Lamyaa Jasim Mohammed *, ZakariyaYahya Algamal**

*Department of operations research and intelligent techniques, University of Mosul, Mosul, Iraq. (email):lomuaajasem@uomosul.edu.iq **Department of Statistics and Informatics, University of Mosul, Mosul, Iraq. (email): Zakariya.algamal@uomosul.edu.iq

Article Info	Abstract
Page Number: 1432 - 1448	The binary coyote optimization algorithm(BCOA) is a meta-heuristic algorithm
Publication Issue:	that has been applied widely in combinational optimization problems. Binary
Vol 71 No. 3 (2022)	knapsack problem has received considerable attention in the combinational
	optimization. In this paper, a new time-varying transfer function is proposed to
	improve the exploration and exploitation capability of the BCOA with best
	solution and short computing time. Based on small, medium, and high-
	dimensional sizes of the knapsack problem, the computational results reveal that
	the proposed time-varying transfer functions obtains the best results not only by
Article History	finding the best possible solutions but also by yielding short computational times.
Article Received: 12 January 2022	Compared to the standard transfer functions, the efficiency of the proposed time-
Revised: 25 February 2022	varying transfer functions is superior, especially in the high-dimensional sizes.
Accepted: 20 April 2022	
Publication: 09 June 2022	Keywords: 0-1 knapsack problem; Coyote Optimization Algorithm ; transfer
	function; time-varying parameter.

1. Introduction

The knapsack problem is considered as one of the NP-hard combinatorial optimization problems. The knapsack problem cannot be solved efficiently in a practically acceptable time scale using the exact algorithms because the computational time increases exponentially with the problem size. This leads to use approximate algorithms such as meta-heuristic algorithms to getting a good solutions, not necessarily optimal, in a reasonable time [1,24].

The meta-heuristic algorithms are simple, flexible and they can be deal with the problems with different objective function properties, either discrete problems, continuous problems, or mixed problems [24]. These algorithms include genetic algorithm (GA) [25], particle swarm optimization (PSO) [4], artificial fish swarm algorithm (AFSA) [3], harmony search algorithm (HAS) [14,23], gravitational search algorithm (GSA) [20], moth search algorithm (MSA) [8], cuckoo search algorithm (CSA) [9, 10], firefly algorithm (FA) [11], artificial bee colony algorithm (ABCA) [12], bat algorithm (BA) [19, 26], Pitt,Box and Knowlton, *An individual-based model of canid populations: modelling territoriality and social structure* [18],Pierezan, Coelho[17] *A new metaheuristic Coyote Optimization Algorithm for global optimization problems*,

Diab, et al., Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules[7], A time-varying transfer function by Islam and Mei for balancing the exploration and exploitation ability of a binary PSO[13]. Applied Soft Computing Some works have been done for tackling knapsack problem using coyote optimization algorithm ,

In this paper, an efficient time-varying transfer function is proposed to solve the 0-1 knapsack problem. The proposed transfer function is based on combining the S-shaped and V-shaped transfer functions with time-varying concept.

The remainder of this paper is organized as follows. Section 2 describes the basic 0 -1 knapsack problem. Section 3 introduces the coyote optimization algorithm. In Section 4, the proposed time-varying transfer function is presented. Section 5 presents and discusses the experimental results. In section 6, conclusions are drawn.

2. Knapsack problem

Knapsack problem is one of the NP-hard combinatorial optimization problems, which has been widely studied in operation research. Knapsack problem consists of a set of n items where each item i has a profit c_i , weight w_i , and maximum weight capacity M. The objective is to maximize the total profit of the selected items in the knapsack such that the total weights of these items are achieved by Eq.(2). Mathematically, the knapsack problem can be written as [6, 2]:

$$f(x) = \sum_{i=1}^{n} c_i x_i \tag{1}$$

$$\sum_{i=1}^{n} w_i x_i \le M \tag{2}$$

s t

where

Vol. 71 No. 3 (2022) http://philstat.org.ph Mathematical Statistician and Engineering Applications ISSN: 2326-9865

$$x_i = \begin{cases} 1 & \text{if item i is selected} \\ 0 & \text{otherwise} \end{cases}$$

using the penalty function, the knapsack problem can be written as follows:

$$Min\phi(x) = -f(x) + \lambda Max(0,h)$$
(3)

where $h = \sum_{i=1}^{n} w_i x_i - M$ and λ represents the penalty coefficient. In this paper λ is setting to 10^{10}

for all tests. The penalty function can be described in Figure 1.

