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Abstract 

The binary coyote optimization algorithm(BCOA) is a meta-heuristic algorithm 

that has been applied widely in combinational optimization problems. Binary 

knapsack problem has received considerable attention in the combinational 

optimization. In this paper, a new time-varying transfer function is proposed to 

improve the exploration and exploitation capability of the BCOA with best 

solution and short computing time. Based on small, medium, and high-

dimensional sizes of the knapsack problem, the computational results reveal that 

the proposed time-varying transfer functions obtains the best results not only by 

finding the best possible solutions but also by yielding short computational times. 

Compared to the standard transfer functions, the efficiency of the proposed time-

varying transfer functions is superior, especially in the high-dimensional sizes.  

 

Keywords: 0-1 knapsack problem; Coyote Optimization Algorithm ; transfer 

function; time-varying parameter. 

 

 

1. Introduction 

The knapsack problem is considered as one of the NP-hard combinatorial optimization problems. 

The knapsack problem cannot be solved efficiently in a practically acceptable time scale using the 

exact algorithms because the computational time increases exponentially with the problem size. 

This leads to use approximate algorithms such as meta-heuristic algorithms to getting a good 

solutions, not necessarily optimal, in a reasonable time [1,24]. 

                The meta-heuristic algorithms are simple, flexible and they can be deal with the problems 

with different objective function properties, either discrete problems, continuous problems, or 
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mixed problems [24]. These algorithms include genetic algorithm (GA) [25], particle swarm 

optimization (PSO) [4], artificial fish swarm algorithm (AFSA) [3], harmony search algorithm 

(HAS) [14,23], gravitational search algorithm (GSA) [20], moth search algorithm (MSA) [8], 

cuckoo search algorithm (CSA) [9, 10], firefly algorithm (FA) [11], artificial bee colony algorithm 

(ABCA) [12], bat algorithm (BA) [19, 26],  Pitt,Box and Knowlton, An individual-based model of 

canid populations: modelling territoriality and social structure [18],Pierezan, Coelho[17] A new 

metaheuristic Coyote Optimization Algorithm for global optimization problems ,  

 Diab, et al., Coyote Optimization Algorithm for Parameters Estimation of Various Models of 

Solar Cells and PV Modules[7], A time-varying transfer function by Islam and Mei for balancing the 

exploration and exploitation ability of a binary PSO[13]. Applied Soft Computing Some works have 

been done for tackling knapsack problem using coyote optimization algorithm  ,  

In this paper, an efficient time-varying transfer function is proposed to solve the 0 –1 knapsack 

problem. The proposed transfer function is based on combining the S-shaped and V-shaped transfer 

functions with time-varying concept.  

The remainder of this paper is organized as follows. Section 2 describes the basic 0 –1 knapsack 

problem. Section 3 introduces the coyote optimization algorithm. In Section 4, the proposed time-

varying transfer function is presented. Section 5 presents and discusses the experimental results. In 

section 6, conclusions are drawn. 

 

2. Knapsack problem 

Knapsack problem is one of the NP-hard combinatorial optimization problems, which has been 

widely studied in operation research. Knapsack problem consists of a set of n  items where each 

item i  has a profit ic , weight iw , and maximum weight capacity M . The objective is to maximize 

the total profit of the selected items in the knapsack such that the total weights of these items are 

achieved by Eq.(2). Mathematically, the knapsack problem can be written as [6, 2]: 

 

( )
1

n

i i

i

f x c x
=

=                       (1) 

1

s.t.

n

i i

i

w x M
=
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                          (2) 

where  
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1 if item i is selecled

0 otherwise
ix


= 


 

using the penalty function, the knapsack problem can be written as follows: 

( ) ( ) ( )0,Min x f x Max h = − +  (3) 

where 
1

n

i i

i

h w x M
=

= −  and   represents the penalty coefficient. In this paper   is setting to 1010  

for all tests. The penalty function can be described in Figure1. 

