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Abstract

Schwarz information criterion (SIC) is a popular tool to select the best variables

in regression data sets. However, SIC defined using an unbounded estimator (Least

Squares (LS)) which is very sensitive to the presence of outlying observations, espe-

cially bad leverage points. Thus, robust variable selection based on SIC for linear

regression models is in need. This paper study the robust properties of SIC derives

its influence function and proposes robust SIC based on the MM -estimation scale,

aim to produce criterion which is effective in selecting accurate models in the pres-

ence of vertical outliers and high leverage points. The advantages of the proposed

robust SIC is demonstrated through simulation study and analysis of a real data

set.

Keywords: Robust variable selection, robust regression, Influence function,

Schwarz information criterion.

1 Introduction

This paper considers the problem of robust and selection variables for linear regression
models. In modern regression data sets, outliers are commonly encountered in applica-
tions, which may appear either in response variables (vertical outliers) or in the predictors
(leverage points). In this type of data set, it is difficult to select the best variables using
criteria based on the classical estimator (LS). Traditional selection criteria have a bad
behavior with regards to robustness when vertical outliers in the data sets (see [1] and
[2]). Moreover, they cannot be selected appropriate models for data with leverage points.
Thus, robust variable selection methods for regression data are in need. Robust variable
selection is one of the important topics in regression modeling; it gains the interest of
many authors. For an instant, robust Mallow’s Cp (RCp) proposed by [5], robust Akaike
information criterion (RAIC) proposed [6] and robust R-squared proposed by [7].
The Bayesian information criterion (BIC) proposed by [3] is one of the commonly used
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criteria in model selection in linear regression. For a more general situation, [4] uses a
Bayesian approach with a penalty term of the form (p log(n))/n, where n is the sample
size, and p is the model dimension. Consider a linear regression model of the form

yi = µ+ XT
i β + εi, (1)

where µ is the intercept parameter, Xi = (xi1, ...,xip)
T is a vector contains p explanatory

variables, yi is the response variable, β is a vector of p parameters and εi is the error
component that is independent and identically distributed (iid), with mean 0 and variance
σ2. The classical SIC based on LS estimate is defined as

SICLS = log (SSEp/n) + (p log(n)) /n, (2)

where SSEp =
∑n

i=1 r
2
i , is the sum of squares error for sub model with p variables and

the residual ri = yi − µ̂LS −XT
i β̂LS. Therefore, models with values of SICLS small will

be preferred. Since the LS estimator is vulnerable in the presence of outliers, it is not
surprising that SICLS inherits this problem. However, a robust version of SIC based on
M -estimators ([8]) proposed by [9], in this method replaced the squared residuals with a
robust function ρ and subsequently derived, SICM =

∑n
i=1 ρ (ri/σ)+(p log(n)) /n , where

ρ is a known function. Unfortunately, this criterion is not robust concerning contamina-
tions in the predictor variables.
[10] proposed a robust version of SIC based on Least Trimmed Squares estimator (LTS)
([11]), named SICLTS criterion. In a simulation study, [10] show that the SICLTS can be
robust for contamination in both the response and predictor variables. [10] discussed the
influence of outliers on SIC criterion, but the LTS is highly inefficiency estimator when
all the observations satisfy the regression model with normal errors.
[12] purpose MM -estimator of regression which having simultaneously, high breakdown
point and high efficiency under normal errors; this estimator robust in a variety of contam-
ination scenarios. However, MM -estimation is a combination of high breakdown value
estimation and efficient estimation. MM -estimator does not use in SIC criterion for vari-
able selection aim. The purpose of this paper is to present SICMM criterion for a robust
variable selection criterion based on MM -scale estimates. The robust SICMM allows to
choose the best models, which fit the majority of the data by taking into account the
presence of outliers and possible departures from the normality assumption on the error
distribution.
The paper is organized as follows: Section 2 reviews the definition and some of the most
important properties of MM -estimator in regression models. Section 3 define SICMM

criterion, study their robust properties, and describe an algorithm to compute SICMM

criterion. A simulation is conducted to study the performance of the proposed robust
criterion in Section 4. Section 5 applies the robust criterion to the real data set. Finally,
the concluding remark is present in Section 6.
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2 MM-estimates

MM -estimators proposed by [12] has become increasingly popular and one of the most
commonly employed robust regression techniques. The MM -estimators reach a high level
of robustness as well as high efficiency, by combining the properties of M -estimators ([8])
and S-estimators ([13]). The MM -estimators defined in three stages as follows:
Stage 1: take an initial estimate β̂0 of β̂ in Equation ( 1) with a high breakdown point,
possibly 0.5. The LTS estimation can be selected of β̂0.
Stage 2: compute the residuals, ri = yi− µ̂0− β̂0X

T
i and compute the M -scale σ(ri(β̂0)),

defined as the value of σ which is the solution of

1

n

n∑
i=1

ρ0

(
(ri(β̂0)

)
/σ) = b,

where b is constant defined by EΦ

(
ρ(ri(β̂0)

)
= b , where Φ stands for the standard normal

distribution. Using a function ρ0 where satisfying following assumption (A1): ρ0(0) = 0,
ρ0(−u) = ρ0(u), for 0 ≤ u ≤ v implies ρ0(u) ≤ ρ0(v) , ρ0 is continuous , if a = sup ρ0(u)
, then 0 ≤ a ≤ ∞, if ρ0(u) < a and 0 ≤ u < v , then ρ0(u) ≤ ρ0(v). Using a constant b
such that b/a = 0.5, this implies that this scale estimate has breakdown point equal to
0.5.
Stage 3: Let ρ1 be another function satisfying: assumption (A1), ρ1(u) ≤ ρ0(u) and
sup ρ1(u) = sup ρ0(u) = a. However, if ψ1 = ρ′1, then the MM -estimate (β̂MM) is defined
as any solution of

∑n
i=1 ψ1 (ri/σ) Xi = 0,. β̂MM obtained with iteratively reweighted

least squares (IRWLS). [12] proved that MM -estimators are strongly consistent for β̂0 ,
besides, MM -estimator has simultaneously the two following properties:

1. Normal asymptotic efficiency.

2. Breakdown point greater than or equal to that of the initial estimator.

However, MM -estimator have the highest possible breakdown point equal to 50% (see
[14]).

