R)):\left.v\right|_{\partial L(a, R)}=\left.u\right|_{\partial L(a, R)}$
Using the auxiliary task $u_{1}=v-u$, in which $u_{\left.1\right|_{\partial L(a, R)}}=0$.
To every $L(z, r) \subset \subset L(a, R)$, equality (8) holds since $v(z) \in h_{A}(L(a, R))$ and $u(z)$ fulfil the Theorem condition. From the following can be inferred the required statement.

Lemma 1. in the case of the mean value condition 3 for task $u \in C(G), \mathrm{u} \not \equiv$ const, has been True, i.e. for every $\mathrm{z} \in \mathrm{G}$ and $L(a, R) \subset \subset \mathrm{G}$, the equivalence (8) holds, so, $\mathrm{u}(\mathrm{z})$ cannot attain its maximum or minimum magnitude within G.
Proof. Indeed, presume:
$\exists z^{0} \in G: u\left(z^{0}\right)=\sup _{G} u(z)$,
fix $\quad L=L\left(z^{0}, r\right) \subset G$,
and write the equality (8)

$$
\begin{align*}
& u\left(z^{0}\right)=\frac{1}{\pi r^{2}} \iint_{L} \mathrm{u}(\xi) \mathrm{d} \mu=\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)=u\left(z^{0}\right)\right\}} \mathrm{u}(\xi) \mathrm{d} \mu+\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)<u\left(z^{0}\right)\right\}} \mathrm{u}(\xi) \mathrm{d} \mu \\
& =\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)=u\left(z^{0}\right)\right\}} \mathrm{u}\left(z^{0}\right) \mathrm{d} \mu+\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)<u\left(z^{0}\right)\right\}} \mathrm{u}(\xi) \mathrm{d} \mu \\
& =\frac{1}{\pi r^{2}} \iint_{L} \mathrm{u}\left(z^{0}\right) \mathrm{d} \mu-\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)<u\left(z^{0}\right)\right\}} \mathrm{u}\left(z^{0}\right) \mathrm{d} \mu+\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)<u\left(z^{0}\right)\right\}} \mathrm{u}(\xi) \mathrm{d} \mu \\
& =u\left(z^{0}\right)-\frac{1}{\pi r^{2}} \iint_{L \cap\left\{u(\xi)<u\left(z^{0}\right)\right\}}\left[u\left(z^{0}\right)-u(\xi)\right] \mathrm{d} \mu . \tag{9}
\end{align*}
$$

Since $u\left(z^{0}\right)-u(\xi) \geq 0 \forall \xi \in L\left(z^{0}, r\right)$ then from (9) it follows that

$$
L\left(z^{0}, r\right) \cap\left\{u(\xi)<u\left(z^{0}\right)\right\}=\emptyset, \text { i.e. } u(\xi) \equiv u\left(z^{0}\right) \text { in }\left(z^{0}, r\right)
$$

Changing $\mathrm{u}(\mathrm{z})$ to $-\mathrm{u}(\mathrm{z})$ reveals that the Minimum principle holds for $\mathrm{u}(\mathrm{z})$ under the conditions of Lemma 1, i.e., in the case of $u(z)$ is less than u. (z)
$\exists z^{0} \in G: u\left(z^{0}\right)=\inf _{G} u(z)$.
Then $u(\xi) \equiv u\left(z^{0}\right) \forall z \in G$.

It suffices to observe, to conclude the proof of Theorem (12), that the auxiliary Task $u_{1}=v-u$, for which $u_{1} \in C(\bar{L}(a, R))$ and $u_{\left.1\right|_{\partial L(a, R)}}=0$, the condition (3). Based on Lemma (1), $u_{1}=v-$ $u \equiv 0$ i.e.
$u(z) \equiv v(z) \in h_{A}(L(a, R))$.
Corollary 1. (Extremum principle). In the case of the task $u \in h_{A}(D)$ touches its extreme in G, so, $u \equiv$ constant.