Penalty	function
•	for each x_i
-	Calculate total weight of x_i by $\left(\sum_{i=1}^{n} W_i x_i\right)$
-	if (total_weight \leq knapsack_capacity)
	$\phi(x) = -f(x)$
-	else
	$\phi(x) = -f(x) + \lambda(total_weight - knapsack_capacity)$
-	end

Figure 1: Penalty function

3. Coyote optimization algorithm

The Coyote Optimization Algorithm (COA) is a population-based algorithm that is based on the behavior of coyotes [17, 18]. It is characterized as both swarm intelligence and an evolutionary heuristic. The COA has a different algorithmic structure setup, which is inspired by the Canis lupus species, and it does not focus on the social hierarchy and dominance norms of these animals, despite the fact that the alpha is used as a pack leader. Furthermore, the COA focuses on the social structure and experiences exchanged by coyotes rather than just hunting prey [17].

In this procedure, the population is separated into N_p groups, each having N_c coyotes [7]. The coyote solution is a candidate, and their social behavior is the cost of fitness. A vector of development factors depicts the social behavior of the c-th coyote in the p-th group at time t [17].

$$soc_{c}^{p,t} = x = (x_{1}, x_{2}, ..., x_{D})$$
 (4)

When a coyote adapts to its surroundings, the importance of the fitness trait is considered. During the COA start phase, the coyotes or agents are pseudo-random inside the search area, and the following is formulated:

$$soc_{c,j}^{p,t} = LB_j + r_j (UB_j - LB_j)$$
⁽⁵⁾

where LB_j represents the lower limit of the variable j, UB_j represents the upper limit of the design variable j, and r_j represents an arbitrary number between [0,1]. As a result, each coyote's fitness value is computed using the following formula:

$$fit_c^{p,t} = f(soc_c^{p,t}) \tag{6}$$

At the start of the COA, the Coyotes are divided into groups at random, but they occasionally switch groups. This coyote deviation is associated with a probability *PL*, which is expressed as:

$$P_e = 0.005 N_c^2 \tag{7}$$

The transition of coyote culture between groups. The Alpha coyote, the leader of the coyotes in each group, is considered as the most environmentally conscious coyote. The alpha coyote's mathematical identification can be summarized as follows:

$$alpha^{p,t} = soc_c^{p,t} for \quad \min fit_c^{p,t}$$
(8)

Due to the clear indicators of swarm-intelligence in this species, the COA believes that coyotes are grouped in groups to share social behavior and to partake in the system's upkeep. As a result, the COA connects all coyote data and evaluates it as a pack cultural trend.

$$cult_{j}^{p,t} = \begin{cases} O_{\frac{(N_{c}+1)}{2},j}^{p,t}, & N_{c}is & odd \\ O_{\frac{N_{c}}{2},j}^{p,t} + O_{\frac{N_{c}}{2}+1),j}^{p,t} \\ \frac{Q_{\frac{N_{c}}{2},j}^{p,t} + O_{\frac{N_{c}}{2}+1),j}^{p,t}}{2}, & otherwise \end{cases}$$
(9)

where $O^{p,t}$ denotes the specified social conditions of the *p* coyote group at the *t* factor *J* size. Birth and death of coyotes are taken into account in the COA life cycle. Coyote development is a combination of two parents' social behavior, which is chosen at random within the search region, and an environmental component. For this life event, the following is written:

$$pup_{j}^{p,t} = \begin{cases} soc_{r_{1}}^{p,t}, & rnd_{j} < P_{s} \text{ or } j = j_{1} \\ soc_{r_{2}}^{p,t}, & rnd_{j} \ge P_{s} + P_{a} \text{ or } j = j_{2} \\ R_{j}, & otherwise \end{cases}$$
(10)

where R_j is a randomly distributed number within the design variable's borders, r_1 and r_2 are random coyote units, p, j_1 and j_2 , two random design variables, P_s and P_a are scatter plate and

