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Abstract 

Chance Constrained Programming (CCP) as one of the special parts of 

mathematical programming in which its application in industrial and 

academic fields is currently needed to cover the problem of uncertainty 

in making decisions. The CCP  technique is an efficient and easy tool to 

apply for data involved to random parameters by assuming random 

parameters must follow a stable normal distribution. In selection 

process, budget goal, making the most benefits, and achieving 

minimum travel are considered as a random parameter and solved by 

using CCP. Goal Programming (GP) model, will be used to model the 

rail system transportation project selection process, because allocating 

resources into all projects at the same time requires multi-criteria 

decision making techniques.   

 

Keywords: - Constrained Framework, Chance Constrained 

Programming (CCP) etc. 

 

 

1 Introduction  

For the transportation system data that is existing, including conveyance capacity, demand, and resource 

data, its precision is compromised, but exists as random, fuzzy, or both forms of data. In objective functions, 

therefore, there could be randomness or fuzziness, a similar observation made in the constraints. With 

different uncertainty forms, handling them in practical scenarios forms a critical challenge [1]. As such, 

optimization algorithms that focus on fuzzy and probabilistic methods have been developed, including the 

expected value framework, robust optimization, chance constrained programming, stochastic programming. 

These renowned models have been implemented in a quest to ensure that optimization-related issues are 

handled, especially in the wake of uncertainty. It is also notable that for uncertainties or problems such as 

customer demands, benefits, and costs are not replicated by linear programming, because this approach fails 

to incorporate multiple goals. To compensate for this deficiency, a regular integer goal programming 

approach entails the chance constrained capabilities [2].   

For the CCP approaches that Cooper and Charnes [3] have pioneered, a deterministic problem is realized 

after the conversion of the stochastic formulation. In so doing, the possibility of achieving or meeting certain 

constraints has been exceeded. In particular, this approach achieves feasible region flexibility through the 

solution’s confidence level variation. With an equivalent deterministic problem realized after stochastic 

optimization problem transformation, computational tractability is realized. Despite this outcome, it is 

assumed that uncertain parameters will be following stable probability distributions to achieve desired 
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statistical distributions perceived to be well behaved. In this study, the central purpose lies in the 

presentation of a framework through which project transportation planning could be selected. The study 

focuses on the context of rail system projects. Indeed, given that rail systems exhibit cities’ public 

transportation bodies, they become ideal research context. Also, with some variables normally distributed 

while others are random, the proposed model deemed to be ideal is that which combines the Goal 

Programming model, the chance constrained programming algorithm in this case. To indicate how the 

proposed model is developed and how it functions, a test scenario entails part of a rail system whose 

planning was achieved or done by Hamurcu and Eren [4, 5] for investments Istanbul.  

 

2 Methodology  

The goal programming model is established that collects different objectives under one objective for the 

problem. There are multiple goal in the problem such as achieving budget goal, making the most benefits, 

linking the most station, combining the longest distances, and achieving minimum travel time. In the 

mathematical model, the objective function of which deviation from the targets are minimized is defined as 

meeting mandatory objectives and ensuring budget constraints. Goal programming formulation as below : 

 

Objective function : 

𝑀𝑖𝑛 𝑍 =  [𝑃1𝑤1(𝑑𝑖
+, 𝑑𝑖

−) + ⋯ + 𝑃𝑘𝑤𝑘(𝑑𝑖
+, 𝑑𝑖

−)]       (1) 

 

Constraints : 

∑ 𝑎𝑖𝑗𝑥𝑗 − 𝑑𝑖
++ 𝑑𝑖

− = 𝑏𝑖
𝑛
𝑗=1           (2) 

𝑑𝑖
+, 𝑑𝑖

_, 𝑥𝑗 ≥ 0            (3) 

𝑖 = 1, … , 𝑚 ; 𝑗 = 1, … , 𝑛 

 

𝑃𝑖: Priority , 𝑤𝑖 : weight, 𝑑𝑖
+: Positive deviation, 𝑑𝑖

− : Negative deviation, 𝑎𝑖𝑗: parameters vector, 𝑥𝑗 ∶

 decision variables.   

