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Abstract 

Statistical modelling of count data has been of extreme interest to researchers. 

However, in practice, the count data is often identified with overdispersion or 

underdispersion. The Conway-Maxwell-Poisson regression model (CMPR) has 

been proven powerful in modelling count data with a wide range of dispersion. In 

this study, the performance of CMPR is tested under different value of 

dispersions. Our Monte Carlo simulation results suggest that the CMPR can bring 

significant improvement relative to Poisson regression model, in terms of AIC, 

BIC, and Deviance. 

Keywords:Overdispersion; Conway-Maxwell-Poisson regression model; Poisson 

regression model; Monte Carlo simulation. 
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1. Introduction 

The count response variable is widely included in modeling several real data problems, such as 

social, automobile insurance claims, healthcare economics, physical sciences, and medical science [1-

8]. Specifically, count data regression model is used when the response variable under the study is 

discrete distributions representing counts and proportions [9, 10]. 

Consequently, the Poisson regression model is one of the most models that used in modeling count 

data. However, it assumes that the equidispersion property in which the variance which is a measure of 

dispersion is equal to the mean for Poisson distribution. This property is often not hold in real data 

resulting the incapability of fitting the Poisson regression model [11-13].  

The Conway–Maxwell–Poisson (CMP) distribution which is introduced by Conway and Maxwell 

in 1962 [14] is a great tool to overcome the equidispersion issue. This is because CMP can model a 

wide range of dispersion. In addition, CMP belongs to an exponential family [15]. 

2. Poisson regression model 

Most popular distribution when analyzing count data is Poisson regression, where this type of data 

used in economic, social and medicine. We know that the form of Poisson distribution is: 
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Where iy  the response variable, the expected value of poisson regression is equal to the exponential 

distribution, such as: 

ix

i e  =           (2) 

Here ix  is the i-th row of independent variables X  which is n p with p variables and    is a vector 

of 1 p of coefficient. By using maximum likelihood method to estimate the coefficient of poisson 

regression model which is considered non-linear model as follows: 
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The log-likelihood function of (3) is: 
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By using the maximum likelihood method to solve the following equation: 
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Since equation (5) is non-linear in  , then by using weighted least square algorithm, we have: 

1ˆ ˆ ˆˆ( )PR X WX X W − = s         (6) 

Where ˆ ˆ( )iW diag = and ŝ  is a vector where the diagonal elements are equal to 
ˆ

ˆlog( )
ˆ

i i
i

i

y 




−
+ .

 The covariance matrix of ˆ
ML  is equal to the second derivatives to equation (6) by using ML 

method as follows: 

1ˆ ˆ( ) ( )MLCov X WX −=         (7) 

3. Conway-Maxwell-Poisson regression model 

In real application, count data have often been shown to exhibit overdispersion, meaning that the 

variance is greater than the mean, and have sometimes shown characteristics of underdispersion, 

meaning that the variance is less than the mean. The Conway–Maxwell–Poisson distribution (CMPD) 

offers a simple way to accommodate the overdispersion and underdispersion[16, 17]. The CMPD is an 

extension of the Poisson distribution with two parameters  (centering parameter related to the 

observations mean) and   (the shape parameter) [18]. Suppose {0,1,2,.....}y   is a random variable 

that follows a CMPD, then the probability mass function is defined as 
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=
=  is a normalizing constant. The CMPD can model both 

underdispersed ( 1  ) and overdispersed ( 1  ) data.  

According to Eq. (8), there is no closed form representation available for the mean. This is because 

that the normalizing constant, ( ),Z   , is an infinite series with no closed form representation [19]. 

Shmueli, Minka [20] used the asymptotic expression for ( ),Z    in Eq. (8) to express the mean and 

variance of the CMPD as  
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For regression modeling in which the count responses may change depending on a set of 

explanatory variables, it is more convenient and interpretable to model the mean of the CMPD directly. 

By setting 
1

 = [21], a re-parameterization of Eq. (8) to provide a clear centering parameter is can be 

defined as 
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Depending on Eq. (10) and in terms of generalized linear model framework, the Conway–

Maxwell–Poisson regression model (CMPR) can be formulated as 

 0

1
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In Eqs. (13) and (14), 
jx and 

jm are expandatory variables, and there are assumed to be p  

covariates used in the centering link function and q  covariates used in the shape link function. 