 

Figure 1: Penalty function 

 

3.  Coyote optimization algorithm  

 

The Coyote Optimization Algorithm (COA) is a population-based algorithm that is based on the 

behavior of coyotes [17, 18]. It is characterized as both swarm intelligence and an evolutionary 

heuristic. The COA has a different algorithmic structure setup, which is inspired by the Canis lupus 

species, and it does not focus on the social hierarchy and dominance norms of these animals, despite 

the fact that the alpha is used as a pack leader. Furthermore, the COA focuses on the social structure 

and experiences exchanged by coyotes rather than just hunting prey [17]. 

In this procedure, the population is separated into PN  groups, each having cN  coyotes [7]. The 

coyote solution is a candidate, and their social behavior is the cost of fitness. A vector of 

development factors depicts the social behavior of the c th−  coyote in the p th−  group at time t  

[17]. 

 
,

1 2( , ,..., )p t

c Dsoc x x x x= =  (4) 

When a coyote adapts to its surroundings, the importance of the fitness trait is considered. During 

the COA start phase, the coyotes or agents are pseudo-random inside the search area, and the 

following is formulated: 
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 ,

, ( )p t

c j j j j jsoc LB r UB LB= + −  (5) 

where 
jLB  represents the lower limit of the variable j , 

jUB  represents the upper limit of the 

design variable j , and 
jr  represents an arbitrary number between [0,1] . As a result, each coyote's 

fitness value is computed using the following formula: 

 
, ,( )p t p t

c cfit f soc=  (6) 

At the start of the COA, the Coyotes are divided into groups at random, but they occasionally 

switch groups. This coyote deviation is associated with a probability PL , which is expressed as: 

 20.005e cP N=  (7) 

The transition of coyote culture between groups. The Alpha coyote, the leader of the coyotes in 

each group, is considered as the most environmentally conscious coyote. The alpha coyote's 

mathematical identification can be summarized as follows: 

 
, , ,minp t p t p t

c calpha soc for fit=  (8) 

Due to the clear indicators of swarm-intelligence in this species, the COA believes that coyotes are 

grouped in groups to share social behavior and to partake in the system's upkeep. As a result, the 

COA connects all coyote data and evaluates it as a pack cultural trend. 
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    (9) 

where 
,p tO  denotes the specified social conditions of the p  coyote group at the t  factor J  size. 

Birth and death of coyotes are taken into account in the COA life cycle. Coyote development is a 

combination of two parents' social behavior, which is chosen at random within the search region, 

and an environmental component. For this life event, the following is written: 

 

1

2

,

1

, ,
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,

,

,

p t

r j s

p t p t

j r j s a

J

soc rnd P or j j

pup soc rnd P P or j j

R otherwise

  =


=  + =




 (10) 

where jR  is a randomly distributed number within the design variable's borders, 1r  and 2r  are 

random coyote units, 1,p j  and 2j , two random design variables, sP  and aP  are scatter plate and 
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association probability, and 
jR  is an arbitrary value between 0 and 1. The following formulae 

determine the values of these probabilities, which show the cultural diversity of group coyotes: 

 
1

sP
D

=  (11) 

 
(1 )

2

s
a

P
P

−
=  (12) 

The development variables dimension is denoted by the letter D . The COA assesses the cultural 

contact between the various groups using two factors: 1  and 2 . This behavior can be expressed 

quantitatively as follows: 

 
1

, ,

1

p t p t

cralpha soc = −  (13) 

 
2

, ,

2

p t p t

crclut soc = −  (14) 

where 1  signifies the difference in culture between a randomly picked coyote ( 1cr ) and alpha one 

in the same group, and 2  denotes the difference in culture between a randomly selected coyote 

( 2cr ) and the related group's cultural tendency. The coyote's social behavior is then updated, and 

group control is altered as follows: 

 
, ,

1 1 2 2_ p t p t

c cnew soc soc r r = + +  (15) 

where 1r  and 2r  are random values in the range [0,1]. The following formula is used to calculate the 

new value of the coyote fitness function: 

 
, ,_ ( _ )p t p t

c cnew fit f new soc=  (16) 

If the current iteration's social conduct is better than the prior one, the current behavior will take the 

place of the old one, as shown mathematically: 

 
, 1 , 1 ,

, 1

,

_ _
_

p t p t p t

p t c c c

c p t

c

new soc new fit fit
new soc

soc otherwise

+ +

+
 

= 



                     (17) 

The best environmental adaption social behavior is picked as the best answer at the end of the 

procedure. 