Corollary 2. The Dirichlet problem $\triangle_{A} u(z)=0 z \in G, u \in h_{A}(G) \cap C(\bar{G}),\left.\mathrm{u}\right|_{\partial G}=\varphi, \varphi \in$ $C(\partial G)$ takes the distinctive solution.

Proof. Assume two solutions u_{1} and u_{2} are existing. So, their difference $v=u_{1}-u_{2} \in h_{A}(D)$ has been continuous in \bar{D} and $\left.\mathrm{v}\right|_{\partial D} \equiv 0$. Therefore, by extremum standard $\left.\mathrm{v}\right|_{D} \equiv 0$, For example, $u_{1} \equiv u_{2}$.

3. Equivalence for Harnack's theorem

Remark 2. Here, the equivalence for familiar Harnack's Inequality has presented, that is vital in proving Harnack's eorem.

Theorem 13: Assume $u(z)$ has the $A(z)$-harmonic task in a lemniscate. $L(a, R) \subset D$, continuous in its closure, specifically $\left.\mathrm{u}(\mathrm{z}) \in h_{A}(\mathrm{~L} \mathrm{a}, \mathrm{R})\right) \cap C(\bar{L}(\mathrm{a}, \mathrm{R}))$, in which $D \subset \mathbb{C}$ has been convex area. In the case of $u(z) \geq 0$ in a lemniscate $L(a, R)$, so, it will be right Harnack's inequality.
$\frac{r-\rho}{r+\rho} u_{j}(a) \leq u_{j}(z) \leq \frac{r+\rho}{r-\rho} u_{j}(a), \quad z \in \partial L(a, \rho)$.
Proof. In L(a, r) The Poisson's formula was written as
$\left.u_{j}(z)=\frac{1}{2 \pi r} \oint_{|\psi(\xi, a)|=r} u_{j}(\xi) \frac{r^{2}-|\psi(z, a)|^{2}}{|\psi(\xi, z)|^{2}} \right\rvert\, d \xi+A(\xi) d(\bar{\xi} \mid, \mathrm{z} \in \mathrm{L}(\mathrm{a}, \mathrm{r}), \mathrm{j}=1,2 \cdots$
This formula implies the following inequality :
$\frac{r^{2}-\rho^{2}}{(r+\rho)^{2}} u_{j}(a) \leq u_{j}(z) \leq \frac{r^{2}-\rho^{2}}{(r-\rho)^{2}} u_{j}(a), \quad z \in \partial L(a, \rho)=\{|\psi(z, a)|=\rho\}$
Which is equivalent to

$$
\frac{r-\rho}{r+\rho} u_{j}(a) \leq u_{j}(z) \leq \frac{r+\rho}{r-\rho} u_{j}(a), \quad z \in \partial L(a, \rho)
$$

Theorem 14. A monotonically increasing series for $A(z)$-harmonic tasks $u_{-} _j \in h _A(D)$. If it converges uniformly (in D) to, or meets uniformly to definite $\mathrm{A}(\mathrm{z})$-harmonic tasks $u \in h_{A}(D)$.

Proof. It suffices to demonstrate the theorem given a monotonically growing sequence such as $u_{j} \rightarrow u(z), u(z) \in(-\infty,+\infty]$. We correct a random convex area GD In which a lemniscate can be defined as $(a, r)=\{\xi \in G:|\psi(\xi, a)|<r\} \subset G, \mathrm{a} \in \mathrm{G}, \mathrm{r}>0$ it can be assuming that $u_{j} \geq$ $u_{1}(z) \geq 0 \forall z \in G$ given that $u_{-} \geq u_{-} _1$ (z$)$ and, should it be necessary, adding positive constant. Using the formula for the mean value (10) so, :

$$
u_{j}(z)=\frac{1}{\pi r^{2}} \iint_{|\psi(\xi, a)| \leq r} u_{j}(\xi) \mathrm{d} \mu
$$