3 SICMM criterion for variable selection in linear re-

gression

This section discusses the possibility of extending the idea of using robust MM -estimators
in the SIC. The SIC method is expressed in terms of the variance, which are computed
in LS or robust method such as M - or LTS- estimation. [10] showed by derived the
influence function of the SIC criterion that, the robustness of the SIC criterion will
depend heavily on the robustness of the scale. In this study, instead of working with
theses scales, a high breakdown point, and efficient MM -estimators for the SIC criterion
will use. This, in turn, reduces the effect of outliers and leverage points. Given scale
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Table 1: The simulated data set.
Xi yi
-1.2 1.2
-1.15 1.35
-1.1 1.02
-1 0.95

-0.95 1.05
-0.9 0.73
-0.85 0.91
-0.8 0.85
x10 y10
0.8 -0.88
0.85 -0.61
0.9 -0.81
0.95 -0.97

1 -1.18
1.05 -1.08
1.1 -0.99
1.15 -1.11
1.2 -1.14

estimate of errors defined by S = SSEp/(n − p), with ri = yi − µ̂MM − XT
i β̂MM , then

SICMM criterion define as

SICMM = log

(
(n− p)S2

n

)
+
p log(n)

n
. (3)

The small value of SICMM reveals that the explanatory variables adequately explain the
distribution of y. Following same as experiment in [10], a set of independent random
uniform variable X on [-2,2] was generated according to the simple regression model,
yi = Xi + εi , i = 1, ..., 19, where, εi are iid, normally distributed with expectation 0
and variance (0.12), the data has been presented in Table 1. The purpose of using this
experiment to show the influence of an outlier on SICMM , this is illustrated through the
presence of outliers in the Y -direction (vertical outlier) or in the X-direction (leverage
point). For this, a point with coordinates (0, y10) is added, where the values of y range
between (-1.5,3). A similar approach is performed for leverage points, that is, replacing
the value x with (0, x10), Figure 1 shows the situations of y10 and x10.
Figure 2 shows the results where the SICMM shows a very robust behavior; there is only
a slight loss in criteria, becoming constant when the outlier moves further away from the
origin. Based on these results, it is evident that SICMM show robust behavior in the
presence of verticals or leverage point. In Section 4 simulation study and real data set
illustrations clearly behavior of the proposed SICMM .

3.1 Properties of the proposed robust SICMM criterion

3.1.1 Influence function

Consider the linear regression model in Equation ( 1) and assume that the distribution of
errors are satisfying Fσ(X) = F0(X/σ), where σ is the residual scale parameter, and F0

is symmetric, with a strictly positive density function.

Let X and y be independent stochastic variables with distribution H. The functional
T is Fisher-consistent for the parameters (µ,β) at the model distribution H, which is as
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Figure 1: Data and positions for y10 (left) and x10 (right).

Figure 2: Effect of adding one observation y10 (left) and x10 (right) to the values of
SICMM .

follows:

T (H) =

[
a(H)
b(H)

]
=

[
µ
β

]
. (4)

For a Fisher-consistent scale estimator, T (Fσ) = σ, for all σ > 0. [14] defined the influence
function of T at the distribution F as,

IF ((X, y), T,H) = lim
ε→0

T ((1− ε)H + ε∆(X,y))− T (H)

ε
=

∂

∂ε
(T (∆(X,y))). (5)

where T (H) is the function defined in the solution of the objective model and ∆(X,y) is
the distribution contains outliers. The influence function measures the effect of possible
outliers in the SICMM criterion. It gives the amount of change in the model selection cri-
terion estimator, caused by an infinitesimal amount of contamination at (X, y). Theorem
1 in [10] derived the influence function of SIC based on scale estimates S as follows:

IF ((X, y), SICS, H) = 2n/(n− p)IF (ri/σS, σ̂
2
S, F0), (6)

which is bounded in both Y and X directions, as IF (ri/σ, σ̂
2
S, F0) is bounded. Follows

immediately from ( 6), the influence function of SICMM is

IF ((X, y), SICMM , H) = 2n/(n− p)ψ1(ri)Xiσ
2
0(B(ψ1, F0)V )−1, (7)
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where V = EG0(XiX
T
i ) with G0 has second moment, B(ψ1, F0) = EF

(
ψ1( ri

σ0
)
)

and F is

the distribution of the error ri. Whereas, the influence function for the proposed criterion
is bounded and note that a large zone of vertical outliers have zero influence, even when
they are bad leverage points.

3.1.2 The gross-error sensitivity of SICMM criterion:

[15] defined the gross-error sensitivity of an estimator T at a distribution F by

γ? = sup
X
|IF (X;T, F )|.

By taking the supreme over all X for which the IF (X;T, F ) exists, gross-error sensitiv-
ity measures the worst possible influence on an estimator by an arbitrary infinitesimal
contaminant. If the gross-error sensitivity is unbounded, γ? = ∞, then the estimator is
completely intolerant of outliers; a single outlier can ruin the estimator.
According to this definition, the gross-error sensitivity of the SICMM criterion is defined
as the supreme influence that observation can have. If β̂MM = 0, then IF = 0, so it is
assumed that β̂MM 6= 0 then, if X tend to ∞, the gross-error sensitivity of will turn into:

γ?(SICMM , F ) = sup(X, y)IF ((X, y), SICMM , H) = 2n(n− p)EF0 [ρ1(ε)ε] · ρ1(∞). (8)

Briefly, if X tends to infinity, both LS and M -estimators gain ρ function yields high gross-
error sensitivity. On the other hand, MM -estimator compute with ρ function which yields
the lowest γ?.