4. The proposed time-varying transfer functions: 

    The standard coyote optimization algorithm was originally proposed to handle a continuous 

optimization problems. In discrete optimization problems, such as knapsack problem, the standard 
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method cannot be applied directly to deal for such this problems. Therefore the transfer functions 

are usually employed to convert the continuous search space to discrete search space. There are two 

families of transfer functions: S-shaped and V-shaped transfer function which were proposed by 

[16]. The V-shaped transfer functions have also been studied by [21] to tackle the feature selection 

problem. The most common transfer functions from the S-shaped family is the sigmoid function [5, 

22]: 

( )
1

1
t
i

t

i x
S x

e
−

=
+

  (18) 

( )1

0 O.W

t

it

i

if S x rand
x

 
= 


  (19) 

On the other hand, the inverse tangent hyperbolic function is the most common used transfer 

function from the V-shaped family. It is defined as: 

( )
2

arctan
2

t t

i iV x x




 
=  

 
  (20) 

( )1

0 O.W

t

it

i

if V x rand
x

 
= 


  (21) 

The transfer function is the main key to the balance between exploitation and exploration [13, 15]. 

In our proposed time-varying transfer function, a new control parameter   is added in the original 

transfer function. This   is a time-varying variable which starts with a large value and gradually 

decreases over time and it is expressed in Eq.(22). 

( )min max min

te    −= + −                       (22) 

where max and min are, respectively, the minimum and maximum values of the control parameter 

 , and T  is the maximum iteration of the BCOA. Accordingly, the two proposed transfer 

functions are defined as, respectively,  

( )
1

1

t
i

t

i x
TVS x

e 

−
=

+

                        (23) 

and  



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

 

1438 

 

 

Vol. 71 No. 3 (2022) 

http://philstat.org.ph 

 

 

 

( )
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arctan
2

t
t i
i

x
TVV x



 

 
=  

 
              (24) 

Figure 2 explains the behaviour of the proposed time-varying transfer function for both Eq. (18 ) 

and Eq. (20), respectively. It is obvious that these proposed functions coverage to be a vertical line 

when iteration increasing. 

 

Figure 2 : Explanation of the time-varying transfer function when 
max 2 =  and 

min 0.1 =  during 10 

iteration. The top panel is the sigmoid transfer function and the bottom panel is the inverse tangent 

hyperbolic transfer function. 

5. Computational results 

5.1. Parameter setting 

For, the  Coyote Optimization Algorithm  we set the parameters as follows: the population size =40. 

In addition, we used linear decreasing time varying with max 2.2 =  and min 0.5 = .  
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5.2. Comparison results 

To verify the feasibility and effectiveness of the proposed time-varying transfer functions method 

for solving 0–1 Knapsack problem, three scales of the knapsack problem are considered: low, 

medium, and high-dimensional sizes. In this paper, all the results are obtained from 100  

independent trials. The Best, Mean, Worst, SD, Mean iterations are reported as evaluation criteria. 

All of the computational experiments were conducted in Matlab 13a on a PC with an Intel Pentium 

Core CPU  T4400  processor (2.20 GHz) with 2.00 GB of RAM in the Windows 10 OS. 

5.2.1. Low size 0-1 KP  

The performance of improved algorithm is investigated to solve ten low scale 0-1 KP instances (kp-

1 to kp-10), which are taken from [1, 19]. The dimensions in this case are ranging from 4 to 23. The 

information dimension, capacity, weights and profits for these ten instances are described in Table 

S1 (supplementary file). Table 1 shows the comparison results for all the used different transfer 

functions for the kp1 - kp10. 