Vol. 71 No. 3 (2022) http://philstat.org.ph association probability, and R_j is an arbitrary value between 0 and 1. The following formulae determine the values of these probabilities, which show the cultural diversity of group coyotes:

$$P_s = \frac{1}{D} \tag{11}$$

$$P_a = \frac{(1-P_s)}{2} \tag{12}$$

The development variables dimension is denoted by the letter D. The COA assesses the cultural contact between the various groups using two factors: δ_1 and δ_2 . This behavior can be expressed quantitatively as follows:

$$\delta_1 = alpha^{p,t} - soc_{cr_1}^{p,t} \tag{13}$$

$$\delta_2 = clut^{p,t} - soc_{cr_2}^{p,t} \tag{14}$$

where δ_1 signifies the difference in culture between a randomly picked coyote (cr_1) and alpha one in the same group, and δ_2 denotes the difference in culture between a randomly selected coyote (cr_2) and the related group's cultural tendency. The coyote's social behavior is then updated, and group control is altered as follows:

$$new_soc_c^{p,t} = soc_c^{p,t} + r_1\delta_1 + r_2\delta_2$$
(15)

where r_1 and r_2 are random values in the range [0,1]. The following formula is used to calculate the new value of the coyote fitness function:

$$new_fit_c^{p,t} = f(new_soc_c^{p,t})$$
(16)

If the current iteration's social conduct is better than the prior one, the current behavior will take the place of the old one, as shown mathematically:

$$new_soc_{c}^{p,t+1} = \begin{cases} new_soc_{c}^{p,t+1} & new_fit_{c}^{p,t+1} < fit_{c}^{p,t} \\ soc_{c}^{p,t} & otherwise \end{cases}$$
(17)

The best environmental adaption social behavior is picked as the best answer at the end of the procedure.

4. The proposed time-varying transfer functions:

The standard coyote optimization algorithm was originally proposed to handle a continuous optimization problems. In discrete optimization problems, such as knapsack problem, the standard

method cannot be applied directly to deal for such this problems. Therefore the transfer functions are usually employed to convert the continuous search space to discrete search space. There are two families of transfer functions: S-shaped and V-shaped transfer function which were proposed by [16]. The V-shaped transfer functions have also been studied by [21] to tackle the feature selection problem. The most common transfer functions from the S-shaped family is the sigmoid function [5, 22]:

$$S\left(x_{i}^{t}\right) = \frac{1}{1 + e^{-x_{i}^{t}}}$$
(18)

$$x_{i}^{t} = \begin{cases} 1 & if \quad S\left(x_{i}^{t}\right) > rand \\ 0 & O.W \end{cases}$$
(19)

On the other hand, the inverse tangent hyperbolic function is the most common used transfer function from the V-shaped family. It is defined as:

$$V\left(x_{i}^{t}\right) = \left|\frac{2}{\pi} \arctan\left(\frac{\pi}{2}x_{i}^{t}\right)\right|$$
(20)
$$x_{i}^{t} = \begin{cases} 1 \quad if \quad V\left(x_{i}^{t}\right) > rand \\ 0 \qquad \text{O.W} \end{cases}$$
(21)

The transfer function is the main key to the balance between exploitation and exploration [13, 15]. In our proposed time-varying transfer function, a new control parameter φ is added in the original transfer function. This φ is a time-varying variable which starts with a large value and gradually decreases over time and it is expressed in Eq.(22).