4 Simulation study

4.1 Settings

A simulation study was carried out to investigate the performance of the proposed robust
SICMM criterion. Furthermore, to compare this criterion with existing robust criteria,
SICLTS and SICM , and classical SICLS criterion. For simplicity, considering the case
when p = 3, hence, the following set of parameters have to be estimated: (µ, β1, β2, β3)
and the set of different correlated random errors εi from the independent Normal distri-
bution with mean 0 and variances σ2 = 0.7.
The regression variables xi1, xi2 and xi3 are generated in two different cases:
Case 1: independent uniform random variables on [-1, 1] .
Case 2: correlated multivariate normal distribution, N(0,Σr), for some r ≥ 0, the vari-
ance matrix of the variables is defined by Σr,i,j = r|i−j| for 1 ≤ i, j ≤ 3, r = 0.03, 0.1, 0.5.
Then the true model is given by: yi = µ + xi1 + xi2 + εi . We then introduce vertical
and leverage outliers into the data such that the percentages of contamination used are
c%= 10%, 20%, 30% and 40% from two different sample sizes, namely n= 50 and 100
. To investigate the robustness of the criteria against vertical and leverage outliers, the
following scenarios were considered:
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(a) no contamination,
(b) vertical outliers (outliers in some yi only),
(c) good leverage points (outliers in the yi and X ),
(d) bad leverage points (outliers in some X only).
For vertical outliers, randomly generated different percentage of outliers from N(50, 0.12)
for each of the simulated cases. For a good leverage point, considered the different percent-
ages of outliers on the variables x1 and x2 are generated from N(100, 0.52) distribution,
then generated y. For bad leverage points, different percentages of outliers on the vari-
ables x1 and x2 have generated from N(100, 0.52) distribution.
The performance of the criteria was then determined by assessing summary of the per-
centage over a simulation of selected following models : (i) correct fit (true model); (ii)
over fit (models containing all the variables in the true model plus other variables that
are redundant x1,x2, and x3); (iii) under fit (models with only a strict of the variables in
true model); (iv) wrong fit (the model that are neither of the above). The simulations
were performed by the statistical software R based on s = 1000 Monte Carlo trials, the
function rlm and ltsreg from the library (robust) was used for M - and LTS-estimation,
respectively, and function lmrob from library (robustbase) used for MM -estimation.

4.2 Results and discussion

First, consider the data without outliers, Table(2) shows detailed simulation results for two
cases of simulation setting with all different SIC criterion. The proposed SICMM selects
nearly 70% to 80% proportion of correct fit models, while the classical SICLS performed
better compared to robust SIC with a high percentage (94% t0 96%), However, as the
percentage of outliers increased (see, Table (3)), SICLS selected a larger proportion of
wrong fit models than other criteria, this holds for both cases 1 and 2. While the SICM
continues to yield a higher percentage of correct fit and these results hold as the percentage
of vertical outliers increased to 20%, then it tends to under fit. Thus, SICM method
ignored some of the important variables in the model. A higher proportion of over fit and
correct fit models are select by SICLTS. As expected, the percentage of the true model in
all cases of SICMM was always large in the presence of vertical outliers, this result holds
for both cases and with a high contamination level of vertical outliers. Table (4) Shows
the situation where the data was contaminated with good leverage points, the results it
can be concluded that good leverage points do not have much effect on all different SIC
criteria. The presence of bad leverage points changes the picture dramatically. It can be
observed from Tables (5) SICLS and SICM select a higher proportion of wrong fit than
the SIC based on LTS-estimators, SICLTS tended to produce either correct fit or over
fit model and the proposed criterion performed better when the bad leverage points are
presents in the data.
In general, robust SIC criteria with M - and LTS-estimation are robust in the presence
of outliers in the response variable. However, in the presence of bad leverage point, the
value of these criteria will be affected and differs significantly from the true fit as the
percentage of bad leverage point increases. But, SICMM criterion less affected in all
cases in the presence of outliers in X and Y -directions.

Mathematical Statistician and Engineering Applications 
ISSN: 2326-9865 

https://doi.org/10.17762/msea.v71i1.5

Vol. 71 No. 1 (2022) 
http://philstat.org.ph

60



Table 2: Percentage of selected models from different criteria for data with no contami-
nation.

n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS
Case 1 Correct fit 50 70.6 36.3 55.6 94.8 100 79.3 48.3 64.1 96.6

Under fit 4.2 2.8 10.0 0.1 0.2 0.1 2.7 0.0
Over fit 23.6 57.1 27.1 5.1 20.5 50.3 31.0 3.4

Wrong fit 1.6 3.8 7.3 0.0 0.0 1.3 2.2 0.0
Case 2, r=0.03 Correct fit 50 75.2 39.8 63.8 94 100 78.7 46.1 66.5 97.1

Under fit 0.0 0.1 0.4 0 0.0 0.0 0.0 0.0
Over fit 24.6 59.8 35.1 6 21.3 53.9 33.5 2.9

Wrong fit 0.2 0.3 0.7 0 0.0 0.0 0.0 0.0
Case 2, r=0.1 Correct fit 50 75.8 36.9 64.0 93.6 100 78.9 49.1 65.8 97.7

Under fit 0.2 0.4 0.9 0.0 0.0 0.0 0.0 0.0
Over fit 24.0 62.6 34.6 6.4 21.1 50.9 34.2 2.3

Wrong fit 0.0 0.1 0.5 0.0 0.0 0.0 0.0 0.0
Case 2, r=0.5 Correct fit 50 71.8 38.2 62.5 94.5 100 81.0 47.7 68.8 96.9