As observed from the results in Table 1, for the low scale knapsack problems, there is no difference 

among the results of using the proposed time-varying transfer functions and the standard transfer 

functions in terms of  the best, worse, mean, and SD. The major difference among the performance 

of the proposed time-varying transfer functions and the standard transfer functions in not expected 

because of relatively small numbered items. Contrary, the proposed time-varying transfer functions 

give optimal results with less number of iterations. The mean iterations of the proposed time-

varying transfer functions are obviously better than the standard transfer functions for kp4, kp5, 

kp8, kp9, and kp10 where the number of items is higher than the others. Moreover, comparing 

between the two proposed transfer function, the required iterations to get optimal solution using 

TVV is less than of TVS for kp4, kp5, kp6, kp8, kp9, and kp10. 

Table 1: Results obtained by the transfer functions for the low scale 0–1 KP 

Instance 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-1 S 35 35 35 0 1 

 V 35 35 35 0 1 

 TVS 35 35 35 0 1 

 TVV 35 35 35 0 1 

kp-2 S 23 23 23 0 1 
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 V 23 23 23 0 1 

 TVS 23 23 23 0 1 

 TVV 23 23 23 0 1 

kp-3 S 130 130 130 0 1 

 V 130 130 130 0 1 

 TVS 130 130 130 0 1 

 TVV 130 130 130 0 1 

kp-4 S 107 107 107 0 2.25 

 V 107 107 107 0 1.19 

 TVS 107 107 107 0 1 

 TVV 107 107 107 0 1 

kp-5 S 295 295 295 0 3.67 

 V 295 295 295 0 2.51 

 TVS 295 295 295 0 1 

 TVV 295 295 295 0 1 

kp-6 S 52 52 52 0 1.76 

 V 52 52 52 0 1.62 

 TVS 52 52 52 0 1 

 TVV 52 52 52 0 1 

kp-7 S 481.07 481.069 481.07 0 1 

 V 481.07 481.069 481.07 0 1 

 TVS 481.07 481.069 481.07 0 1 

 TVV 481.07 481.069 481.07 0 1 

kp-8 S 1025 1025 1025 0 2.64 

 V 1025 1025 1025 0 1.91 

 TVS 1025 1025 1025 0 1.67 

 TVV 1025 1025 1025 0 1 

kp-9 S 1024 1024 1024 0 2.86 

 V 1024 1024 1024 0 1.08 

 TVS 1024 1024 1024 0 1.02 

 TVV 1024 1024 1024 0 1 

kp-10 S 9767 9767 9767 0 5.31 

 V 9767 9767 9767 0 3.14 
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 TVS 9767 9767 9767 0 4.02 

 TVV 9767 9767 9767 0 2.35 

 

5.2.2. Medium size 0-1 KP  

To further evaluate the performance of proposed time-varying transfer functions in medium size 0-1 

Knapsack problem, ten medium size 0-1 KP instances (kp-11 to kp-20) are taken from [1, 19] in 

which the items are between 30 and 75. The description of these ten instances are described in 

Table S2 (supplementary file). Table 2 summarizes the comparison results for all the used different 

transfer functions. 

Obviously, it is evident from Table 2 that the proposed time-varying transfer functions obtained the 

same best, worse, mean, and SD values as the standard transfer functions. From Tables 2, for the 

mean iterations, the proposed time-varying transfer functions are superior to the standard transfer 

functions on kp11 to kp20. This indicates that the proposed time-varying transfer functions is 

comparatively fast. For example, in kp20, the reduction in mean iteration of TVS function was 

63.15% lower than that of S function. On the other hand, the reduction in mean iteration of TVV 

function was 57.94% lower than that of V function. 

Further, it was noted that the v-shaped transfer functions are usually yielded the least iterations 

compared to S-shaped transfer functions. On the other hand, comparing between the two proposed 

transfer function, the required iterations to get optimal solution using TVV is less than of TVS for 

all the 0-1 Knapsack problems. 