Assuming   as a dispersion parameter and using single link function, Eq. (13), with ln( ) = = βx  as 

a linear predictor with log link, where β  is the vector of regression coefficients including intercept, the 

log likelihood function can be written a [11] 

  
1 1 1
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Solving Eq. (13), the estimation of the regression parameters,β , and the estimation of the dispersion 

parameter,  , can be obtained as, respectively,  
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Iterative reweighted least square (IRLS) is used to solve both Eq. (14) and Eq. (15). By fixing  , the 

maximum likelihood estimator (MLE) of β is defined as  

 1ˆ ˆ ˆ ˆ( ) ,T

CM R

T

P

−=β X WX X Wu  (16) 

where  
2

ˆ( )
ˆ ˆln( )

ˆ

y 




−
= +u is a vector of the adjusted response variable, and Ŵ  is a matrix of weights 

[19].  

4. Simulation study 

In this section, an extensive Monte Carlo simulation study is conducted to evaluate the performance 

of Poisson regression model, PRM, and Conway–Maxwell–Poisson regression model, CMPR, under 

different conditions. The response variable of {30,50,150}n   observations from CMP regression 
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model is generated as ( , )i iy CMP   , where exp( )T
i i = x β , 

1( ,..., )p =β  with 2

1

1
p

j

j


=

=  and 

1 2 ... p  = = = [22]. Three different values of the dispersion parameter,  , are considered to capture 

overdispersion ( 1.5 = )and ( 10 = ). The explanatory variables 1 2( , ,..., )T
i i i inx x x=x  have been 

generated from the following formula  

 2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p = − + = =  (27) 

where 0.5 =  represents the correlation between the explanatory variables and ijw ’s are independent 

standard normal pseudo-random numbers. In addition, the number of the explanatory variables is 

considered as 5p = and 10p = . Three evaluating criteria were used: Akaike Information Criterion 

(AIC), Bayes Information Criterion (BIC), and Deviance.  

The averaged AIC, BIC, and Deviance for all the combination of ,n  , and p , are respectively 

summarized in Tables 1 – 3. The best value is highlighted in bold. As Tables 1, 2, and 3 show, CMPR, 

achieved smaller averaged AIC, BIC, and Deviance than PRM. In general, this finding specifies that 

the CMPR is significantly decreasing the bias in estimating the parameter. In terms of Deviance, it is 

evident from Tables 1, 2, and 3 that CMPR are is quite better than the PRM.  

Regarding the number of explanatory variables, it is easily seen that there is a negative impact on 

Deviance, where there are increasing in their values when the p increasing from 5 variables to 10 

variables. In Addition, in terms of the sample size n , the Deviance decrease when n  increases, 

regardless the value of  and p .  

 

Table 1: Averaged AIC, BIC, and Deviance when 30n =  

  1.5 =   10 =   

  PRM CMPR PRM CMPR 

P=5 AIC 137.6614 133.66144 207.7209 203.72086 

 BIC 127.2543 125.45426 197.3137 195.31368 

 Deviance 23.3434 22.1555 27.14671 26.14671 

P=10 AIC 248.5789 248.57892 217.3627 214.76274 
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 BIC 227.5467 227.54667 200.9496 198.94957 

 Deviance 48.89717 47.89717 23.90295 23.40295 

 

Table 2: Averaged AIC, BIC, and Deviance when 50n =  

  1.5 =   10 =   

  PRM CMPR PRM CMPR 

P=5 AIC 244.9697 240.96971 313.1853 308.18527 

 BIC 231.4976 229.49758 298.7131 296.41313 

 Deviance 58.81776 57.81776 25.90338 24.20338 

P=10 AIC 252.5789 243.57892 359.6199 355.61986 

 BIC 229.5467 227.54667 336.8876 334.5876 

 Deviance 49.89717 47.49717 56.81274 55.41274 

 

Table 3: Averaged AIC, BIC, and Deviance when 150n =  

  1.5 =   10 =   

  PRM CMPR PRM CMPR 

P=5 AIC 636.8294 631.8294 945.8044 940.8044 

 BIC 620.7656 607.7656 924.7406 922.7406 

 Deviance 130.9503 130.3503 152.8789 151.8789 

P=10 AIC 656.0188 651.0188 946.825 942.825 

 BIC 619.9018 617.1018 910.908 908.708 

 Deviance 131.8299 131.3299 116.9988 116.1988 

 

5. Conclusions 

The Conway–Maxwell–Poisson regression model is very popular statistical model to analyze data 

whose response variable are counts. This paper addresses issue of overdispersion.  According to Monte 

Carlo simulation studies, it has been seen that the CMPR can bring significant improvement relative to 

Poisson regression model, in terms of AIC, BIC, and Deviance.  