Under fit 0.3 0.0 2.0 0.0 0.1 0.2 0.2 0.0
Over fit 27.4 60.8 33.5 5.5 18.9 51.9 30.5 3.1

Wrong fit 0.5 1.0 2.0 0.0 0.0 0.2 0.5 0.0

5 Practical Example

Hawkins-Bradu-Kass Data: This data has been generated by [16] for illustrating some
of the merits of robust technique, the full data set is given in Table (6). They pointed
out that the first 10 observations are bad leverage points; i.e. the first 10 observations
are outliers and the next 4 observations are good leverage points. Figure ( 3) showed the
regression plot of yi via different variables.
Table (7) shows the values of different criteria for Hawkins-Bradu-Kass data for different
set of variables, where the small values of criteria are considered to show the best model.
SICMM agree on the importance of all three variables, which appears in a low value of
SICMM . And the values of the other criteria are small with under fit values.

Figure 3: The regression plot of y via Hawkins, Bradu, and Kass

6 Conclusion

In this article the SIC criterion considered to be used with a high breakdown, efficient,
and bounded influence scale estimators. The influence function of the criterion for the
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linear regression model based on the MM -scale approach was discussed. The simula-
tion study and the application on real data set suggest that, at least for the scenarios
considered, the proposed SICMM criterion provide the best select the correct model for
uncontaminated data sets, and stability in the presence of outliers.
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Table 3: Percentage of selected models from different criteria for data with vertical out-
liers.

5% verticals n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS
Case 1 50 Correct fit 72.9 39.3 53.7 0.8 100 82.6 49.6 64.3 0.5

Under fit 5.3 3.2 11.9 67.6 0.2 0.4 3.1 69.3
Over fit 19.9 54.4 27.1 0.1 17.1 49.3 31.0 0.0

Wrong fit 1.9 3.1 7.3 31.5 0.1 0.7 1.6 30.2
Case 2, r=0.03 50 Correct fit 78.1 38.4 62.7 0.7 100 80.3 48.2 67.4 1.2

Under fit 0.1 0.1 1.2 70.6 0.0 0.0 0.0 77.7
Over fit 21.8 61.2 35.5 0.2 19.7 51.8 32.6 0.0

Wrong fit 0.0 0.3 0.6 28.5 0.0 0.0 0.0 21.1
Case 2, r=0.1 50 Correct fit 78.6 40.8 65.2 1.2 100 83 47.7 66.8 1.2

Under fit 0.0 0.1 0.5 71.4 0 0.0 0.0 77.5
Over fit 21.4 59.1 34.0 0.3 17 52.3 33.2 0.0

Wrong fit 0.0 0.0 0.3 27.1 0 0.0 0.0 21.3
Case 2, r=0.5 50 Correct fit 79.2 41.1 61.4 1.4 100 82.4 49.9 67.3 0.4

Under fit 0.5 0.6 1.9 70.9 0.0 0.0 0.0 78.8
Over fit 19.8 57.6 33.8 0.1 17.6 50.1 32.7 0.0

Wrong fit 0.5 0.7 2.9 27.6 0.0 0.0 0.0 20.8
10% verticals n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 77.8 40.7 57.3 0.8 100 82.2 51.6 65.6 0.3
Under fit 3.2 3.4 9.1 66.6 0.0 0.8 1.9 67.9
Over fit 18.0 52.1 27.9 0.0 17.7 47.1 30.7 0.0

Wrong fit 1.0 3.8 5.7 32.6 0.1 0.5 1.8 31.8
Case 2, r=0.03 50 Correct fit 83.4 44.3 64.6 0.8 100 84.5 52 66.5 0.8

Under fit 0.0 0.1 0.6 69.0 0.0 0 0.0 68.1
Over fit 16.6 55.4 34.6 0.0 15.5 48 33.5 0.0

Wrong fit 0.0 0.2 0.2 30.2 0.0 0 0.0 31.1
Case 2, r=0.1 50 Correct fit 80.7 41.4 64.8 0.9 100 85.3 55.1 67.2 0.3

Under fit 0.2 0.3 0.9 68.3 0.0 0.0 0.0 73.4
Over fit 19.0 58.0 33.6 0.2 14.7 44.9 32.8 0.1

Wrong fit 0.1 0.3 0.7 30.6 0.0 0.0 0.0 26.2
Case 2, r=0.5 50 Correct fit 80.0 42.4 62.7 0.7 100 85 51.2 68.7 0.7

Under fit 0.1 0.4 1.9 67.0 0 0.0 0.1 72.1
Over fit 19.8 56.2 33.4 0.0 15 48.7 31.1 0.0

Wrong fit 0.1 1.0 2.0 32.3 0 0.1 0.1 27.2
20% verticals n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 85.5 48.0 54.9 0.7 100 88.5 58.0 66.8 0.6
Under fit 4.0 4.9 13.4 64.8 0.0 0.1 3.5 69.0
Over fit 9.9 43.6 22.8 0.0 11.4 41.1 28.1 0.0

Wrong fit 0.6 3.5 8.9 34.5 0.1 0.8 1.6 30.4
Case 2, r=0.03 50 Correct fit 88.1 51.2 67.6 0.4 100 90.4 59.6 66.7 0.3

Under fit 0.0 0.1 1.1 63.0 0.0 0.0 0.0 69.6
Over fit 11.8 48.5 30.2 0.1 9.6 40.4 33.3 0.0

Wrong fit 0.1 0.2 1.1 36.5 0.0 0.0 0.0 30.1
Case 2, r=0.1 50 Correct fit 86.3 51.0 67.8 0.4 100 89.5 63 68.1 0.5

Under fit 0.0 0.3 1.8 68.5 0.0 0 0.0 69.2
Over fit 13.6 48.6 29.4 0.1 10.5 37 31.8 0.0