Table 2: Results obtained by the transfer functions for the medium size 0–1 KP 

Instance 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-11 

 
S 1437 1437 1437 0 8.15 

 V 1437 1437 1437 0 4.24 

 TVS 1437 1437 1437 0 5.06 

 TVV 1437 1437 1437 0 2.27 

kp-12 S 1689 1689 1689 0 9.51 

 V 1689 1689 1689 0 3.94 

 TVS 1689 1689 1689 0 4.83 
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 TVV 1689 1689 1689 0 1.95 

kp-13 S 1821 1821 1821 0 41.08 

 V 1821 1821 1821 0 13.22 

 TVS 1821 1821 1821 0 28.65 

 TVV 1821 1821 1821 0 5.83 

kp-14 S 2033 2033 2033 0 29.57 

 V 2033 2033 2033 0 8.96 

 TVS 2033 2033 2033 0 19.35 

 TVV 2033 2033 2033 0 3.14 

kp-15 S 2440 2440 2440 0 35.19 

 V 2440 2440 2440 0 12.36 

 TVS 2440 2440 2440 0 22.28 

 TVV 2440 2440 2440 0 6.57 

kp-16 S 2651 2648.5 2643 2.86 698.4 

 V 2651 2651 2651 0 17.25 

 TVS 2651 2651 2651 0 475.61 

 TVV 2651 2651 2651 0 9.28 

kp-17 S 2917 2917 2917 0 195.73 

 V 2917 2917 2917 0 25.36 

 TVS 2917 2917 2917 0 75.31 

 TVV 2917 2917 2917 0 9.6 

kp-18 S 2818 2815.6 2794 1.73 894.1 

 V 2818 2818 2818 0 11.58 

 TVS 2818 2818 2818 0 528.7 

 TVV 2818 2818 2818 0 5.89 

kp-19 S 3223 3221.6 3219 0.93 784.5 

 V 3223 3223 3223 0 11.21 

 TVS 3223 3223 3223 0 5.82 

 TVV 3223 3223 3223 0 6.18 

kp-20 S 3614 3614 3614 0 589.7 

 V 3614 3614 3614 0 9.25 

 TVS 3614 3614 3614 0 217.3 

 TVV 3614 3614 3614 0 3.89 
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5.2.3. High-dimensional size 0-1 KP  

To further highlight the benefits of our proposed time-varying transfer functions, three cases have 

been investigated. The first case handles the uncorrelated problem (kp21 – kp25) where the weights 

iw  are uncorrelated with the profits ic . Each iw  and ic  is randomly chosen from 5 to 20 and from 

5 to 40, respectively. The second case handles the weakly correlated problem (kp26 – kp30). In this 

case, the weights iw  and the profits ic  can be expressed as follows:  5,20iw   and 

 5, 5i i ic w w − + . The third case handles the strongly correlated problem (kp31 – kp35). In this 

case, iw and ic  can be calculated as:  5,20iw   and  5i ic w + . The knapsack capacity for the 

kp-21-kp35 can be calculated as 
1

0.75
n

i

i

M w
=

=  . The dimension sizes varying from 100 to 2000 

items. For all used transfer functions, the maximum iteration is set to 10000. Tables 3 – 5 reports 

the comparison results for all the used different transfer functions. Based on the obtained results, 

several points are concluded. 

 

(1) It can be seen that the proposed time-varying transfer functions significantly outperform the 

standard transfer functions on all evaluation measures including the best, mean, worst, and standard 

deviations.  

(2) As observed from the results, the proposed time-varying V-shaped transfer functions, TVV, 

can easily find the optimal values with small SD in all uncorrelated, weakly correlated, and strongly 

correlated problems.  

(3) It is obvious that there is an improvement for searching the global optimal solution when 

using TVV compared to TVS. This leads to the performance dominance of the inverse tangent 

hyperbolic transfer function against the sigmoid transfer function. 

The mean iteration values of time-varying V-shaped transfer functions, TVV, are obviously 

(4) superior to S and V functions for all high-dimensional size problems.  