$$\varphi = \varphi_{\min} + (\varphi_{\max} - \varphi_{\min}) \times e^{-t}$$
(22)

where φ_{\max} and φ_{\min} are, respectively, the minimum and maximum values of the control parameter φ , and T is the maximum iteration of the BCOA. Accordingly, the two proposed transfer functions are defined as, respectively,

$$TVS\left(x_{i}^{t}\right) = \frac{1}{1 + e^{\frac{-x_{i}^{t}}{\varphi}}}$$
(23)

and

Vol. 71 No. 3 (2022) http://philstat.org.ph Mathematical Statistician and Engineering Applications ISSN: 2326-9865

$$TVV\left(x_{i}^{t}\right) = \left|\frac{2}{\pi}\arctan\left(\frac{\pi x_{i}^{t}}{2\varphi}\right)\right|$$
(24)

Figure 2 explains the behaviour of the proposed time-varying transfer function for both Eq. (18) and Eq. (20), respectively. It is obvious that these proposed functions coverage to be a vertical line when iteration increasing.

Figure 2 : Explanation of the time-varying transfer function when $\varphi_{max} = 2$ and $\varphi_{min} = 0.1$ during 10 iteration. The top panel is the sigmoid transfer function and the bottom panel is the inverse tangent hyperbolic transfer function.

5. Computational results

5.1. Parameter setting

For, the Coyote Optimization Algorithm we set the parameters as follows: the population size =40. In addition, we used linear decreasing time varying with $\varphi_{max} = 2.2$ and $\varphi_{min} = 0.5$.

5.2. Comparison results

To verify the feasibility and effectiveness of the proposed time-varying transfer functions method for solving 0–1 Knapsack problem, three scales of the knapsack problem are considered: low, medium, and high-dimensional sizes. In this paper, all the results are obtained from 100 independent trials. The Best, Mean, Worst, SD, Mean iterations are reported as evaluation criteria. All of the computational experiments were conducted in Matlab 13a on a PC with an Intel Pentium Core CPU T4400 processor (2.20 GHz) with 2.00 GB of RAM in the Windows 10 OS.

5.2.1. Low size 0-1 KP

The performance of improved algorithm is investigated to solve ten low scale 0-1 KP instances (kp-1 to kp-10), which are taken from [1, 19]. The dimensions in this case are ranging from 4 to 23. The information dimension, capacity, weights and profits for these ten instances are described in Table S1 (supplementary file). Table 1 shows the comparison results for all the used different transfer functions for the kp1 - kp10.

As observed from the results in Table 1, for the low scale knapsack problems, there is no difference among the results of using the proposed time-varying transfer functions and the standard transfer functions in terms of the best, worse, mean, and SD. The major difference among the performance of the proposed time-varying transfer functions and the standard transfer functions in not expected because of relatively small numbered items. Contrary, the proposed time-varying transfer functions give optimal results with less number of iterations. The mean iterations of the proposed time-varying transfer functions are obviously better than the standard transfer functions for kp4, kp5, kp8, kp9, and kp10 where the number of items is higher than the others. Moreover, comparing between the two proposed transfer function, the required iterations to get optimal solution using TVV is less than of TVS for kp4, kp5, kp6, kp8, kp9, and kp10.

Instance	Transfer	Doct	Maan	Wonst	6D	Mean
Instance	function	Dest	wiean	worst	50	iterations
kp-1	S	35	35	35	0	1
	V	35	35	35	0	1
	TVS	35	35	35	0	1
	TVV	35	35	35	0	1
kp-2	S	23	23	23	0	1