Wrong fit 0.1 0.1 1.0 31.0 0.0 0 0.1 30.3
Case 2, r=0.5 50 Correct fit 86.2 49.9 63.9 0.7 100 89.5 62.6 67.7 0.1

Under fit 0.2 0.5 3.4 64.6 0.0 0.0 0.3 69.4
Over fit 13.3 48.6 29.4 0.1 10.5 37.3 31.9 0.0

Wrong fit 0.3 1.0 3.3 34.6 0.0 0.1 0.1 30.5
30% vertical n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 89.2 57.0 4.7 0.2 100 94.1 69.7 8.3 0.3
Under fit 3.0 4.4 60.0 66.0 0.1 0.4 60.3 68.9
Over fit 7.0 37.0 1.7 0.0 5.8 29.8 0.7 0.0

Wrong fit 0.8 1.6 33.6 33.8 0.0 0.1 30.7 30.8
Case 2, r=0.03 50 Correct fit 92.7 61.2 7.7 0.2 100 93.7 71.7 15.6 0.4

Under fit 0.0 0.1 63.3 67.0 0.0 0.0 58.8 68.1
Over fit 7.3 38.7 1.7 0.1 6.3 28.3 2.2 0.0

Wrong fit 0.0 0.0 27.3 32.7 0.0 0.0 23.4 31.5
Case 2, r=0.1 50 Correct fit 93.1 59.8 8.3 0.6 100 94 69.8 18.2 0.0

Under fit 0.0 0.1 60.2 66.4 0 0.0 57.8 67.2
Over fit 6.9 40.0 1.3 0.0 6 30.2 1.0 0.0

Wrong fit 0.0 0.1 30.2 33.0 0 0.0 23.0 32.8
Case 2, r=0.5 50 Correct fit 91.6 58.3 7.5 0.4 100 94.4 73.1 15.4 0.2

Under fit 0.3 0.3 65.5 63.5 0.0 0.0 60.5 66.1
Over fit 8.0 40.7 1.6 0.2 5.6 26.9 1.4 0.1

Wrong fit 0.1 0.7 25.4 35.9 0.0 0.0 22.7 33.6
40% verticals n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 86.6 69.4 5.3 0.4 100 97.1 81.7 1.1 0.1
Under fit 10.9 5.2 61.9 68.0 0.1 0.2 69.1 67.5
Over fit 1.8 24.4 3.6 0.0 2.8 18.1 0.9 0.0

Wrong fit 0.7 1.0 29.2 31.6 0.0 0.0 28.9 32.4
Case 2, r=0.03 50 Correct fit 97.3 74.0 2.6 0.1 100 98.4 82.7 3.8 0.1

Under fit 0.0 0.1 68.2 66.1 0.0 0.0 77.6 67.4
Over fit 2.7 25.9 2.9 0.0 1.6 17.3 0.5 0.0

Wrong fit 0.0 0.0 26.3 33.8 0.0 0.0 18.1 32.5
Case 2, r=0.1 50 Correct fit 98.8 76.2 3.8 0.8 100 97.9 81.7 2.4 0.2

Under fit 0.0 0.1 67.8 65.2 0.0 0.0 77.0 67.3
Over fit 1.2 23.7 2.4 0.0 2.1 18.3 0.3 0.0

Wrong fit 0.0 0.0 26.0 34.0 0.0 0.0 20.3 32.5
Case 2, r=0.5 50 Correct fit 98.1 74.9 3.4 1.2 100 98.1 82.5 2.0 0.9

Under fit 0.1 0.4 68.8 64.8 0.0 0.0 78.7 67.6
Over fit 1.8 24.5 3.6 0.3 1.9 17.5 1.0 0.0

Wrong fit 0.0 0.2 24.2 33.7 0.0 0.0 18.3 31.5
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Table 4: Percentage of selected models from different criteria for data with good leverage
points

5% good leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS
Case 1 50 Correct fit 93.4 67.5 76.0 100 100 97.3 78.1 84.9 100

Under fit 2.1 2.6 3.4 0 0.2 0.2 0.2 0
Over fit 3.9 26.9 19.0 0 2.5 21.2 14.7 0

Wrong fit 0.6 3.0 1.6 0 0.0 0.5 0.2 0
Case 2, r=0.03 50 Correct fit 96.0 69.4 78.9 100 100 97.4 82.5 87.3 100

Under fit 0.0 0.6 1.0 0 0.0 0.0 0.1 0
Over fit 3.8 29.1 19.7 0 2.6 17.5 12.5 0

Wrong fit 0.2 0.9 0.4 0 0.0 0.0 0.1 0
Case 2, r=0.1 50 Correct fit 94.6 70.9 76.2 100 100 97.5 79.1 88.3 100

Under fit 0.1 0.3 1.6 0 0.0 0.0 0.0 0
Over fit 4.8 27.6 21.0 0 2.5 20.9 11.7 0

Wrong fit 0.5 1.2 1.2 0 0.0 0.0 0.0 0
Case 2, r=0.5 50 Correct fit 94.0 70.7 78.6 100 100 97.6 76.9 85.6 100

Under fit 0.3 0.4 1.3 0 0.0 0.0 0.0 0
Over fit 5.3 28.1 19.6 0 2.4 23.1 14.4 0

Wrong fit 0.4 0.8 0.5 0 0.0 0.0 0.0 0
10% good leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 97.2 81.2 86.0 100 100 100 94.0 96.4 100
Under fit 0.8 2.3 2.5 0 0 0.4 0.6 0
Over fit 1.5 14.1 9.4 0 0 5.6 2.9 0

Wrong fit 0.5 2.4 2.1 0 0 0.0 0.1 0
Case 2, r=0.03 50 Correct fit 98.7 85.6 90.2 100 100 99.7 94.3 95.9 100