 



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

 

1405 

 

 

Vol. 71 No. 3 (2022) 

http://philstat.org.ph 

 

 

REFERENCES 

1. Alkhateeb, A. and Z. Algamal, Jackknifed Liu-type Estimator in Poisson Regression Model. 

Journal of the Iranian Statistical Society, 2020. 19(1): p. 21-37. 

2. Rashad, N.K. and Z.Y. Algamal, A New Ridge Estimator for the Poisson Regression Model. 

Iranian Journal of Science and Technology, Transactions A: Science, 2019. 43(6): p. 2921-

2928. 

3. Algamal, Z.Y. and M.H. Lee, Adjusted adaptive lasso in high-dimensional Poisson regression 

model. Modern Applied Science, 2015. 9(4): p. 170-176. 

4. Al-Taweel, Y. and Z. Algamal, Almost unbiased ridge estimator in the zero-inated Poisson 

regression model. TWMS Journal Of Applied And Engineering Mathematics, 2022. 12(1): p. 

235-246. 

5. Algamal, Z.Y., Diagnostic in Poisson regression models. Electronic Journal of Applied 

Statistical Analysis, 2012. 5(2): p. 178-186. 

6. Rasheed, H.A., et al., Jackknifed Liu-type estimator in the Conway-Maxwell Poisson regression 

model. 2022. 13(1): p. 3153-3168. 

7. Algamal, Z.Y. and M.H. Lee, Penalized Poisson regression model using adaptive modified 

elastic net penalty. Electronic Journal of Applied Statistical Analysis, 2015. 8(2): p. 236-245. 

8. Algamal, Z.Y. and M.M.J.E.J.o.A.S.A. Alanaz, Proposed methods in estimating the ridge 

regression parameter in Poisson regression model. 2018. 11(2): p. 506-515. 

9. Vanegas, L.H., L.M.J.J.o.S.C. Rondon, and Simulation, A data transformation to deal with 

constant under/over-dispersion in Poisson and binomial regression models. 2020. 90(10): p. 

1811-1833. 

10. Forthmann, B. and P. Doebler, Reliability of researcher capacity estimates and count data 

dispersion: a comparison of Poisson, negative binomial, and Conway-Maxwell-Poisson models. 

Scientometrics, 2021. 

11. Francis, R.A., et al., Characterizing the performance of the conway‐maxwell poisson 

generalized linear model. 2012. 32(1): p. 167-183. 

12. Abdella, G.M., et al., Penalized Conway-Maxwell-Poisson regression for modelling dispersed 

discrete data: The case study of motor vehicle crash frequency. Safety Science, 2019. 120: p. 

157-163. 



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

 

1406 

 

 

Vol. 71 No. 3 (2022) 

http://philstat.org.ph 

 

 

13. Huang, A.J.S.M., Mean-parametrized Conway–Maxwell–Poisson regression models for 

dispersed counts. 2017. 17(6): p. 359-380. 

14. Conway, R.W. and W.L.J.J.o.I.E. Maxwell, A queuing model with state dependent service rates. 

1962. 12(2): p. 132-136. 

15. Choo‐Wosoba, H., S.M. Levy, and S.J.B. Datta, Marginal regression models for clustered 

count data based on zero‐inflated Conway–Maxwell–Poisson distribution with applications. 

2016. 72(2): p. 606-618. 

16. Lord, D., S.R. Geedipally, and S.D. Guikema, Extension of the application of conway-maxwell-

poisson models: analyzing traffic crash data exhibiting underdispersion. Risk Anal, 2010. 

30(8): p. 1268-76. 

17. Lord, D., S.D. Guikema, and S.R. Geedipally, Application of the Conway-Maxwell-Poisson 

generalized linear model for analyzing motor vehicle crashes. Accid Anal Prev, 2008. 40(3): p. 

1123-34. 

18. Santarelli, M.F., et al., A Conway-Maxwell-Poisson (CMP) model to address data dispersion on 

positron emission tomography. Comput Biol Med, 2016. 77: p. 90-101. 

19. Chatla, S.B. and G. Shmueli, Efficient estimation of COM–Poisson regression and a 

generalized additive model. Computational Statistics & Data Analysis, 2018. 121: p. 71-88. 

20. Shmueli, G., et al., A useful distribution for fitting discrete data: revival of the Conway–

Maxwell–Poisson distribution. 2005. 54(1): p. 127-142. 

21. Guikema, S.D. and J.P. Coffelt, A flexible count data regression model for risk analysis. Risk 

Anal, 2008. 28(1): p. 213-23. 

22. Kibria, B.M.G., Performance of some new ridge regression estimators. Communications in 

Statistics - Simulation and Computation, 2003. 32(2): p. 419-435. 

 