Table 1: Results obtained by the transfer functions for the low scale 0–1 KP

	V	23	23	23	0	1
	TVS	23	23	23	0	1
	TVV	23	23	23	0	1
kp-3	S	130	130	130	0	1
	V	130	130	130	0	1
	TVS	130	130	130	0	1
	TVV	130	130	130	0	1
kp-4	S	107	107	107	0	2.25
	V	107	107	107	0	1.19
	TVS	107	107	107	0	1
	TVV	107	107	107	0	1
kp-5	S	295	295	295	0	3.67
	V	295	295	295	0	2.51
	TVS	295	295	295	0	1
	TVV	295	295	295	0	1
kp-6	S	52	52	52	0	1.76
	V	52	52	52	0	1.62
	TVS	52	52	52	0	1
	TVV	52	52	52	0	1
kp-7	S	481.07	481.069	481.07	0	1
	V	481.07	481.069	481.07	0	1
	TVS	481.07	481.069	481.07	0	1
	TVV	481.07	481.069	481.07	0	1
kp-8	S	1025	1025	1025	0	2.64
	V	1025	1025	1025	0	1.91
	TVS	1025	1025	1025	0	1.67
	TVV	1025	1025	1025	0	1
kp-9	S	1024	1024	1024	0	2.86
	V	1024	1024	1024	0	1.08
	TVS	1024	1024	1024	0	1.02
	TVV	1024	1024	1024	0	1
kp-10	S	9767	9767	9767	0	5.31
	V	9767	9767	9767	0	3.14

	Ma	thematica	l Statistic	ian and	d Engine	ering Applications
						ISSN: 2326-9865
TVS	9767	9767	9767	0	4.02	
TVV	9767	9767	9767	0	2.35	

5.2.2. Medium size 0-1 KP

To further evaluate the performance of proposed time-varying transfer functions in medium size 0-1 Knapsack problem, ten medium size 0-1 KP instances (kp-11 to kp-20) are taken from [1, 19] in which the items are between 30 and 75. The description of these ten instances are described in Table S2 (supplementary file). Table 2 summarizes the comparison results for all the used different transfer functions.

Obviously, it is evident from Table 2 that the proposed time-varying transfer functions obtained the same best, worse, mean, and SD values as the standard transfer functions. From Tables 2, for the mean iterations, the proposed time-varying transfer functions are superior to the standard transfer functions on kp11 to kp20. This indicates that the proposed time-varying transfer functions is comparatively fast. For example, in kp20, the reduction in mean iteration of TVS function was 63.15% lower than that of S function. On the other hand, the reduction in mean iteration of TVV function was 57.94% lower than that of V function.

Further, it was noted that the v-shaped transfer functions are usually yielded the least iterations compared to S-shaped transfer functions. On the other hand, comparing between the two proposed transfer function, the required iterations to get optimal solution using TVV is less than of TVS for all the 0-1 Knapsack problems.

Instance	Transfer function	Best	Mean	Worst	SD	Mean iterations
kp-11	S	1437	1437	1437	0	8.15
	V	1437	1437	1437	0	4.24
	TVS	1437	1437	1437	0	5.06
	TVV	1437	1437	1437	0	2.27
kp-12	S	1689	1689	1689	0	9.51
	V	1689	1689	1689	0	3.94
	TVS	1689	1689	1689	0	4.83

Table 2: Results obtained by the transfer functions for the medium size 0-1 KP

_

							123
	TVV	1689	1689	1689	0	1.95	
kp-13	S	1821	1821	1821	0	41.08	
	V	1821	1821	1821	0	13.22	
	TVS	1821	1821	1821	0	28.65	
	TVV	1821	1821	1821	0	5.83	
kp-14	S	2033	2033	2033	0	29.57	
	V	2033	2033	2033	0	8.96	
	TVS	2033	2033	2033	0	19.35	
	TVV	2033	2033	2033	0	3.14	
kp-15	S	2440	2440	2440	0	35.19	
	V	2440	2440	2440	0	12.36	
	TVS	2440	2440	2440	0	22.28	
	TVV	2440	2440	2440	0	6.57	
kp-16	S	2651	2648.5	2643	2.86	698.4	
	V	2651	2651	2651	0	17.25	
	TVS	2651	2651	2651	0	475.61	
	TVV	2651	2651	2651	0	9.28	
kp-17	S	2917	2917	2917	0	195.73	
	V	2917	2917	2917	0	25.36	
	TVS	2917	2917	2917	0	75.31	
	TVV	2917	2917	2917	0	9.6	
kp-18	S	2818	2815.6	2794	1.73	894.1	
	V	2818	2818	2818	0	11.58	
	TVS	2818	2818	2818	0	528.7	
	TVV	2818	2818	2818	0	5.89	
kp-19	S	3223	3221.6	3219	0.93	784.5	
	V	3223	3223	3223	0	11.21	
	TVS	3223	3223	3223	0	5.82	
	TVV	3223	3223	3223	0	6.18	
kp-20	S	3614	3614	3614	0	589.7	
	V	3614	3614	3614	0	9.25	
	TVS	3614	3614	3614	0	217.3	
	TVV	3614	3614	3614	0	3.89	