Under fit 0.0 0.0 0.0 0 0.0 0.0 0.0 0
Over fit 1.3 14.4 9.8 0 0.3 5.7 4.1 0

Wrong fit 0.0 0.0 0.0 0 0.0 0.0 0.0 0
Case 2, r=0.1 50 Correct fit 98.5 83.8 90.1 100 100 100 94.8 96.9 100

Under fit 0.0 0.0 0.0 0 0 0.0 0.0 0
Over fit 1.5 16.1 9.8 0 0 5.2 3.1 0

Wrong fit 0.0 0.1 0.1 0 0 0.0 0.0 0
Case 2, r=0.5 50 Correct fit 98.0 82.6 88.9 100 100 99.9 94 95.1 100

Under fit 0.3 0.5 1.1 0 0.0 0 0.1 0
Over fit 1.5 15.7 9.1 0 0.1 6 4.8 0

Wrong fit 0.2 1.2 0.9 0 0.0 0 0.0 0
20% good leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 98.6 94.7 92.8 100 100 99.9 94 95.1 100
Under fit 0.8 1.2 3.7 0 0.0 0 0.1 0
Over fit 0.1 1.1 0.6 0 0.1 6 4.8 0

Wrong fit 0.5 3.0 2.9 0 0.0 0 0.0 0
Case 2, r=0.03 50 Correct fit 100 98.7 99.3 100 100 100 99.9 100 100

Under fit 0 0.0 0.2 0 0 0.0 0 0
Over fit 0 1.2 0.5 0 0 0.1 0 0

Wrong fit 0 0.1 0.0 0 0 0.0 0 0
Case 2, r=0.1 50 Correct fit 100 98.5 99.2 100 100 100 99.9 100 100

Under fit 0 0.0 0.1 0 0 0.0 0 0
Over fit 0 1.4 0.4 0 0 0.1 0 0

Wrong fit 0 0.1 0.3 0 0 0.0 0 0
Case 2, r=0.5 50 Correct fit 99.8 97.3 97.2 100 100 100 99.7 99.9 100

Under fit 0.1 0.5 1.2 0 0 0.0 0.1 0
Over fit 0.0 1.1 0.2 0 0 0.1 0.0 0

Wrong fit 0.1 1.1 1.4 0 0 0.2 0.0 0
30% good leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 99.0 96.9 94.3 100 100 100 99.8 99.2 100
Under fit 0.5 0.6 2.4 0 0.1 0.4 0
Over fit 0.0 0.1 0.0 0 0.0 0.0 0

Wrong fit 0.5 2.4 3.3 0 0 0.1 0.4 0
Case 2, r=0.03 50 Correct fit 100 99.9 99.5 100 100 100 100 100 100

Under fit 0 0.0 0.0 0 0 0 0 0
Over fit 0 0.0 0.0 0 0 0 0 0

Wrong fit 0 0.1 0.5 0 0 0 0 0
Case 2, r=0.1 50 Correct fit 100 99.4 99.2 100 100 100 100 100 100

Under fit 0 0.1 0.1 0 0 0 0 0
Over fit 0 0.1 0.0 0 0 0 0 0

Wrong fit 0 0.4 0.7 0 0 0 0 0
Case 2, r=0.5 50 Correct fit 99.8 97.9 95.9 100 100 100 99.7 99.4 100

Under fit 0.0 0.1 2.3 0 0 0.1 0.3 0
Over fit 0.0 0.0 0.0 0 0 0.0 0.0 0

Wrong fit 0.2 2.0 1.8 0 0 0.2 0.3 0
40% good leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 50 Correct fit 98.8 96.0 93.5 100 100 100 99.7 99.0 100
Under fit 0.6 1.2 4.1 0 0 0.0 0.7 0
Over fit 0.0 0.0 0.0 0 0 0.0 0.0 0

Wrong fit 0.6 2.8 2.4 0 0 0.3 0.3 0
Case 2, r=0.03 50 Correct fit 99.8 99.4 98 100 100 100 100 100 100

Under fit 0.1 0.1 1 0 0 0 0 0
Over fit 0.0 0.0 0 0 0 0 0 0

Wrong fit 0.1 0.5 1 0 0 0 0 0
Case 2, r=0.1 50 Correct fit 99.8 99.3 98.9 100 100 100 100 99.8 100

Under fit 0.1 0.4 0.4 0 0 0 0.1 0
Over fit 0.0 0.0 0.0 0 0 0 0.0 0

Wrong fit 0.1 0.3 0.7 0 0 0 0.1 0
Case 2, r=0.5 50 Correct fit 98.9 97.3 94.9 100 100 100 100 99.9 100

Under fit 0.5 0.7 2.8 0 0 0 0.1 0
Over fit 0.0 0.0 0.0 0 0 0 0.0 0

Wrong fit 0.6 2.0 2.3 0 0 0 0.0 0
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Table 5: Percentage of selected models from different criteria for data with bad leverage
points

5% bad leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS
Case 1 Correct fit 50 71.8 36.3 19.6 1.8 100 80.9 47.1 15.2 1.1

Under fit 3.8 3.0 30.7 49.0 0.0 0.8 35.2 49.2
Over fit 21.2 55.9 9.3 0.0 19.0 51.6 8.4 0.0

Wrong fit 3.2 4.8 40.4 49.2 0.1 0.5 41.2 49.7
Case 2, r=0.03 Correct fit 50 75.5 39.6 17.1 4.0 100 83.2 51.4 19.4 3.7

Under fit 0.1 0.3 32.4 50.9 0.0 0.0 31.7 48.3
Over fit 24.4 60.1 8.7 0.1 16.8 48.6 7.8 0.0

Wrong fit 0.0 0.0 41.8 45.0 0.0 0.0 41.1 48.0
Case 2, r=0.1 Correct fit 50 77.5 40.1 18.6 4.0 100 79.9 50.6 14.4 2.7