According to Levy's theorem, this equivalence applies to you as well (the priory u is feasibly not bounded)

$$
\begin{equation*}
u(z)=\frac{1}{\pi r^{2}} \iint_{|\psi(\xi, a)| \leq r} \mathrm{u}(\xi) \mathrm{d} \mu \tag{11}
\end{equation*}
$$

Case I. U represents not bounded task, and the equation reads $\exists \mathrm{a} \in \mathrm{G}: \mathrm{u}(\mathrm{a})=+\infty$. In the case of this is the case, the left side of equation (10) suggests that the value of $u _j(z)$ as $j \rightarrow \infty$, as uniformly evaluated in $\partial \mathrm{L}(\mathrm{a}, \rho), \forall \rho<\mathrm{r}$, meets to $+\infty$. Here, demonstrating that $\mathrm{u}(\mathrm{z}) \equiv+\infty$ in G besides $\mathrm{u}_{\mathrm{j}} \mathrm{j}(\mathrm{z})$ as $\mathrm{j} \rightarrow \infty$ uniformly converges to + in arbitrary $\mathrm{L}(\mathrm{a}, \rho) \subset \mathrm{G}$ is not a difficult task at
all.

Case II . $u(z)<\infty \forall z \in G$. So, the right-hand of (10) indicates that

$$
u_{j+m}(z)-u_{j}(z) \leq \frac{r+\rho}{r-\rho}\left(u_{j+m}(a)-u_{j}(z)\right), z \in \partial L(a, \rho) .
$$

Moreover, the sequence $u_{j}(z)$ as $j \rightarrow \infty$ uniformly converges in $L(a, \rho), \rho<r$.
As a consequence of this, in any compact $K G, u j(z)$ uniformly meets $u(z)$, with continuous $u(z)$ in G. (11). The both theorems support this proposition (12). As a result, u(z)h A. (G). Because GD stands for a fixed arbitrary convex area, $u(z)$ has been $A(z)$ in D.

Conclusions

1- Study some properties of $A(z)$ - harmonic tasks.
2- Proving an analog of the Schwarz inequality for analytic tasks A(z).
3-Proving the integral formula of Poisson for A (z)-analytic tasks.
4-Demonstrate an analog of Harnack's theorem for $A(z)$ - harmonic tasks.

REFERENCES

[1] Ahlfors L. Lectures on quasiconformal mappings, Toronto-New York-London,(1966).
[2] Bojarsky B. Homeomorphic solution of Beltrami systems, Report ACUSSR,Vol.102, No4, 661-664 (1955).
[3] Bojarsky B. Generalized solutions of a system of differential equations of the First order of the elliptic type with discontinuous coefficients. Math.Comp., 1957, Vol. 43(85),451-503 (1957).
[4] Sadullaev A. Theory Plurepotentials. Applications. Palmarium academic pub- Lishing (2012).
[5] Sadullaev A. Dirichlet problem to Monge-Ampere equation. DAN USSR, Vol.267, No.3, 563-566 (1982).
[6] Vekua I. N. Generalized analytic functions.M," Science" (1988).
[7] Volkovysky L.I. Quasiconformal mappings. Lviv (1954).
[8] Gutlyanski V., Ryazanov V., Srebro U. and Yakubov E.The Beltrami equation: A geometric approach. Springer (2011).
[9] Shabborov N.M., Otaboev T.U. An analog of the integral Cauchy theorem forA-analytic functions, Uzbek Mat. Zh., (2016), No. 4, 50-59 (in Russian).
[10] Shabborov N.M., Otaboev T.U. Cauchy's theorem for A-analytical functions, Uzbek Mat. Journal, No. 1, 15-18 (2014).
[11] Sadullaev A., Zhabborov N.M. On a class of A-analitic functions. Sibiran Federal University, Maths and Physics, Vol. 9(3), 374-384 (2016).