5.2.3. High-dimensional size 0-1 KP

To further highlight the benefits of our proposed time-varying transfer functions, three cases have been investigated. The first case handles the uncorrelated problem (kp21 – kp25) where the weights w_i are uncorrelated with the profits c_i . Each w_i and c_i is randomly chosen from 5 to 20 and from 5 to 40, respectively. The second case handles the weakly correlated problem (kp26 – kp30). In this case, the weights w_i and the profits c_i can be expressed as follows: $w_i \in [5, 20]$ and $c_i \in [w_i - 5, w_i + 5]$. The third case handles the strongly correlated problem (kp31 – kp35). In this case, w_i and c_i can be calculated as: $w_i \in [5, 20]$ and $c_i \in [w_i + 5]$. The knapsack capacity for the kp-21-kp35 can be calculated as $M = 0.75 \times \sum_{i=1}^{n} w_i$. The dimension sizes varying from 100 to 2000 items. For all used transfer functions, the maximum iteration is set to 10000. Tables 3 – 5 reports the comparison results for all the used different transfer functions. Based on the obtained results, several points are concluded.

(1) It can be seen that the proposed time-varying transfer functions significantly outperform the standard transfer functions on all evaluation measures including the best, mean, worst, and standard deviations.

(2) As observed from the results, the proposed time-varying V-shaped transfer functions, TVV, can easily find the optimal values with small SD in all uncorrelated, weakly correlated, and strongly correlated problems.

(3) It is obvious that there is an improvement for searching the global optimal solution when using TVV compared to TVS. This leads to the performance dominance of the inverse tangent hyperbolic transfer function against the sigmoid transfer function.

The mean iteration values of time-varying V-shaped transfer functions, TVV, are obviously

(4) superior to S and V functions for all high-dimensional size problems.

Compared to the proposed time-varying V-shaped transfer functions, TVV is significantly improve the performance metrics with lower SD and mean iterations.

Instance	Dimonsion	Transfer	Dect	Maan	Worst	SD	Mean
Instance	Dimension	function	Dest	Mean	worst	50	iterations
kp-21	100	S	2126	2120.8	2116	15.6	1085
		V	2126	2126	2126	0	69
		TVS	2126	2126	2126	0	520
		TVV	2126	2126	2126	0	34
kp-22	500	S	11025	11017.5	11012	18.5	3025
		V	11025	11024.2	11023	1.46	127
		TVS	11025	11023.8	11022	2.18	1582
		TVV	11025	11025	11025	0	65
kp-23	1000	S	21963	21958.6	21950	17.1	6853
		V	21968	21967.1	21965	2.01	839
		TVS	21969	21966.9	21963	4.92	2976
		TVV	21969	21969	21969	0	491
kp-24	1500	S	32633	32626.2	32620	20.65	5628
		V	32639	32637.8	32636	2.61	1957
		TVS	32637	32635.4	32634	3.48	3273
		TVV	32640	32639.2	32638	0.34	978
kp-25	2000	S	43711	43705	43692	31.6	8854
		V	43725	43722.6	43720	5.22	3761
		TVS	43723	43720.7	43718	3.67	5842
		TVV	43726	43725	43722	1.93	2072

Table 3.	Comparison	results of	uncorrelated	high-dime	nsional	size 0-	_1]	КР
1 abic 5.	Comparison	icsuits of	unconclated	ingn-unic	insionai	SILC U	-11	171