Under fit 0.0 0.2 31.5 47.0 0.0 0.0 35.4 45.0
Over fit 22.5 59.7 9.9 0.1 20.1 49.4 9.7 0.1

Wrong fit 0.0 0.0 40.0 48.9 0.0 0.0 40.5 52.2
Case 2, r=0.5 Correct fit 50 80.1 37.9 9.5 0.4 100 80.5 50.4 6.1 0.1

Under fit 0.4 0.6 16.6 2.9 0.0 0.0 12.2 0.4
Over fit 19.5 60.9 19.4 4.1 19.5 49.6 22.6 4.9

Wrong fit 0.0 0.6 54.5 92.6 0.0 0.0 59.1 94.6
10% bad leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 Correct fit 50 72.8 41.1 17.1 2.0 100 85.5 53.2 15.8 0.5
Under fit 4.5 3.7 31.6 49.2 0.3 0.9 34.0 49.1
Over fit 18.5 50.4 7.6 0.0 14.1 45.2 7.1 0.1

Wrong fit 4.2 4.8 43.7 48.8 0.1 0.7 43.1 50.3
Case 2, r=0.03 Correct fit 50 80.7 44.6 16.7 4.7 100 84 54.3 15.8 2.7

Under fit 0.1 0.2 32.4 47.7 0 0.0 34.0 49.8
Over fit 19.0 54.9 8.7 0.2 16 45.7 7.2 0.0

Wrong fit 0.2 0.3 42.2 47.4 0 0.0 43.0 47.5
Case 2, r=0.1 Correct fit 50 78.5 42.3 18.2 5.1 100 84.5 53.7 14.6 3.0

Under fit 0.1 0.2 31.4 44.3 0.0 0.0 31.8 45.3
Over fit 21.3 57.1 7.1 0.1 15.5 46.3 8.8 0.0

Wrong fit 0.1 0.4 43.3 50.5 0.0 0.0 44.8 51.7
Case 2, r=0.5 Correct fit 50 80.7 42.6 9.1 0.7 100 81.8 52.6 5.2 0.0

Under fit 0.6 0.7 16.6 2.8 0.0 0.0 12.2 0.0
Over fit 18.1 56.0 20.2 3.8 18.2 47.4 23.9 3.9

Wrong fit 0.6 0.7 54.1 92.7 0.0 0.0 58.7 96.1
20% bad leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 Correct fit 50 54.4 37.8 17.1 2.0 100 70.9 52.8 16.4 0.5
Under fit 15.5 4.5 31.7 48.5 8.0 3.4 32.5 52.4
Over fit 9.3 44.0 6.7 0.1 9.5 35.7 5.0 0.0

Wrong fit 20.8 13.7 44.5 49.4 11.6 8.1 46.1 47.1
Case 2, r=0.03 Correct fit 50 87.0 47.6 17.0 4.2 100 87.4 60.5 13.7 2.4

Under fit 0.5 0.5 32.9 47.6 0.0 0.0 34.3 47.1
Over fit 11.8 50.9 8.5 0.1 12.6 39.5 7.6 0.0

Wrong fit 0.7 1.0 41.6 48.1 0.0 0.0 44.4 50.5
Case 2, r=0.1 Correct fit 50 87.5 52.5 17.3 4.7 100 90.4 60.9 16.0 2.4

Under fit 0.6 0.4 32.8 45.9 0.0 0.0 31.1 43.6
Over fit 11.6 46.7 7.6 0.2 9.6 39.1 7.2 0.2

Wrong fit 0.3 0.4 42.3 49.2 0.0 0.0 45.7 53.8
Case 2, r=0.5 Correct fit 50 87.9 50.0 7.9 0.4 100 89.2 59.2 5.9 0.2

Under fit 0.2 0.4 17.9 2.9 0.0 0.0 11.5 0.0
Over fit 11.3 48.2 20.2 3.0 10.8 40.8 20.8 3.3

Wrong fit 0.6 1.4 54.0 93.7 0.0 0.0 61.8 96.5
30% bad leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 Correct fit 50 43.7 29.6 17.3 2.6 100 44.3 36.7 16.1 0.7
Under fit 20.0 10.9 30.7 46.9 15.9 10.3 32.1 49.9
Over fit 31.0 34.2 7.5 0.1 36.5 26.8 7.9 0.0

Wrong fit 5.3 25.3 44.5 50.4 3.3 26.2 43.9 49.4
Case 2, r=0.03 Correct fit 50 75.7 53.3 18.4 4.5 100 91.4 69.6 17.5 2.3

Under fit 6.6 1.5 29.2 46.6 0.9 0.2 31.2 50.2
Over fit 7.9 40.7 7.9 0.1 5.7 29.5 7.9 0.0

Wrong fit 9.8 4.5 44.5 48.8 2.0 0.7 43.4 47.5
Case 2, r=0.1 Correct fit 50 79.2 54.7 15.9 3.0 100 92.8 70.0 17.6 1.9

Under fit 6.2 1.8 29.3 44.4 1.1 0.3 32.4 41.9
Over fit 7.3 39.3 8.6 0.2 4.6 29.0 7.6 0.0

Wrong fit 7.3 4.2 46.2 52.4 1.5 0.7 42.4 56.2
Case 2, r=0.5 Correct fit 50 83.6 56.1 8.4 0.4 100 94.0 69.1 5.4 0.0

Under fit 1.1 0.6 16.3 2.6 0.1 0.2 12.2 0.2
Over fit 8.1 39.9 17.4 3.1 5.1 30.6 20.5 3.3

Wrong fit 7.2 3.4 57.9 93.9 0.8 0.1 61.9 96.5
40% bad leverage n SICMM SICLTS SICM SICLS n SICMM SICLTS SICM SICLS