Compared to the proposed time-varying V-shaped transfer functions, TVV is significantly improve 

the performance metrics with lower SD and mean iterations. 
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Table 3: Comparison results of uncorrelated high-dimensional size 0–1 KP 

Instance Dimension 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-21 100 S 2126 2120.8 2116 15.6 1085 

  V 2126 2126 2126 0 69 

  TVS 2126 2126 2126 0 520 

  TVV 2126 2126 2126 0 34 

kp-22 500 S 11025 11017.5 11012 18.5 3025 

  V 11025 11024.2 11023 1.46 127 

  TVS 11025 11023.8 11022 2.18 1582 

  TVV 11025 11025 11025 0 65 

kp-23 1000 S 21963 21958.6 21950 17.1 6853 

  V 21968 21967.1 21965 2.01 839 

  TVS 21969 21966.9 21963 4.92 2976 

  TVV 21969 21969 21969 0 491 

kp-24 1500 S 32633 32626.2 32620 20.65 5628 

  V 32639 32637.8 32636 2.61 1957 

  TVS 32637 32635.4 32634 3.48 3273 

  TVV 32640 32639.2 32638 0.34 978 

kp-25 2000 S 43711 43705 43692 31.6 8854 

  V 43725 43722.6 43720 5.22 3761 

  TVS 43723 43720.7 43718 3.67 5842 

  TVV 43726 43725 43722 1.93 2072 

 

Table 4: Comparison results of weakly correlated high-dimensional size 0–1 KP 

 

Instance Dimension 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-26 100 S 2015 2012.3 2009 4.29 926 

  V 2015 2015 2015 0 48 

  TVS 2015 2015 2015 0 352 

  TVV 2015 2015 2015 0 25 
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kp-27 500 S 10450 10447.2 10446 6.41 1854 

  V 10450 10449.3 10448 0.84 98 

  TVS 10450 10447.8 10446 1.68 851 

  TVV 10450 10450 10450 0 49 

kp-28 1000 S 20856 20852.1 20849 6.85 3458 

  V 20856 20854.6 20853 0.93 215 

  TVS 20856 20854 20852 2.24 2851 

  TVV 20856 20856 20856 0 137 

kp-29 1500 S 31625 31620.3 31618 8.02 4183 

  V 31630 31629.5 31626 1.85 1957 

  TVS 31632 31628.7 31626 2.94 3273 

  TVV 31632 31631.4 31631 0.26 895 

kp-30 2000 S 42050 42046 42041 10.93 7794 

  V 42055 42053.1 42049 2.04 2536 

  TVS 42057 42051.6 42047 7.32 4582 

  TVV 42057 42056 42054 1.34 1057 

 

Table 5: Comparison results of strongly correlated high-dimensional size 0–1 KP 

Instance Dimension 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-31 100 S 2669 2669 2669 0 283 

  V 2669 2669 2669 0 36 

  TVS 2669 2669 2669 0 107 

  TVV 2669 2669 2669 0 12 

kp-32 500 S 13657 13654.1 13652 0.62 564 

  V 13657 13657 13657 0 50 

  TVS 13657 13657 13657 0 322 

  TVV 13657 13657 13657 0 28 

kp-33 1000 S 27164 27162.5 27159 1.29 921 

  V 27166 27164.6 27164 0.90 127 

  TVS 27166 27164.4 27162 0.12 619 

  TVV 27166 27166 27166 0 88 
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kp-34 1500 S 40461 40459.8 40455 2.58 1766 

  V 40466 40465 40463 1.61 293 

  TVS 40468 40466.3 40464 1.58 835 

  TVV 40468 40468 40468 0 146 

kp-35 2000 S 42050 42048.9 42042 3.01 3905 

  V 42054 42053.1 42048 2.18 559 

  TVS 42057 42055 42051 2.33 2376 

  TVV 42057 42056.2 42055 0.89 381 

 

6- Conclusion 

In this paper, a time-varying transfer function was proposed to improve the exploration and 

exploitation capability of the binary coyote optimization algorithm  in solving the 0–1 KP problem 

efficiently. The experimental results show that the introduction of time-varying parameter in the 

transfer function can improve the performance of binary COA in solving small, medium, and high-

dimensional sizes 0–1 KP problems. Additionally, the experimental results show that proposed 

time-varying V-shaped transfer function outperforms the S-shaped transfer function in terms of the 

best, worse, mean, SD, and the mean iterations 
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