Table 4: Comparison results of weakly correlated high-dimensional size 0-1 KP

Instance	Dimension	Transfer function	Best	Mean	Worst	SD	Mean iterations
kp-26	100	S	2015	2012.3	2009	4.29	926
		V	2015	2015	2015	0	48
		TVS	2015	2015	2015	0	352
		TVV	2015	2015	2015	0	25

							ISSN: 2326-98
kp-27	500	S	10450	10447.2	10446	6.41	1854
		V	10450	10449.3	10448	0.84	98
		TVS	10450	10447.8	10446	1.68	851
		TVV	10450	10450	10450	0	49
kp-28	1000	S	20856	20852.1	20849	6.85	3458
		V	20856	20854.6	20853	0.93	215
		TVS	20856	20854	20852	2.24	2851
		TVV	20856	20856	20856	0	137
kp-29	1500	S	31625	31620.3	31618	8.02	4183
		V	31630	31629.5	31626	1.85	1957
		TVS	31632	31628.7	31626	2.94	3273
		TVV	31632	31631.4	31631	0.26	895
kp-30	2000	S	42050	42046	42041	10.93	7794
		V	42055	42053.1	42049	2.04	2536
		TVS	42057	42051.6	42047	7.32	4582
		TVV	42057	42056	42054	1.34	1057

Mathematical Statistician and Engineering Applications ISSN: 2326-9865

Table 5:	Comparison	results of stro	ongly correla	ted high-dime	ensional s	size 0–1	1 KP

Instance	Dimension	Transfer	Dest	Maan		SD	Mean
		function	Best	Mean	vv orst		iterations
kp-31	100	S	2669	2669	2669	0	283
		V	2669	2669	2669	0	36
		TVS	2669	2669	2669	0	107
		TVV	2669	2669	2669	0	12
kp-32	500	S	13657	13654.1	13652	0.62	564
		V	13657	13657	13657	0	50
		TVS	13657	13657	13657	0	322
		TVV	13657	13657	13657	0	28
kp-33	1000	S	27164	27162.5	27159	1.29	921
		V	27166	27164.6	27164	0.90	127
		TVS	27166	27164.4	27162	0.12	619
		TVV	27166	27166	27166	0	88

			Mathematical Statisticial and Engineering Applica						
							ISSN: 2326-9	986	
kp-34	1500	S	40461	40459.8	40455	2.58	1766		
		V	40466	40465	40463	1.61	293		
		TVS	40468	40466.3	40464	1.58	835		
		TVV	40468	40468	40468	0	146		
kp-35	2000	S	42050	42048.9	42042	3.01	3905		
		V	42054	42053.1	42048	2.18	559		
		TVS	42057	42055	42051	2.33	2376		
		TVV	42057	42056.2	42055	0.89	381		

Mathematical Statistician and Engineering Applications 5

6- Conclusion

In this paper, a time-varying transfer function was proposed to improve the exploration and exploitation capability of the binary coyote optimization algorithm in solving the 0-1 KP problem efficiently. The experimental results show that the introduction of time-varying parameter in the transfer function can improve the performance of binary COA in solving small, medium, and highdimensional sizes 0-1 KP problems. Additionally, the experimental results show that proposed time-varying V-shaped transfer function outperforms the S-shaped transfer function in terms of the best, worse, mean, SD, and the mean iterations

References

- [1] Abdel-Basset, M., D. El-Shahat, and I. El-Henawy, Solving 0-1 knapsack problem by binary flower pollination algorithm. Neural Computing and Applications, 2018.
- [2] Abdel-Basset, M., D. El-Shahat, and A.K. Sangaiah, A modified nature inspired meta-heuristic whale optimization algorithm for solving 0-1 knapsack problem. International Journal of Machine Learning and Cybernetics, 2017.
- [3] Azad, M.A.K., A.M.A.C. Rocha, and E.M.G.P. Fernandes, A simplified binary artificial fish swarm algorithm for 0–1 quadratic knapsack problems. Journal of Computational and Applied Mathematics, 2014. 259: p. 897-904.
- [4] Beheshti, Z., S.M. Shamsuddin, and S.S. Yuhaniz, Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems. Journal of Global Optimization, 2012. **57**(2): p. 549-573.
- [5] Bhattacharjee, K.K. and S.P. Sarmah, Modified swarm intelligence based techniques for the knapsack problem. Applied Intelligence, 2016. 46(1): p. 158-179.