Case 1 Correct fit 50 46.3 19.5 15.1 3.3 100 47.1 22.0 17.3 1.4
Under fit 12.5 14.3 29.6 48.6 11.4 15.2 30.9 51.2
Over fit 36.7 33.1 11.7 0.0 39.1 24.4 7.7 0.0

Wrong fit 4.5 33.1 43.6 48.1 2.4 38.4 44.1 47.4
Case 2, r=0.03 Correct fit 50 44.7 42.1 15.5 4.3 100 62.9 17.4 16.0 1.9

Under fit 33.6 7.8 29.4 48.3 5.0 34.7 32.8 46.1
Over fit 4.9 31.2 8.9 0.1 21.5 3.8 6.7 0.0

Wrong fit 16.8 18.9 46.2 47.3 10.6 44.1 44.5 52.0
Case 2, r=0.1 Correct fit 50 45.4 42.2 16.8 4.4 100 65.9 22.4 15.5 3.0

Under fit 18.8 8.3 25.5 42.6 4.5 30.6 30.5 41.6
Over fit 31.1 32.1 9.6 0.1 18.7 2.7 7.9 0.0

Wrong fit 4.7 17.4 48.1 52.9 10.9 44.3 46.1 55.4
Case 2, r=0.5 Correct fit 50 43.0 15.1 7.2 0.1 100 65.8 19.7 5.5 0.0

Under fit 1.9 9.4 16.0 2.1 0.9 3.8 11.6 0.1
Over fit 37.0 11.7 18.7 3.2 22.5 11.4 20.4 2.6

Wrong fit 18.1 63.8 58.1 94.6 10.8 65.1 62.5 97.3
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Table 6: Hawkins-Bradu-Kass Data
Obs. No. Hawkins Bradu kass y

1 10.1 19.6 28.3 9.7
2 9.5 20.5 28.9 10.1
3 10.7 20.2 31.0 10.3
4 9.9 21.5 31.7 9.5
5 10.3 21.1 31.1 10.0
6 10.8 20.4 29.2 10.0
7 10.5 20.9 29.1 10.8
8 9.9 19.6 28.8 10.3
9 9.7 20.7 31.0 9.6
10 9.3 19.7 30.3 9.9
11 11.0 24.0 35.0 -0.2
12 12.0 23.0 37.0 -0.4
13 12.0 26.0 34.0 0.7
14 11.0 34.0 34.0 0.1
15 3.4 2.9 2.1 -0.4
16 3.1 2.2 0.3 0.6
17 0.0 1.6 0.2 -0.2
18 2.3 1.6 2.0 0.0
19 0.8 2.9 1.6 0.1
20 3.1 3.4 2.2 0.4
21 2.6 2.2 1.9 0.9
22 0.4 3.2 1.9 0.3
23 2.0 2.3 0.8 -0.8
24 1.3 2.3 0.5 0.7
25 1.0 0.0 0.4 -0.3
26 0.9 3.3 2.5 -0.8
27 3.3 2.5 2.9 -0.7
28 1.8 0.8 2.0 0.3
29 1.2 0.9 0.8 0.3
30 1.2 0.7 3.4 -0.3
31 3.1 1.4 1.0 0.0
32 0.5 2.4 0.3 -0.4
33 1.5 3.1 1.5 -0.6
34 0.4 0.0 0.7 -0.7
35 3.1 2.4 3.0 0.3
36 0.1 2.2 2.7 -1.0
37 0.1 3.0 2.6 -0.6
38 1.5 1.2 0.2 0.9
39 2.1 0.0 1.2 -0.7
40 0.5 2.0 1.2 -0.5
41 3.4 1.6 2.9 -0.1
42 0.3 1.0 2.7 -0.7
43 0.1 3.3 0.9 0.6
44 1.8 0.5 3.2 -0.7
45 1.9 0.1 0.6 -0.5
46 1.8 0.5 3.0 -0.4
47 3.0 0.1 0.8 -0.9
48 3.1 1.6 3.0 0.1
49 3.1 2.5 1.9 0.9
50 2.1 2.8 2.9 -0.4
51 2.3 1.5 0.4 0.7
52 3.3 0.6 1.2 -0.5
53 0.3 0.4 3.3 0.7
54 1.1 3.0 0.3 0.7
55 0.5 2.4 0.9 0.0
56 1.8 3.2 0.9 0.1
57 1.8 0.7 0.7 0.7
58 2.4 3.4 1.5 -0.1
59 1.6 2.1 3.0 -0.3
60 0.3 1.5 3.3 -0.9
61 0.4 3.4 3.0 -0.3
62 0.9 0.1 0.3 0.6
63 1.1 2.7 0.2 -0.3
64 2.8 3.0 2.9 -0.5
65 2.0 0.7 2.7 0.6
66 0.2 1.8 0.8 -0.9
67 1.6 2.0 1.2 -0.7
68 0.1 0.0 1.1 0.6
69 2.0 0.6 0.3 0.2
70 1.0 2.2 2.9 0.7
71 2.2 2.5 2.3 0.2
72 0.6 2.0 1.5 -0.2
73 0.3 1.7 2.2 0.4
74 0.0 2.2 1.6 -0.9
75 0.3 0.4 2.6 0.2
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Table 7: The values of different criteria for Hawkins-Bradu-Kass data for different set of
variables

Set of variables SICMM , SICLTS SICM SICLS
(y,Hawkins) -0.3877 -0.6233 0.8786 1.7553

(y,Bradu) -0.4056 -0.6277 0.2157 1.8609

(y,Kass) -0.3982 -0.5835 -0.3089 1.7077

(y,Hawkins,Bradu) -0.3525 -0.5904 -0.2360 1.7898

(y,Hawkins,Kass) -0.3999 -0.6514 -0.1147 1.7358

(y,Bradu,Kass) -0.3766 -0.5719 -0.2206 1.6839

(y,Hawkins,Bradu,Kass) -0.4062 -0.6816 -0.1385 1.7077
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