Following the implementation of the chance-constrained programming model, there is the countering f or 

accounting for risks while determining the levels of probability𝑝𝑖, especially due to the need for the 

satisfaction of the demand goals. An example is that in which firms could establish probability levels where 

production minimization can be achieved relative to demand excess and satisfaction. The eventuality is that 

during model implementation, there is a need for constraints to achieve a desired probability level. Also, the 

confidence level becomes a representation of the firm’s operating system. Indeed, there can also be a CCP 

conversion to achieve deterministic equivalents, especially in situations involving a normal distribution of 

stochastic variables. The eventuality is that with more flexibilities realized, there is a possibility of 

considering uncertainty reliability. For the case of CCP implementation, the central assumption is that 

coefficients tend to abide by normal distributions, which exhibit known variances and means (Wang, 2016). 

The model is considered as follows:  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹(𝑋) =  ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1         (4) 
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Subject to  

 

Pr[∑ 𝑎𝑖𝑗𝑋𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 ] ≥ 𝑝𝑖for  𝑖 = 1,2, … , 𝑚      (5) 

 

𝑋𝑗 ≥ 0   for 𝑗 = 1,2, … , 𝑛         (6) 

where  𝑐𝑗 , 𝑎𝑖𝑗  , and 𝑏𝑖 are normal random variables and 𝑝𝑖’s are prespecified probabilities.  

 

Prior to the GP model formulation, there is a need for the collection of the right-hand side value and real-world 

coefficient data in terms of the amount of resource available and the amount of resource consumed by an 

attribute respectively. The next step entails the determination of the respective goals’ priority levels. In turn, 

there is the formulation of constraints such as AHP, resource, and system priority. For the case of system 

constraints, deviation variables are absent. As such, equality signs are not used. Rather, inequality signs are 

employed. It is also from the resource constraint that a random variable could be obtained, with uncertainties 

appearing in the form of excess production capacity and future demand, as well as the effort to maintain the 

budget as originally intended. Through these variables, therefore, it can be seen that CCP is implemented to 

compensate for deficiency. Hence, this arrangement differentiates resource constraints from system constraints. 

However, based on (4), and (5), random variables are seen to exist in the form of three coefficients and this 

outcome attracts a state of extreme stochasticity.  

Notably, there is a general consideration of 𝑏𝑖’s and/or  𝑎𝑖𝑗’s and/or 𝑐𝑖𝑗’s as random attributes. Considering only 

independently and normally distributed coefficients, three basic cases are as follows: 

1. When only 𝑏𝑖’s  are random : Let ei(nonnegative) represent a standard normal variate at which 𝜃(𝑒𝑖) = 1 −

𝜑𝑖. Then (4) remains the same and each constraint of type (5) takes the deterministic form of (7). No nonlinear 

terms result in this case : 

∑ 𝑎𝑖𝑗𝑥𝑗 − 𝑏̅𝑖 − 𝑒𝑖[𝑉𝑎𝑟 (𝑏𝑖)]
1

2 ≤ 0,       for 𝑖 = 1,2, … , 𝑚𝑛
𝑗=1     (7) 

2. When only 𝑎𝑖𝑗’s are random : (4) still remain the same, but constraints (5) now become nonlinear as shown 

below :  

∑ 𝑎̅𝑖𝑗𝑋𝑗 + 𝑒𝑖[∑ 𝑉𝑎𝑟(𝑎𝑖𝑗)𝑥𝑗
2𝑛

𝑗=1 ]
1/2

− 𝑏𝑖 ≤ 0    for 𝑖 = 1,2, … , 𝑚𝑛
𝑗=1    (8) 

3. When only 𝑐𝑖𝑗’s are random : (5) will be unchanged. However, (4) as the objective function will end up being 

nonlinear. Thus,  

𝐹(𝑋) =  𝑘1 ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  + 𝑘2[∑ 𝑉𝑎𝑟(𝑎𝑖𝑗)𝑥𝑗

2𝑛
𝑗=1 ]

1/2
      (9) 