- [6] Cao, J., et al., A modified artificial bee colony approach for the 0-1 knapsack problem. Applied Intelligence, 2017. 48(6): p. 1582-1595.
- [7] Diab, A.A.Z., et al., Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules. IEEE Access, 2020. 8: p. 111102-111140.
- [8] Feng, Y., H. An, and X. Gao, *The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm*. Mathematics, 2018. 7(1): p. 17.
- [9] Feng, Y., K. Jia, and Y. He, An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems. Comput Intell Neurosci, 2014. 2014: p. 970456.
- [10] Feng, Y., et al., An effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0-1 knapsack problems. Comput Intell Neurosci, 2014. **2014**: p. 857254.
- [11] Feng, Y., G.-G. Wang, and L. Wang, *Solving randomized time-varying knapsack problems by a novel global firefly algorithm*. Engineering with Computers, 2017. **34**(3): p. 621-635.
- [12]He, Y., et al., *A novel binary artificial bee colony algorithm for the set-union knapsack problem.* Future Generation Computer Systems, 2018. **78**: p. 77-86.
- [13] Islam, M.J., X. Li, and Y. Mei, A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO. Applied Soft Computing, 2017. 59: p. 182-196.
- [14] Kong, X., et al., A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Systems with Applications, 2015. **42**(12): p. 5337-5355.
- [15] Mafarja, M., et al., *Binary dragonfly optimization for feature selection using time-varying transfer functions*. Knowledge-Based Systems, 2018. **161**: p. 185-204.
- [16] Mirjalili, S. and A. Lewis, *S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization*. Swarm and Evolutionary Computation, 2013. **9**: p. 1-14.
- [17] Pierezan, J. and L.d.S. Coelho, *Coyote Optimization Algorithm A new metaheuristic for global optimization problems*. IEEE Congress on Evolutionary Computation (CEC), 2018.
- [18] Pitt, W.C., P.W. Box, and F.F.J.E.M. Knowlton, *An individual-based model of canid populations: modelling territoriality and social structure*. 2003. **166**(1-2): p. 109-121.
- [19] Rizk-Allah, R.M. and A.E. Hassanien, *New binary bat algorithm for solving 0–1 knapsack problem*. Complex & Intelligent Systems, 2017. **4**(1): p. 31-53.
- [20] Sajedi, H. and S.F. Razavi, *DGSA: discrete gravitational search algorithm for solving knapsack problem*. Operational Research, 2016. **17**(2): p. 563-591.
- [21] Teng, X., H. Dong, and X. Zhou, Adaptive feature selection using v-shaped binary particle swarm optimization. PLoS One, 2017. 12(3): p. e0173907.

- [22] Tilahun, S.L. and J.M.T. Ngnotchouye, *Firefly algorithm for discrete optimization problems: A survey*. KSCE Journal of Civil Engineering, 2017. 21(2): p. 535-545.
- [23] Tuo, S., L. Yong, and F. Deng, A novel harmony search algorithm based on teaching-learning strategies for 0-1 knapsack problems. ScientificWorldJournal, 2014. **2014**: p. 637412.
- [24] Yang, X.-S., *Cuckoo Search and Firefly Algorithm_ Theory and Applications* Springer International Publishing Switzerland, 2014.
- [25] Zhao, J.F., et al., *Genetic Algorithm Bassed on Greedy Strategy in the 0-1 Knapsack problem*. Third international conference on genetic and evolutionary computing, 2009.
- [26] Zhou, Y., L. Li, and M. Ma, A Complex-valued Encoding Bat Algorithm for Solving 0–1 Knapsack Problem. Neural Processing Letters, 2015. **44**(2): p. 407-430.