𝑘1and 𝑘2 represent coefficients that are non-negative and depict the criticality of variance and mean 

minimization. Should there be randomness in the three coefficients, the eventuality is that the objective 

function is retained, just as (9). In so doing, the form that the respective constraints (5) take becomes:  

ℎ̅𝑖 + 𝑒𝑖[𝑉𝑎𝑟 (ℎ𝑖)]1/2 ≤ 0 

For 𝑖 = 1,2, … , 𝑚  where ℎ̅𝑖 =  ∑ 𝑎̅𝑖𝑗 𝑥𝑗 − 𝑏̅𝑖
𝑛
𝑗=1    for all i.     (10) 

 

3 Results and Discussion  

In this study, 0-1 Integer goal programming methods with Istanbul Metropolitan using an application was 

made for the selection of Transportation Projects in the Municipality. A lot of investment is made public 

transportation to reduce this density. Most of these investmens are in invesments in rail system,  which are 

safe, comfortable, and fast transport systems. With its short, medium, and long term plans, istanbul is 



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

https://doi.org/10.17762/msea.v71i1.51 

 

116 
 

Vol. 71 No. 1 (2022) 

http://philstat.org.ph 

 

 

making and planning big investments in rail systems. It is aimed to reach to many points of the city by rail 

system such as Metro, Tramway and Monorail lines. Alternative Projects are shown in table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relevant data, such as that which touches on the right-hand side value and coefficients, comes in the form of 

21 decision variable types, including:  

𝑀𝑖 = Selected Metro project(𝑖 = 1,2, … ,17) 

Rail System 

Type 

Name of 

Line 

Station 

Number 

Distance 

(km) 

Travel 

Time (dk) 

Approximate 

Cost (Million $) 
Benefit ( Million) 

Metro M1 12 14,30 22 
810,00 88,00 

Metro M2 4 14,30 22 
808,00 622,00 

Metro M3 12 13,00 19,5 710,00 1021,00 

Metro M4 5 6,20 10 
320,00 99,00 

Metro M5 10 9,70 15 
450,00 97,00 

Metro M6 7 7,60 12 
380,00 444,00 

Metro M7 2 4,10 6 240,00 63,00 

Metro M8 6 6,90 10,5 
350,00 403,00 

Metro M9 11 13,00 19,5 
720,00 82,00 

Metro M10 10 16,24 25 980,00 51,00 

Metro M11 11 14,00 21 942,00 87,00 

Metro M12 11 18,00 27 
1085,00 622,00 

Metro M13 4 5,50 8,5 
350,00 403,00 

Metro M14 13 28,00 42 1420,00 444,00 

Metro M15 14 55,50 166,5 
3025,00 742,00 

Metro M16 5 9,70 14,5 
1030,00 68,00 

Metro M17 5 5,50 8,5 
341,00 267,00 

Monorail H1 17 17,00 40 240,00 92,00 

Monorail H2 9 7,25 12,5 
175,00 587,00 

Tramway T1 14 10,10 30 
888,00 150,00 

Tramway T2 6 3,00 9 202,00 120,00 
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𝐻𝑖 = Selected Monorail project(𝑖 = 1,2) 

𝑇𝑖 = Selected Tramway project(𝑖 = 1,2) 

𝑀𝑖(𝐻𝑖 ) (𝑇𝑖) = {
1  , if project selected

0  ,  otherwise
 

𝑑𝑗
+ = positive deviation 𝑗 

𝑑𝑗
− = negative deviation 𝑗 

4 Conclusion 

This study established a stochastic programming model under uncertain constraints in railed system projects 

in Istanbul.  Subsequently, the best projects were selected to improve urban transport among the planned 

transportation projects with the mathematical model established at the point of achieving the specified 

objectives. Urban transportation planning is one of the most difficult decision-making processes of 

transportation planning. The selected framework strives to offer critical data insights for the investments in 

transportation planning, especially in relation to variations in uncertainties and goals regarding the future 

demand, as well as the need to account for the same. To handle future demand’s uncertainty, the 

implementation of chance-constrained programming is found to be logical and consistent.  
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